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relaxation of pre-strained substrate, (f) anchorage on substrate, (g)

substrate’s surface potential, and (h) solvent surface tension.

Graphene’s deformation is governed by its mechanical proper-

ties (Young’s modulus, interfacial energy and number of layers)

and the resultant corrugations modify its electronic structure

(band-gap opening (potentially > 1 eV) [18–20], pseudomagnetic

field in bilayers [18], electron/hole puddle formation [21], and

carrier transport [22]). These, in turn can be employed to modify

graphene’s wettability, transmittance, chemical potential, expan-

sion for energy storage, and conductivity. Futuristically, it is

important to (a) enable control of the physical attribute of these

corrugations; (b) thoroughly study the influence of wrinkles on

electronic, optical, mechanical and chemical properties [23,24];

and (c) study these effects on other 2D nanomaterials.

Ripples, wrinkles and crumples formation
Ripples formation
Strictly, 2D crystals are expected to be unstable due to the ther-

modynamic requirement for the existence of out-of-plane bending

with interatomic interaction generating a mathematical paradox

[25,26]. The stability of the pseudo 2D material is achieved

by ripple formation resulting from the partially decoupled bend-

ing and stretching modes [27,28]. The fact that free-suspended

graphene is not strictly 2D was revealed by transmission electron

microscopy (TEM) experiments, where suspended graphene

membranes exhibited pronounced out-of-plane deformations

(ripples) with height up to 1 nm [29]. Nanometer-sized ripples,

similar to those found on free-standing graphene, were also

reported in scanning-probe microscopy studies of graphene on

SiO2 substrates [30]. Mechanistically, the temporal and spatial

modulation of the C–C bond-lengths due to thermal-vibrations

and interatomic interactions induce carbon to occupy space in the

third dimension [27,28,31,32]; thus forming dynamic ripples and

minimizing the total free energy, as observed in free-standing

graphene [33]. Further, the delocalized electrons in the p-cloud

(and associated electron–hole puddles formed) lead to asymmetric

distribution of bond lengths. This asymmetry forces the lattice to

become non-planar to minimize free energy. It is important to

note that the thermal-fluctuation-induced ripples on free-stand-

ing graphene dynamically change with time as observed via

scanning tunneling microscopy (STM) [33]. The asymmetry of

bond-lengths in graphene is amplified on the edges and near

defects, thus increasing the ripples density in these regions

[28,34]. Shenoy et al. comprehensively studied the edge-stress-

induced ripples by a deformation warping mode with simulation

edges of graphene as elastic string anchoring on graphene and

stretching of the atomic bonds brought about by out-of-plane

movement of carbon to lower the compressive edge stresses

[34]. CVD based production of graphene sheets at large scale

commonly leads to polycrystallinity and defects. Out-of-plane
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FIGURE 1

Wrinkled, Rippled and crumpled graphene. (a) Rippled graphene; (b) wrinkled graphene and (c) crumpled graphene. Nature 446 (2007) 60–63, Nat. Nano 4
(2009) 562–566, Sci. Rep. (2014) 4.
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• Graphene lattice model and Dirac equation


• Deforming graphene — early claims of curved space Dirac theory


• What goes wrong with naive effective theory


• How a consistent effective theory works


• An effective theory for `real’ graphene?

Goal: understand graphene-like materials when deformed
Plan



• Typical to model graphene as a nearest neighbour tight-binding 
model that accounts for the -bonds between carbon atoms.


• Hexagonal lattice of spins with two triangular sub-lattices (A & B);


• Tight-binding Hamiltonian;

σ

Lattice model and Dirac description
Graphene
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concluding.

II. REVIEW OF THE SPATIALLY DEFORMED GRAPHENE TIGHT-BINDING MODEL

The atoms of the graphene lattice may be described by their positions in either 2-d lattice coordinates xi = (x, y)
or 3-d lab frame coordinates (X,Y, Z). For undistorted graphene we will take the plane of atoms to be located at
Z = 0, and writing XI = (X,Y ), choose our lattice coordinates to be xi = �iIX

I . The lattice sites subdivide into A
and B triangular sublattices, and we label the lattice coordinate position of these as ~xA and ~xB respectively.

