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Group B02: One-page summary

Understanding 

quantum black 

holes, information 

loss paradox

Quantum many-body system
(Quantum materials)

Black holes
(BH)

Understand 
nonequilibrium 

dynamics of quantum 
many-body systems 
from QI perspective

Gauge/gravity 
correspondence

Cold atom systems Condensed 
matter theoryInterpret results

Construct theories

Design controlling methods

Ideally isolated quantum systems
+ controlled coupling to outside

NISQ devices
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Error correction

• Embed the message in a longer bit sequence by 
adding some redundancy

• Consistency of the transmitted message can be 
checked by some algorithm

• Error can be detected or corrected

“Hayden-Preskill Recovery in Hamiltonian Systems” Y. Nakata (A01) and M. Tezuka, 
arXiv:2303.02010
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Quantum error correction 
(also known as information scrambling)

Scrambling dynamics
(known to Bob)

📓
New information from Alice

(unknown to Bob)

The quantum information 
becomes delocalized

Can Bob recover the information?

Bob knows the 
initial state

It can be recovered from a part 
of the system

No-cloning theorem:
It is not possible to create two accurate copies of 
arbitrarily given quantum information!

After the recovery process, the 
reminder of the system should lose 
correlation with the input! 5



Quantum error correction: The Hayden-Preskill protocol

• Alice: throws 𝑘-qubit quantum 
information 𝐴 into a box 𝐵in

P. Hayden and J. Preskill, JHEP 2007
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Quantum error correction: The Hayden-Preskill protocol

• Alice: throws 𝑘-qubit quantum 
information 𝐴 into a box 𝐵in

• Bob: knows the original state of 𝐵in and 
the Hamiltonian ෡𝐻𝑆 of 𝑆 = 𝐴 + 𝐵in

P. Hayden and J. Preskill, JHEP 2007
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Quantum error correction: The Hayden-Preskill protocol

• Alice: throws 𝑘-qubit quantum 
information 𝐴 into a box 𝐵in

• Bob: knows the original state of 𝐵in and 
the Hamiltonian ෡𝐻𝑆 of 𝑆 = 𝐴 + 𝐵in

• Bob obtains ℓ qubits 𝑆out after time 𝑡. 
Can Bob decode (𝒟) Alice’s secret?

P. Hayden and J. Preskill, JHEP 2007
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Quantum error correction: The Hayden-Preskill protocol

• Alice: throws 𝑘-qubit quantum 
information 𝐴 into a box 𝐵in

• Bob: knows the original state of 𝐵in and 
the Hamiltonian ෡𝐻𝑆 of 𝑆 = 𝐴 + 𝐵in

• Bob obtains ℓ qubits 𝑆out after time 𝑡. 
Can Bob decode (𝒟) Alice’s secret?

Black holes: information recovery for ℓ ∼ 𝑘
[Hayden and Preskill, JHEP 2007]

Circular unitary (Haar) ensemble was assumed

𝑘 EPR pairs Φ 𝐴𝑅

P. Hayden and J. Preskill, JHEP 2007
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Quantum error correction: The Hayden-Preskill protocol

For 𝒟 to succeed, no correlation 
is allowed between 𝑆in and 𝑅 
𝜌𝑆in𝑅 = Tr𝐵out,𝑆out|𝜓 𝑡 ⟩⟨𝜓(𝑡)|

𝜓𝐴𝐵in𝑅𝐵out 𝑡 = 0

= 𝜌𝐵in𝐵out ⊗Φ𝐴𝑅

𝜓 𝑡
= 𝜓𝑆in𝑆out𝑅𝐵out(𝑡)

𝑈

Decoding error estimate

Δ෡𝐻 𝑡, 𝛽 ≡ min 1, 𝜌𝑆in𝑅 − 𝜌𝑆in ⊗
𝐼𝑅
𝑑𝑅 1

(≥ Δ෡𝐻 𝑡, 𝛽 ) 𝜌𝑆in = Tr𝑅𝜌𝑆in𝑅

Φ 𝐴𝑅

Recovery error Δ෡𝐻 𝑡, 𝛽 among any 
𝒟 is hard to compute…

𝑀 1 ≡ Tr 𝑀†𝑀

Decoupling approach

𝜉𝐵 𝛽
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Quantum error correction: The Hayden-Preskill protocol

