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Complexity of quantum state

What kind of quantum states are easy (hard) to prepare by quantum computer?

| ⟩𝜓 =
⟨0|
⟨0|
⟨0|
⟨0|
⟨0|
⟨0|

Assume that we have a fault-tolerant QC...

Basic question

solving problem, Hamiltonian simulation...

Prepare a quantum state and measure observables



Complexity of quantum state

Complexity
Product state

Ground state of 
1D gapped LH 

poly(𝑛)

Stabilizer state

Late time in
chaotic dynamics

Generic state

exp(𝑛)

easy
hard

Quantum state complexity 𝑪(| ⟩𝝍 ) of 𝒏-qubit state | ⟩𝝍

✓ Clear operational meaning
✓ Classical counterpart (circuit complexity) is one of the most pervasive topics in CS.

✓ Def. of topological ordered states

𝐶(| ⟩𝜓 ) is minimum number of two-qubit gates to generate | ⟩𝜓  by a unitary 
circuit from 0$ (approximately or exactly).   



Complexity growth: Brown & Susskind conjecture
How do typical local dynamics produce the state complexity? 

Complexity should grow linearly until an exponential time?
[Brown, Susskind]

Toy model: Local random circuits
Sublinear growth of approximate state complexity

[Brandão, Harrow, Horodecki 2012] [Roberts, Yoshida 2016] 
[Brandão, Chemissany, Hunter-Jones, Küng, Preskill 2019] 
[Oszmaniec, Horodecki, Hunter-Jones 2022]

Linear growth of exact state complexity
[Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern, 2022]

In contrast to local observables and entanglement entropy,
which saturate quickly. 
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Monitored quantum circuits

Unitary circuit + Measurements: Toy model of entanglement phase transition

After applying unitary gates, measure individual qubit at a probability 𝑝.

Probability of getting specific measurement outcomes follows the born rule: p! = ⟨𝜓|𝜓⟩

[Li-Chen-Fisher; Skinner-Ruhman-Nahum (2018)] 

:  1-qubit measurement in the computational basis
or

Entanglement entropy of the subsystem?𝐴

with rate 𝒑



Monitored quantum circuits

𝑝
𝑝+

Volume-law phase Area-law phase

0 1𝑆,~𝑐𝑜𝑛𝑠𝑡.𝑆,~𝐿

𝑆"(𝐴) =
1

1 − 𝑛
log# Tr(𝜌$")

Volume law

area law

[Li-Chen-Fisher; Skinner-Ruhman-Nahum; Bao-Choi-Altoman]

Measurement-induced phase transition

𝛼 = 0; 𝑝+ = 0.5
𝛼 > 0; 𝑝+ ∈ [0.2, 0.35]

How about dynamics of quantum complexity in monitored circuit?

For Haar random gates, 



• Introduction
• Quantum complexity
• Monitored quantum circuits

• Complexity phase transition in monitored random circuits
• Setting
• Results

Outline

• Proof sketch



Our setting ‒ Complexity dynamics of MRCs

𝑪𝟎-complexity

Min # of two-qubit gates to prepare |𝜓⟩ exactly
by a unitary circuit.

𝑪𝒎-complexity
Min # of two-qubit gates to prepare |𝜓⟩ exactly
by a post-selected quantum circuit.

Monitored random circuit

What is the complexities of the output state, depending on 𝑡, 𝑝?

In generall, C' > 𝐶(.



Results: Complexity phase transitions

𝑝 ∶Measurement rate

𝐶K(|𝜓⟩) ≤ 𝑝𝑜𝑙𝑦(𝑛)
𝐶L(|𝜓⟩) ≤ 𝑂(𝑛log𝑛)

𝐶K(|𝜓⟩) ≥ Ω(𝑡)
𝐶L(|𝜓⟩) = Θ(𝑡)

Complex phase Uncomplex phase

𝑝 < 𝑝M = 0.5: 𝑝 > 𝑝M:

0 1

Uncomplex phaseComplex phase

until saturating to exp(𝑛) saturating in t < O(log 𝑛 )

𝑛: number of qubits

with probability 1 − 𝑒NO($). with probability 1 − 𝑒NO($).