The lattice sites lie a distance a from their nearest neighbours. The translation vectors between sites may be given
in terms of unit vectors,
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generated by (m,n) 2 Z2, with the sign above giving the A and B triangular sublattices, see figure 1.

a�3

a�1a�2

v1v2
b1b2 KK’ M

Γ
kx

ky

K

K K’

K’

FIG. 1. Left: the honeycomb lattice, with red A sites and blue B sites, related by translations by a~̀1,2,3. The lattice symmetry
is generated by translations ~v1,2. Right: The standard hexagonal fundamental domain of the Brillouin zone and massless Dirac
points at K and K

0 for the undistorted lattice model.
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where Kijk is a natural invariant traceless symmetric tensor for the lattice, with K112 = 1 and K222 = �1. In the
nearest-neighbour tight binding approximation, the ⇡ electrons are described by the Hamiltonian,

Hundeformed = T
X

n,~xA

⇣
a†~xA

b~xA+a~̀n
+ h.c.

⌘
(4)

where T gives the tunneling amplitude between pz orbitals on adjacent lattice sites, and a†~xA
, b†~xB

are fermionic creation
operators on the respective sublattices A and B. The dual lattice generators ~b1,2, are defined by ~bi ·~vj = 2⇡�ij and one
finds the spectrum of this model has two inequivalent Dirac points, labelled K and K 0, which are illustrated together
with the hexagonal fundamental domain of the Brillouin zone in figure 1.

Now a natural generalization of this is to allow the tunneling amplitudes associated to each link of the lattice to
vary. Denoting the tunneling amplitude between the A-site at ~xA and the B-site at ~xA+a`n as Tn,A, which we assume
to again be real, then yields the Hamiltonian,

Hdeformed =
X

n,~xA

Tn,A

⇣
a†~xA

b~xA+a~̀n
+ h.c.

⌘
. (5)

Lattice spacing is a



• We are interested in the band structure given by the one particle states;


• Write in terms of smooth wavefunctions, , and rapidly varying wave vector K;


• Then Schrödinger eq;


• And the `Dirac points’ K, K’ defined by;

ψ1,2
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For the undeformed lattice, so tn(~x) = 1 then there are two Dirac points, whose wavevectors, defined by the conditionP
n e

ia ~K·~̀n = 0, can be taken as (see figure 1),
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Let us first consider the K point. Taking smooth functions  1(t, ~x),  2(t, ~x) of time, and of lattice coordinates so
that they spatially vary slowly, so @i 1,2 ⇠ O(1), then we may write,

K : A~xA(t) =  1(t, ~xA)e
� i⇡

4 e+i ~K·~xA , B~xB (t) =  2(t, ~xB)e
+ i⇡

4 e+i ~K·~xB . (58)

Alternatively, near the K 0 point, we take,

K 0 : A~xA(t) =  2(t, ~xA)e
� i⇡

4 e�i ~K·~xA , B~xB (t) =  1(t, ~xB)e
+ i⇡

4 e�i ~K·~xB . (59)

Then for both Dirac points we can recast the continuum limit of the above Schrödinger system as,

0 = i~@t

 
 1

� 2

!
� iT

X

n

 
0 +e+ia ~K·~̀n

�e�ia ~K·~̀n 0

!
a~̀n · ~@

 
 1

 2

!
+O(a2) . (60)

Now we introduce spacetime coordinates xµ with index µ = 0, 1, 2, which coincide with our lab time and lattice
coordinates, so xµ = (t, ~x). Further we introduce a frame eµA (with frame index A = 0, 1, 2) as,
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0
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which corresponds to the spacetime metric, gµ⌫ , being Minkowski spacetime in usual coordinates,

gµ⌫ =
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with ceff = 3aT
2~ giving the effective speed of light. Then for both K and K 0 we may write the Schrödinger system

simply in massless Dirac equation form in this flat Minkowski spacetime as,

0 = eµA�
A@µ +O(a) ,  =
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where the Dirac Gamma matrices are,

�A =
�
�0, �I

�
=
�
�i�3,�1,�2

�
(64)

with �I the Pauli matrices, where we split the frame index into time and spatial components A = (0, I). Note that
since the K and K 0 points are inequivalent, the full low energy effective theory has two flavors of massless Dirac
spinors living on the same spacetime and we have picked conventions so the local Lorentz frame is the same for both
of them. Since this tight-binding model has no electron-electron interactions, these two flavors are free fields and do
not interaction with each other.

