Krylov complexity and chaos in quantum mechanics

Norihiro Tanahashi (chuo U, co3)
based on arXiv:2305.16669 [hep-th]
w/ K. Hashimoto (B01 collaborator), R. Watanabe [Kyoto U], K. Murata [Nihon U, B03]

Krylov complexity and chaos in quantum mechanics

- Classical \& quantum chaos in billiard systems
- We find significant correlations between indicators of chaos

- These correlations are universal for any billiards (stadium, Sinai, ...)
- Subtlety in Krylov complexity value?

Classical chaos in billiard system

- Classical chaos in non-linear deterministic dynamical system
- Orbits sensitive to initial conditions \rightarrow "information loss"
- Lyapunov exponent $\lambda>0 \Rightarrow$ chaotic

- Example: Stadium billiard [Bunimovich '74]

Quantum chaos in billiard system

- [Schrodinger eq. = linear equation of wave function Quantum effect washes out small scale ($\Delta x \Delta p \gtrsim \hbar$)
\rightarrow No chaos in quantum regime?
- Probes of chaos in quantum billiard
- Energy level statistics

Statistics of adjacent energy level spacing

$$
s_{n}=E_{n+1}-E_{n}
$$

- Poisson statistics (\rightarrow non-chaotic)

$$
P(s) \sim e^{-s}
$$

- Wigner-Dyson statistics $(\rightarrow$ chaotic)

$$
P(s) \sim s^{\beta} \exp \left(-s^{2}\right)
$$

- Out-of-time-order correlators (OTOC) in quantum billiard [Hashimoto+ '17]

Krylov operator complexity

- Yet another indicator of quantum chaos: Krylov complexity
- Krylov operator complexity for $\mathcal{O}(t)=e^{i H t} \mathcal{O}(0) e^{-i H t}$
- Krylov state complexity for $|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle$
- Also variation of Lanczos coefficients can be an indicator of chaos
[Rabinovici+ '21]
- Can we use it to probe quantum chaos in billiard system?
- Comparison with level statistics
- Relationship with classical chaos?
- Comparison with classical Lyapunov exponent

Krylov operator/state complexity

- Krylov operator complexity
- Time evolution of an operator \mathcal{O} for Hamiltonian H

$$
\mathcal{O}(t)=e^{i H t} \mathcal{O}(0) e^{-i H t}=\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} \mathcal{L}^{n} \mathcal{O}(0) \quad(\mathcal{L} \equiv[H, \cdot])
$$

- Krylov space $\mathcal{H}_{\mathcal{O}} \equiv\left\{\mathcal{O}, \mathcal{L} \mathcal{O}, \mathcal{L}^{2} \mathcal{O}, \ldots\right\}$
- Introduce an inner product by $\left(\mathcal{O}_{1} \mid \mathcal{O}_{2}\right) \equiv \operatorname{Tr}\left[\mathcal{O}_{1}^{\dagger} \mathcal{O}_{2}\right] \longleftarrow\binom{$ cf. Wightman inner product }{$\left(O_{1} \mid O_{2}\right) \simeq \operatorname{Tr}\left[-e^{-\frac{\beta H}{2} O_{1}^{+} e^{-\frac{\beta H}{2}} O_{2}}\right]}$
- Switch to orthonormal basis $\mathcal{H}_{\mathcal{O}}=\left\{\mathcal{O}_{0}=\mathcal{O}(0), \mathcal{O}_{1}, \mathcal{O}_{2}, \ldots\right\}$ by Lanczos algorithm

$$
\mathcal{O}(t)=\sum_{n=0}^{\infty} i^{n} \varphi_{n}(t) \mathcal{O}_{n}
$$

- Krylov operator complexity $\mathcal{C}_{\mathcal{O}}(t) \equiv \sum_{n=0}^{\infty} n\left|\varphi_{n}(t)\right|^{2}$

Krylov operator/state complexity

- Krylov operator complexity
- Lanczos algorithm \rightarrow Orthonormal basis $\left\{\mathcal{O}_{0}, \mathcal{O}_{1}, \mathcal{O}_{2}, \ldots\right\}$ \& Lanczos coeff. b_{n}

> 1. $b_{0} \equiv 0, \quad \mathcal{O}_{-1} \equiv 0$ 2. $\mathcal{O}_{0} \equiv \mathcal{O} /\|\mathcal{O}\|$, where $\|\mathcal{O}\| \equiv \sqrt{(\mathcal{O} \mid \mathcal{O})}$ 3. For $n \geq 1: \mathcal{A}_{n}=\mathcal{L} \mathcal{O}_{n-1}-b_{n-1} \mathcal{O}_{n-2}$ 4. Set $b_{n}=\left\|\mathcal{A}_{n}\right\|$ 5. If $b_{n}=0$ stop; otherwise set $\mathcal{O}_{n}=\mathcal{A}_{n} / b_{n}$ and go to step 3.