Remark and Implication

with rate 𝑝

Typical monitored dynamics undergo the complexity phase transition.

With a fixed measurement configuration,
the complexity is maximum over all unitary gates
except for a measure zero set.

0 1

Uncomplex phaseComplex phase

Previous numerical results show that above 𝑝 ≈ 0.3, output states satisfy area law.  

Described by MPS efficiently, and hence poly(𝑛) approximate complexity.
[Bao-Choi-Altoman (2018)]
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Mapping to percolation model

[Skinner, Ruhman, Nahum]

𝑝 > 𝑝M: No measurement-free paths 

𝑝 < 𝑝M: Embedding a unitary circuit to monitored circuit 



Proof sketch: Uncomplex phase 𝑝 > 𝑝!

Unmeasured region

Bound a size of an unmeasured region by log 𝑛 𝐶L(|𝜓⟩) ≤ 𝑂(𝑛log𝑛)
𝐶K(|𝜓⟩) ≤ 𝑝𝑜𝑙𝑦(𝑛)Measurements reset to | ⟩0$ .



Proof sketch: Complex phase 𝑝 < 𝑝!

Θ(𝑛) measurement-free paths

Unitary circuit 
with Θ(𝑛) qubits

• Lower-bound the complexity by dimension counting arguments

Strategy:

(cf. non-dynamical case: [Browne et. al. 2008])

[Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern, 2022]

• Embed a unitary circuit to a monitored circuit



Embedding a unitary circuit: simple case
• Measurement-free paths are “causal”, i.e. not changing the time direction
• Paths share unitary gates

𝑈-

𝑈.



Complexity by dimension

Unitary circuit case [Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern, 2022]

…

𝑆𝑈 4 ×+
𝐹,: 𝐵-#

! ∈ ℂ#!

𝑆/

Unitary gates
Unnormalized quantum states

The larger the set is, the more complex the states are.

𝑀: a measurement configuration and outcomes



𝑆/

𝐵-#
! ∈ ℂ#!

Lem. Lower bound on complexity 

𝐶((|𝜓⟩) ≥ Ω(dim𝑆,)

For a quantum state 𝜓 ∈ 𝑆,,

with unit probability.

dim 𝑆, : Accessible dimension

Lowerbound on the accessible
 dimension in unitary case

dim 𝑆K ≥ Ω(𝑡)
[Haferkamp, Faist, Kothakonda, 
Eisert, Yunger Halpern, 2022]

Complexity by dimension

Embedding unitary scheme
dim 𝑆T ≥ Ω(𝑡)

𝐶L(|𝜓⟩) ≥ Ω(𝑡)



Embedding a unitary circuit: general case
• Measurement-free paths are not “causal”

Assume there are measurements at which the path changes the time direction

Entanglement teleportation-like scheme helps the embedding:



Adding measurements scheme
What if there are no measurements at the desired locations…? 

We can add measurements there!

Lemma (Measurement cannot increase the accessible dimension) 

dim𝑆, ≥ dim𝑆,"

𝑀′ is a measurement configuration by adding measurements to 𝑀.

Sufficient to lower-bound dim𝑆," instead of dim𝑆,. 



Effective two-qubit gate between paths



Proof sketch: Complex phase 𝑝 < 𝑝!

✓Lower-bound the complexity by dimension counting arguments

✓Embed a unitary circuit to a monitored circuit

Θ(𝑛) measurement-free paths

Unitary circuit 
with Θ(𝑛) qubits

𝐶K(|𝜓⟩) ≥ Ω(𝑡)
𝐶L(|𝜓⟩) = Θ(𝑡)

until saturating to exp(𝑛)

𝐶( ≥ dim𝑆, ≥ Ω(𝑡)



Summary

• State complexity of Monitored random circuit undergoes a phase transition

• Phase transition of a more robust state complexity?

• Critical phenomenon?

• Super linear growth of complexity in monitored circuit?

• Applications of the accessible dimension to quantum computing?