Why do we call this the continuum limit? We have assumed that  1,2 are slowly varying, so that in our units
@i1 . . . @ik 1,2 ⇠ O(1). This implies that the time dependence in the wavefunctions A~xA(t), B~xA(t) goes as ⇠ O(Ta/~).
Considering smaller wavelength variations would requires the higher order terms in a to be accounted for, and
correspond to higher frequencies, and thus higher energies. An important point is that this continuum limit describes
only low energies/frequencies for the wavefunctions A~xA(t), B~xA(t), and while  1,2 are slowly spatially varying, the
wavefunctions themselves certainly are not. This proves to be a crucial point in what follows, and we will return to
it later.

B. Preliminaries

Before we continue to consider perturbed and spatially varying hopping functions, it is convenient to firstly consider
the continuum limit of the undistorted tight binding model to higher order in the low energy expansion, so given our
units, the expansion in a. We will also detail the local symmetries that arise in identifying low energy continuum
fields with the discrete wavefunctions.
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as the effects of curvature.

Let us consider now writing the theory in lab frame. Firstly we may transform the strain tensor, precisely since
it is a tensor, to lab coordinates �lab

ij ( ~X). Working to this order it is important to remember that the invariant
Kijk which takes simple ±1, 0 values in lattice coordinates no longer does so after a spatial coordinate transform.
To write our expressions in a convenient form we may define �lab

i ( ~X) to be the transform of the covector field
�i(~x) = Kijk�jk(~x). After doing so, we may give expressions for the gauge field and electrometric in lab coordinates
for our full approximation, as,
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Here �IJ and ✏IJ are the usual Kronecker delta, and antisymmetric Levi-Civita symbol, and we only require the
components of KIJK at O(✏0) in the expression above, and these don’t change with the transformation. Interestingly,
written in this form, the only differences are the change in the coefficient of the linear term in strain for the electrometric
(which derives from the coordinate transformation of the leading Euclidean metric �ij , and we saw at linear order)
together with a similar change in one quadratic coefficient for the gauge field – both of these are shown in the above
equations in red. However, an important point to emphasize is that to use these quantities in the effective theory
we have to remember that the coefficients of the higher covariant derivative terms, built from the metric and lattice
invariants, also must be consistently transformed.

V. DERIVING THE EFFECTIVE THEORY OF THE LATTICE TIGHT-BINDING MODEL

For most of the remainder of this paper we will focus on the Hamiltonian (11) with perturbatively deformed hopping
functions that are slowly varying, and give the derivation of the effective theory summarized above, thinking in terms
of the intrinsic description in lattice coordinates. Rather than work with an embedding picture, and bond model, we
will simply give results purely in terms of the hopping functions themselves, but note that using the discussion in the
previous section, we may always translate to a lab picture if we have a specific embedding and bond model. In order
to make the somewhat involved computations involved here more accessible, we have made available a Mathematica
notebook which performs the explicit matching of the effective theory to the lattice model that we describe in what
follows.7

A. Continuum limit of undeformed lattice model

We are interested in the band structure, given by the one particle states of the above Hamiltonian. A general
one-particle state is given by,
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and then its time evolution is given by the Schrödinger equation, i~@t | i = H | i, which can be resolved as,
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. (56)

7
This may be downloaded from https://sites.google.com/view/graphene-effective-theory.
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with �I the Pauli matrices, where we split the frame index into time and spatial components A = (0, I). Note that
since the K and K 0 points are inequivalent, the full low energy effective theory has two flavors of massless Dirac
spinors living on the same spacetime and we have picked conventions so the local Lorentz frame is the same for both
of them. Since this tight-binding model has no electron-electron interactions, these two flavors are free fields and do
not interaction with each other.
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only low energies/frequencies for the wavefunctions A~xA(t), B~xA(t), and while  1,2 are slowly spatially varying, the
wavefunctions themselves certainly are not. This proves to be a crucial point in what follows, and we will return to
it later.
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with �I the Pauli matrices, where we split the frame index into time and spatial components A = (0, I). Note that
since the K and K 0 points are inequivalent, the full low energy effective theory has two flavors of massless Dirac
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Let us first consider the K point. Taking smooth functions  1(t, ~x),  2(t, ~x) of time, and of lattice coordinates so
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• Graphene is a flexible material - can sustain strains of ~25%;


• What happens to the Dirac equation? 