- $\mathcal{O}(t)=\sum_{n=0}^{\infty} i^{n} \varphi_{n}(t) \mathcal{O}_{n} \rightarrow \quad \varphi_{n}(t)$ obeys $\dot{\varphi}_{n}(t)=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t)$

- Krylov complexity $\mathcal{C}_{\mathcal{O}}(t) \equiv \sum_{n=0}^{\infty} n\left|\varphi_{n}(t)\right|^{2} \approx$ Distance from initial $\mathcal{O}(0)$

Krylov operator/state complexity

- Krylov state complexity
- Time evolution of a state $|\psi\rangle$ for Hamiltonian H

$$
|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle=\sum_{n=0}^{\infty} \frac{(-i t)^{n}}{n!} H^{n}|\psi(0)\rangle
$$

- Krylov space $\mathcal{H}_{|\psi(t)\rangle} \equiv\left\{|\psi(0)\rangle, H|\psi(0)\rangle, H^{2}|\psi(0)\rangle, \ldots\right\}$
- Orthonormal basis $\mathcal{H}_{|\psi(t)\rangle}=\left\{\left|K_{0}\right\rangle=|\psi(0)\rangle,\left|K_{1}\right\rangle,\left|K_{2}\right\rangle, \ldots\right\}$ by Lanczos algorithm
- $|\psi(t)\rangle=\sum_{n=0}^{\infty} \psi_{n}(t)\left|K_{n}\right\rangle \rightarrow \quad i \dot{\psi}_{n}(t)=a_{n} \psi_{n}(t)+b_{n} \psi_{n-1}(t)+b_{n+1} \psi_{n+1}(t)$

- Krylov state complexity $\mathcal{C}_{|\psi(t)\rangle}(t) \equiv \sum_{n=0}^{\infty} n\left|\psi_{n}(t)\right|^{2} \approx$ Distance from initial $|\psi\rangle$

Krylov complexity and chaos in quantum mechanics

- Setup: stadium billiard (with unit area \& velocity)

- Classical billiard \rightarrow Positive Lyapunov exponent λ
- Quantum billiard
- Hamiltonian $H=p_{x}^{2}+p_{y}^{2}$ with Dirichlet BC at the wall: $\left.\psi(x, y)\right|_{\text {wall }}=0$
- Calculate energy level statistics \& Krylov operator/state complexity

Classical / quantum chaos in stadium billiard

- Classical Lyapunov exponent λ
λ maximized at $a / R \sim 1$
- Energy level statistics

$\tilde{r}_{n} \equiv \frac{\min \left(s_{n}, s_{n-1}\right)}{\max \left(s_{n}, s_{n-1}\right)} \quad\left(s_{n}=E_{n+1}-E_{n}\right)$
$\langle\tilde{r}\rangle \approx\left\{\begin{array}{cc}0.38629 & \text { (Poisson) } \\ 0.53590 & \text { (GOE) }\end{array}\right.$

Classical / quantum chaos in stadium billiard

- Krylov complexity for operator $\boldsymbol{p}_{\boldsymbol{x}}$ on stadium billiard
- Solve Schrödinger eq. to obtain eigenvalues E_{n} \& eigenfunctions $\phi_{n}(x, y)$

$$
H|n\rangle=E_{n}|n\rangle, \quad \phi_{n}(x, y)=\langle x, y \mid n\rangle \quad(n=1,2, \ldots)
$$

- Matrix representation of operators x and p_{x}

$$
\begin{aligned}
x_{m n} & \equiv\langle m| x|n\rangle=\int d x d y \phi_{m}^{*}(x, y) x \phi_{n}(x, y) \\
P_{m n} & \equiv\langle m| p_{x}|n\rangle=\langle m| \frac{i}{2}[H, x]|n\rangle=\frac{i}{2}\left(E_{m}-E_{n}\right) x_{m n}
\end{aligned}
$$

- For numerical calculation, we truncate the energy levels at $n=N_{\max }=100$
- Lanczos algorithm \rightarrow Lanczos coefficients b_{n} \& Krylov complexity $C_{p_{x}}(t)$

Classical / quantum chaos in stadium billiard

- Krylov complexity for operator \boldsymbol{p}_{x} on stadium billiard

Lanczos coefficient $b_{n}\left(0 \leq n \leq N_{\max }^{2}=10^{4}\right)$
Variance σ^{2} of $b_{n} \quad\left(\sigma^{2} \equiv \operatorname{Var}\left(\ln \left|\frac{b_{2 i-1}}{b_{2 i}}\right|\right)\right)$

- Non-chaotic \rightarrow larger σ^{2} Chaotic $\quad \rightarrow$ smaller σ^{2}
- Linear growth of b_{n} at low n not obvious
(Finite temperature $\rightarrow b_{n} \lesssim \pi T \times n$ [Camargo+ '23])

Classical / quantum chaos in stadium billiard

- Krylov complexity for operator $\boldsymbol{p}_{\boldsymbol{x}}$ on stadium billiard Correlations between $\lambda,\langle\tilde{r}\rangle, \sigma^{2}$

- Significant correlations between $\lambda,\langle\tilde{r}\rangle, \sigma^{2}$
$>\sigma^{2}$ can be a robust indicator of quantum chaos
> Correspondence between classical \& quantum chaos

Classical / quantum chaos in stadium billiard

- Krylov complexity for operator $\boldsymbol{p}_{\boldsymbol{x}}$ on stadium billiard

- No exponential growth of $C_{p_{x}}(t)$ at early time
- Late-time value correlated with classical λ ? (turn out to be system dependent)
Sinai billiard
- No exponential growth - Late time value insensitive to λ - Peak of $C_{|\psi\rangle}$ correlated with λ

Summary

Krylov complexity and chaos in quantum mechanics

- Classical \& quantum chaos in billiard systems
- We find significant correlations between indicators of chaos

- These correlations are universal for any billiards (stadium, Sinai, ...), for both Krylov operator \& state complexity
- Non-universality in time dependence of Krylov complexity?
- Other quantum mechanical systems? [Camargo+ '23, ...]
- Implication to holography? [Rabinovici+ '23, ...]