𝜓 𝑡
= 𝜓𝑆in𝑆out𝑅𝐵out(𝑡)

𝑈

Haar random unitary case:

ΔHaar 𝛽 = min 1,2
1
2
ℓHaar,th 𝛽 −ℓ

ℓHaar,th 𝛽 =
𝑁 + 𝑘 − 𝐻 𝛽

2
⟶ 𝑘

ΔHaar exponentially decreases as 
function of ℓ after ℓ ≈ 𝑘 [HP recovery]

𝛽 → 0

P. Hayden and J. Preskill, JHEP 2007

𝜓𝐴𝐵in𝑅𝐵out 𝑡 = 0

= 𝜌𝐵in𝐵out ⊗Φ𝐴𝑅

Φ 𝐴𝑅

Our numerical study:

• SYK-type Hamiltonians

• One-dimensional spin chains

➔ Characterization of chaotic 

Hamiltonian dynamics

𝐻 𝛽 : Renyi-2 entropy of 𝜉𝐵 𝛽

𝜉𝐵 𝛽

[Yoshifumi Nakata and MT, arXiv:2303.02010]
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Error estimate for 
the SYK model

෡𝐻 = ෍

1≤𝑎<𝑏<𝑐<𝑑≤2𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑

𝐽𝑎𝑏𝑐𝑑 : independent Gaussian random couplings

(𝐽𝑎𝑏𝑐𝑑
2 = 𝐽2, 𝐽𝑎𝑏𝑐𝑑 = 0);

Normalization hereafter: SYK half-bandwidth 
Tr ෡𝐻2

2𝑁
= 1

Ƹ𝜒𝑎=1,2,…,2𝑁: 2𝑁 Majorana fermions ( Ƹ𝜒𝑎, Ƹ𝜒𝑏 = 2𝛿𝑎𝑏)

➔ 𝜟 reaches the Haar value quickly (𝒕 ∼ 𝑵)

[Kitaev 2015][Sachdev & Ye 1993]

𝑁 = 13
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Summary of our results for SYK-like models

Quantum error correction by scrambling Hamiltonian dynamics 
[Yoshifumi Nakata and MT, arXiv:2303.02010]

SYK-like models with long-range couplings

Gaussian dense 
SYK4

෡𝐻 = ෍

𝑎<𝑏<𝑐<𝑑

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑

Binary coupling 
sparse SYK

෡𝐻 ∝ ෍

𝑎,𝑏,𝑐,𝑑 ∈𝑃
𝐾cpl=|𝑃|∼𝒪(𝑁)

(±1) Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑

sparsify

SYK4+2

෡𝐻 = cos𝜃 ෍

𝑎<𝑏<𝑐<𝑑

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑 + sin 𝜃෍

𝑎<𝑏

𝐾𝑎𝑏 Ƹ𝜒𝑎 Ƹ𝜒𝑏

Error increases before Fock space localization

Add SYK2 term

Error decays to ∼ Haar value in 𝒕 ∼ 𝑵

• 𝛿 ∝ tan 𝜃 ≪ 1: SYK4

• 𝛿 = 𝒪 1 : chaotic spectrum but eigenstates restricted in Fock space; 
entanglement entropy has plateau

• 𝛿 ≫ 1: localization of many-body eigenfunctions

[Phys. Rev. B 107, L081103 (2023)]

[PRL 120, 241603; PRR 3, 013023; PRL 127, 030601]

• 𝐾cpl ≲ 𝑁: additional degeneracy, large error remains

• 𝐾cpl ≳ 2𝑁: realize chaotic spectrum more efficiently than Gaussian
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One-dimensional spin chains (𝑆 = 1/2)

• Ising model + uniform magnetic field 

෡𝐻Ising = −𝐽σ 𝑗,𝑘 𝑆𝑗
𝑧𝑆𝑘

𝑧 − 𝑔σ𝑗 𝑆𝑗
𝑥 − ℎσ𝑗 𝑆𝑗

𝑧

• 𝑔, ℎ = 𝑔, 0 , (0, ℎ): integrable

• Heisenberg model + random field 

෡𝐻XXZ = 𝐽σ 𝑗,𝑘 𝑆𝑗 ⋅ 𝑆𝑘 + σ𝑗 ℎ𝑗𝑆𝑗
𝑧 ,

ℎ𝑗 ∈ [−𝑊,𝑊]

