YITP-ExU long-term workshop, 21.09.2023

Complexity phase transitions in monitored random circuits

Ryotaro Suzuki

Dahlem center for complex quantum states, FU Berlin

Joint work with Jonas Haferkamp, Jens Eisert, Philippe Faist

arXiv:2305.15475

Outline

- Introduction
 - Quantum complexity
 - Monitored quantum circuits
- Complexity phase transition in monitored random circuits
 - Setting
 - Results

• Proof sketch

Complexity of quantum state

Assume that we have a fault-tolerant QC...

Prepare a quantum state and measure observables

Basic question

What kind of quantum states are easy (hard) to prepare by quantum computer?

Complexity of quantum state

Quantum state complexity $C(|\psi\rangle)$ of *n*-qubit state $|\psi\rangle$

 $C(|\psi\rangle)$ is minimum number of two-qubit gates to generate $|\psi\rangle$ by a unitary circuit from $|0^n\rangle$ (approximately or exactly).

- ✓ Clear operational meaning
- ✓ Classical counterpart (circuit complexity) is one of the most pervasive topics in CS.
- ✓ Def. of topological ordered states

Complexity growth: Brown & Susskind conjecture

How do typical local dynamics produce the state complexity?

Complexity should grow linearly until an exponential time? [Brown, Susskind]

In contrast to local observables and entanglement entropy, which saturate quickly.

Toy model: Local random circuits

Sublinear growth of approximate state complexity

[Brandão, Harrow, Horodecki 2012] [Roberts, Yoshida 2016] [Brandão, Chemissany, Hunter-Jones, Küng, Preskill 2019] [Oszmaniec, Horodecki, Hunter-Jones 2022]

Linear growth of exact state complexity

[Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern, 2022]

Monitored quantum circuits

[Li-Chen-Fisher; Skinner-Ruhman-Nahum (2018)]

Unitary circuit + Measurements: Toy model of entanglement phase transition

- : 1-qubit measurement in the computational basis $|0\rangle\langle 0|$ or $|1\rangle\langle 1|$ with rate p
- A Entanglement entropy of the subsystem?

After applying unitary gates, measure individual qubit at a probability p.

Probability of getting specific measurement outcomes follows the born rule: $p_M = \langle \psi | \psi \rangle$

Monitored quantum circuits

Measurement-induced phase transition

$$S_{\alpha}(A) = \frac{1}{1-n} \log_2 \operatorname{Tr}(\rho_A^{\alpha})$$

Volume-law phase Area-law phase
$$p_c$$
 $S_{\alpha} \sim const.$ p_c p_c

 $\alpha = 0; p_c = 0.5$ For Haar random gates, $\alpha > 0; p_c \in [0.2, 0.35]$

[Li-Chen-Fisher; Skinner-Ruhman-Nahum; Bao-Choi-Altoman]

How about dynamics of quantum complexity in monitored circuit?

Outline

- Introduction
 - Quantum complexity
 - Monitored quantum circuits
- Complexity phase transition in monitored random circuits
 - Setting
 - Results

• Proof sketch

Our setting – Complexity dynamics of MRCs

Monitored random circuit

• : 1-qubit projector in the computational basis $|0\rangle\langle 0|$ or $|1\rangle\langle 1|$

C₀-complexity

Min # of two-qubit gates to prepare $|\psi\rangle$ exactly by a **unitary circuit**.

C_m -complexity

Min # of two-qubit gates to prepare $|\psi\rangle$ exactly by a **post-selected quantum circuit**.

In generall, $C_0 > C_m$.

 Q_{\bullet} What is the complexities of the output state, depending on t, p?

Results: Complexity phase transitions

Complex phase

 $p < p_c = 0.5$: $C_0(|\psi\rangle) \ge \Omega(t)$ $C_m(|\psi\rangle) = \Theta(t)$

until saturating to $\exp(n)$ with probability $1 - e^{-\Omega(n)}$. $\begin{aligned} p > p_c: \\ C_0(|\psi\rangle) &\leq poly(n) \\ C_m(|\psi\rangle) &\leq O(n \log n) \end{aligned}$ saturating in t < O(log(n)) with probability $1 - e^{-\Omega(n)}$.

n: number of qubits

Remark and Implication

With a fixed measurement configuration, the complexity is maximum over all unitary gates except for a measure zero set.

Typical monitored dynamics undergo the complexity phase transition.

Previous numerical results show that above $p \approx 0.3$, output states satisfy area law. [Bao-Choi-Altoman (2018)]

Described by MPS efficiently, and hence poly(n) approximate complexity.

Outline

- Introduction
 - Quantum complexity
 - Monitored quantum circuits
- Complexity phase transition in monitored random circuits
 - Setting
 - Results

• Proof sketch

Mapping to percolation model

 $p > p_c$: No measurement-free paths

 $p < p_c$: Embedding a unitary circuit to monitored circuit

Proof sketch: Uncomplex phase $p > p_c$

Measurements reset to $|0^n\rangle$. Bound a size of an unmeasured region by $\log(n)$

Proof sketch: Complex phase $p < p_c$

 $\Theta(n)$ measurement-free paths

Unitary circuit with $\Theta(n)$ qubits

Strategy:

• Embed a unitary circuit to a monitored circuit

(cf. non-dynamical case: [Browne et. al. 2008])

• Lower-bound the complexity by dimension counting arguments

[Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern, 2022]

Embedding a unitary circuit: simple case

- Measurement-free paths are "causal", i.e. not changing the time direction
- Paths share unitary gates

Complexity by dimension

M: a measurement configuration and outcomes

The larger the set is, the more complex the states are.

Unitary circuit case [Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern, 2022]

Complexity by dimension

Lem. Lower bound on complexity

For a quantum state $|\psi\rangle \in S^M$, $C_m(|\psi\rangle) \ge \Omega(\dim S^M)$ with unit probability.

 $\dim(S^M)$: Accessible dimension

Lowerbound on the accessible dimension in unitary case

 $\dim(S^0) \ge \Omega(t)$

[Haferkamp, Faist, Kothakonda, Eisert, Yunger Halpern, 2022]

Embedding a unitary circuit: general case

• Measurement-free paths are not "causal"

Assume there are measurements at which the path changes the time direction

Adding measurements scheme

What if there are no measurements at the desired locations \cdots ?

We can add measurements there!

Lemma (Measurement cannot increase the accessible dimension)

M' is a measurement configuration by adding measurements to M.

 $\dim S^M \ge \dim S^{M'}$

Measurement configuration M

Measurement configuration M'

Sufficient to lower-bound dim $S^{M'}$ instead of dim S^{M} .

Effective two-qubit gate between paths

Proof sketch: Complex phase $p < p_c$

 $\Theta(n)$ measurement-free paths

Unitary circuit with $\Theta(n)$ qubits

 \checkmark Lower-bound the complexity by dimension counting arguments $\mathcal{C}_m \geq \dim S^M \geq \Omega(t)$

✓ Embed a unitary circuit to a monitored circuit

$$C_0(|\psi\rangle) \ge \Omega(t)$$

$$C_m(|\psi\rangle) = \Theta(t)$$

until saturating to exp(n)

• State complexity of Monitored random circuit undergoes a phase transition

- Phase transition of a more robust state complexity?
- Critical phenomenon?
- Super linear growth of complexity in monitored circuit?
- Applications of the accessible dimension to quantum computing?