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Complexity of guantum state

Assume that we have a fault-tolerant QC...
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solving problem, Hamiltonian simulation...

Prepare a quantum state and measure observables

Basic question

What kind of quantum states are easy (hard) to prepare by quantum computer?



Complexity of guantum state

Quantum state complexity C(|y)) of n-qubit state |y)

C(ly)) is minimum number of two-qubit gates to generate |) by a unitary
circuit from [0™) (approximately or exactly).

v/ Clear operational meaning
v/ Classical counterpart (circuit complexity) is one of the most pervasive topics in CS.

v/ Def. of topological ordered states
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Complexity growth: Brown & Susskind conjecture
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Complexity should grow linearly until an exponential time?
[Brown, Susskind] 7

In contrast to local observables and entanglement entropy, | .

‘ »

which saturate quickly. Q) Time
e

Toy model: Local random circuits _ _ _
Sublinear growth of approximate state complexity

(0] — _ ) [Brandao, Harrow, Horodecki 2012] [Roberts, Yoshida 2016]
O —H1H—H—+—1— Each unitary gate is [Brandao, Chemissany, Hunter-Jones, Kiing, Preskill 2019]
O 49—+ -+ Haar random: U € U(4) [Oszmaniec, Horodecki, Hunter-Jones 2022]

(0] ——H — : .

(O] - — Linear growth of exact state complexity

(0] — ime [Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern, 2022]
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NMonitored quantum circuits

[Li-Chen-Fisher; Skinner-Ruhman-Nahum (2018)]

Unitary circuit + Measurements: Toy model of entanglement phase transition

@® : 1-qubit measurement in the computational basis

|0){0| or |1><1| with rate p
W) =

- A Entanglement entropy of the subsystem?

After applying unitary gates, measure individual qubit at a probability p.

Probability of getting specific measurement outcomes follows the born rule: py = (W|yY)



NMonitored quantum circuits

Measurement-induced phase transition

S Sa(4) = ——log, Tr(p)
4 ) -
= Volume law =6
Volume-law phase ;  Area-law phase
| >
0 Sy~L P, Sq~const. 1 P
a=0; p. =05
For Haar random gates, a > 0; p. € [0.2,0.35]

[Li-Chen-Fisher; Skinner-Ruhman-Nahum; Bao-Choi-Altoman]

How about dynamics of quantum complexity in monitored circuit?
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Qur setting — Complexity dynamics of MRCs

Monitored random circuit Co-complexity

Min # of two-qubit gates to prepare [¢) exactly
by a unitary circuit.

)=

C.,-complexity

Min # of two-qubit gates to prepare [¢) exactly
by a post-selected quantum circuit.

j:[ : 2-qubit unitary gate (Haar random)

® : l-qubit projector in the computational basis

00| or [1)(1] In generall, Cy > C,,,.

@ What is the complexities of the output state, depending on t,p?



Results: Complexity phase transitions

Complex phase Uncomplex phase
p <p.=0.5: p > D,
Co(l¥)) = Q(2) Co([¥)) = poly(n)
Cm (1)) = 0(8) Cm(|¥)) < O(nlogn)
until saturating to exp(n) saturating in t < 0(log(n))
with probability 1 — e, with probability 1 — e,

n: number of qubits

Complex phase

Uncomplex phase

|
0 pc,MPS? Pc = 0.5

>

1

p : Measurement rate



Remark and Implication

With a fixed measurement configuration,
the complexity is maximum over all unitary gates
except for a measure zero set.

‘ Typical monitored dynamics undergo the complexity phase transition.

Previous numerical results show that above p = 0.3, output states satisfy area law.
[Bao-Choi-Altoman (2018)]

‘ Described by MPS efticiently, and hence poly(n) approximate complexity.

Complex phase Uncomplex phase

I >
0 pc,MPS? pe=0.5 1
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Mapping to percolation model

N/
N/

[Skinner, Ruhman, Nahum]

/ / / / \ Measurement-free path Left-right crossing

Monitored random circuit Percolation model

p > p.: No measurement-free paths

p < p.: Embedding a unitary circuit to monitored circuit



Proof sketch: Uncomplex phase p > p,.

Last n layers
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Unmeasured region

Measurements reset to |0™). l Co(|Y)) < poly(n)
Bound a size of an unmeasured region by log(n) Cn(J¥)) < O(nlogn)



Proof sketch: Complex phase p < p.

N @ N\ @ \
v

AN H N_A A

L/ \ NS \.4
N / \ // / /

-
7N / Q \ N—" \ ®(n) measurement-free paths
N/ / [ l ’
Unitary circuit
A with ©(n) qubits

/w e/ @

Bridge = Measurement-free path

A\

X4 N\ N / \ -
NI \ )g( y
ﬁr’ ~

v

Strategy:
« Embed a unitary circuit to a monitored circuit

(cf. non-dynamical case: [Browne et. al. 2008])

« Lower-bound the complexity by dimension counting arguments
[Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern, 2022]



-mbedding a unitary circuit; simple case

« Measurement-free paths are “causal”, i.e. not changing the time direction
« Paths share unitary gates
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Complexity by dimension
M: a measurement configuration and outcomes

B?" e ¢%"

Unitary gates
Unnormalized quantum states

The larger the set is, the more complex the states are.

Unitary circuit case [Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern, 2022]



Complexity by dimension

Lem. Lower bound on complexity

For a quantum state [y) € S,

~ Co,([)) = Q(dim SM) with unit probability.

i n . M . . . .
BZ" ¢ (2 dim(S™) : Accessible dimension

Lowerbound on the accessible
dimension in unitary case dim(SM) > Q(t)

dim(59) = Q(t) + Embedding unitary scheme » C. ([9)) = QD)

[Haferkamp, Faist, Kothakonda,
Eisert, Yunger Halpern, 2022]



-mbedding a unitary circuit; general case

Measurement-free paths are not “causal”

Assume there are measurements at which the path changes the time direction
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Entanglement teleportation-like scheme helps the embedding:
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Adding measurements scheme

What if there are no measurements at the desired locations:--?

» \We can add measurements there!

Lemma (Measurement cannot increase the accessible dimension)

M'is a measurement configuration by adding measurements to M.

dim S™ > dim M’

Measurement configuration M Measurement configuration M’

Sufficient to lower-bound dim S™ instead of dim SM.



ffective two-gubit gate between paths
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Proof sketch: Complex phase p < p.
(o

®(n) measurement-free paths

- Unitary circuit
with @(n) qubits

t Bridge = Measurement-free path

v Lower-bound the complexity by dimension counting arguments
C,, = dimS™ > Q(t)
v Embed a unitary circuit to a monitored circuit

Co(l¥)) = Q(1)
Cn (1)) = 6(2)

until saturating to exp(n)



Summary

« State complexity of Monitored random circuit undergoes a phase transition

 Phase transition of a more robust state complexity?
e Critical phenomenon?
e Super linear growth of complexity in monitored circuit?

« Applications of the accessible dimension to quantum computing?