• 𝑊 = 0: integrable

• 𝑊 ∼ 𝐽: “ergodic”

• 𝑊 ≳ 4𝐽: “MBL”

(though recently debated; see e.g. Morningstar 

et al., PRB 105, 174205 (2022))

BCH: often studied as being far from integrability
MC: “Most chaotic” in terms of entanglement entropy 
distribution [Rodriguez-Nieva, Jonay, Khemani 2305.11940]
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Ising model + uniform magnetic field

• 𝐻 ∥ 𝑥: integrable • Non-integrable case

• Very large error remains at 
long times in both cases 15



Heisenberg model + random field

෡𝐻XXZ = 𝐽෍

𝑗,𝑘

𝑆𝑗 ⋅ 𝑆𝑘 +෍

𝑗

ℎ𝑗𝑆𝑗
𝑧 ,

ℎ𝑗 ∈ [−𝑊,𝑊]

• Sample-averaged error stabilizes after 𝑡 ∼ 10
• The Haar value is not reached
• Error increases monotonically as a function of 𝑊

MBL-like

chaotic
integrable

eigenstates
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Late-time values
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A model of randomly coupled Pauli spins

෠𝑂2𝑗−1 = መ𝑆𝑗,𝑥, ෠𝑂2𝑗 = መ𝑆𝑗,𝑦

Consider 𝑁 quantum spins (𝑆 = 1/2) with all-to-all interactions

෡𝐻 = ෍

1≤𝑎<𝑏<𝑐<𝑑≤2𝑁

𝑖𝜂𝑎𝑏𝑐𝑑𝐽𝑎𝑏𝑐𝑑 ෠𝑂𝑎 ෠𝑂𝑏 ෠𝑂𝑐 ෠𝑂𝑑

𝜂𝑎𝑏𝑐𝑑: number of pairs of 
indices on the same spin

➔ Random-matrix behavior 
with density of states 
similar to the SYK4 model

➔ Also, we may change the number of 
interacting spins, sparcify, forbid 𝜂 > 0 
terms, etc.

Normalized density of states

[M. Hanada, A. Jevicki, X. Liu, E. Rinaldi, and M. Tezuka, 2309.15349]
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Normalized gap distribution

Parity conserved
➔ Look at each parity sector

Matches the random 
matrix theory (GUE) 
distribution except for 
a few gaps at the edge

19
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Spectral form factor

cf. J. S. Cotler, …, M. Tezuka, JHEP 1705, 118 (2017) and refs therein

20

𝑔 𝛽, 𝑡 =
𝑍 𝛽, 𝑡 2

𝐽

𝑍 𝛽 𝐽
2 𝑍 𝛽, 𝑡 = 𝑍 𝛽 + i𝑡 = Tr e−𝛽 ෡𝐻−i෡𝐻𝑡

Fourier transform of the spectrum

Partition function

Ramp ∝ 𝑡1: random-matrix level correlation over the energy spectrum

All GUE
𝑁Maj mod 8 periodicity



Quantum error correction with the spin model?

Preliminary

Seems to work fine as in SYK!

𝑁 = 10
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Summary
• Status of our cold atom experiment→ Kazuya Yamashita’s poster on 26th
✓Molecule BEC

✓Introduction of 2d optical lattice

• Theoretical results
• Quantum state tomography (QST)

• Spiral QST → Giacomo Marmorini’s talk on 29th

• Permutationally Invariant QST → Yuki Miyazaki’s poster on 26th 

• Hayden-Preskill Recovery in Hamiltonian Systems [Y. Nakata (A01) and M. Tezuka, 2303.02010]

• SYK and binary-coupling sparse SYK: efficient recovery (quantum error correction) realized in short time

• Chaotic spin chains: efficient recovery not realized

• All-to-all coupling model of quantum spins [M. Hanada, A. Jevicki, X. Liu, E. Rinaldi, and M. 
Tezuka, 2309.15349]

• Random-matrix like behavior, surprisingly similar to SYK (but with some differences)
22
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