• A natural conjecture is it becomes the curved space Dirac 
equation — an interesting case of `analog gravity’

Deformed lattice model
Deformed Graphene

[ Naumis, Barraza-Lopez, Oliva-Leyva, Terrrones ’17]



• Keeping the nearest neighbour model then for `weak’ bending, ie. 
on scales much larger than lattice scale;


• Take units so that variations of  are on scales of , and 
the lattice scale 


• Then we treat the deformation perturbatively;

tn( ⃗x) O(1)
a ≪ 1

Deformed lattice model
Deformed Graphene
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concluding.

II. REVIEW OF THE SPATIALLY DEFORMED GRAPHENE TIGHT-BINDING MODEL

The atoms of the graphene lattice may be described by their positions in either 2-d lattice coordinates xi = (x, y)
or 3-d lab frame coordinates (X,Y, Z). For undistorted graphene we will take the plane of atoms to be located at
Z = 0, and writing XI = (X,Y ), choose our lattice coordinates to be xi = �iIX

I . The lattice sites subdivide into A
and B triangular sublattices, and we label the lattice coordinate position of these as ~xA and ~xB respectively.

The lattice sites lie a distance a from their nearest neighbours. The translation vectors between sites may be given
in terms of unit vectors,
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then the lattice sites are at lattice coordinates,
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generated by (m,n) 2 Z2, with the sign above giving the A and B triangular sublattices, see figure 1.
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FIG. 1. Left: the honeycomb lattice, with red A sites and blue B sites, related by translations by a~̀1,2,3. The lattice symmetry
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where Kijk is a natural invariant traceless symmetric tensor for the lattice, with K112 = 1 and K222 = �1. In the
nearest-neighbour tight binding approximation, the ⇡ electrons are described by the Hamiltonian,
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where T gives the tunneling amplitude between pz orbitals on adjacent lattice sites, and a†~xA
, b†~xB

are fermionic creation
operators on the respective sublattices A and B. The dual lattice generators ~b1,2, are defined by ~bi ·~vj = 2⇡�ij and one
finds the spectrum of this model has two inequivalent Dirac points, labelled K and K 0, which are illustrated together
with the hexagonal fundamental domain of the Brillouin zone in figure 1.
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III. SUMMARY OF THE EFFECTIVE THEORY FOR THE LATTICE MODEL

Since the derivation of the low energy effective theory for the above lattice model is somewhat technical, we will
summarize here its structure, and give results to the order that allows the electrometric to be described at quadratic
order in the hopping function perturbation, so to O(✏2). The full derivation of the results summarized here is given
in Section V, but we believe it is beneficial to have an overview of these results before delving into the technicalities.

Following the discussion above we write the lattice tight-binding Hamiltonian with perturbatively deformed hopping
functions that are slowly varying as,

H = T
X

n,~xA

tn(~xA +
a

2
~̀
n)

⇣
a†~xA

b~xA+a~̀n
+ h.c.

⌘
(11)

and write the deformation of the hopping functions perturbatively in ✏ and a as,

tn(~x) = 1 + ✏�1tn(~x) + ✏2�2tn(~x) + . . . (12)

having factored out the equilibrium hopping strength T above, where the O(✏k) coefficient function is derived from
our smooth functions �k,mtn(~x) described above as,

�ktn(~x) = �k,0tn(~x) + a�k,1tn(~x) + a2�k,2tn(~x) + . . . . (13)

We reiterate again that the �k,mtn(~x) which describe the continuum limit have no explicit ✏ or a dependence, and are
simply fixed functions of the lattice coordinates ~x as we scale towards the continuum, taking a ! 0, and deform the
system with ✏. The low energy behaviour of the Dirac points of this lattice model are captured by the continuum
effective theory living in 2+1-dimensions, whose truncation to three covariant derivatives takes the explicit form,

0 = aeµA�
ADµ ± ia2 ⌘AB�

AeB�Dµ (C
�µ⌫D⌫ ) + a3 ⌘AB�

AeB�D
�µ⌫⇢DµD⌫D⇢ +O(✏4, ✏3a, ✏2a2, ✏a3, a4)

(14)

where  is a 2-component Dirac spinor field, and the sign represents the choice of Dirac point that the theory is to
describe. This is a free field theory, since the tight-binding lattice model has only hopping terms, and has no electron-
electron interactions. The spinor is normalized such that its particle number density agrees with the microscopic
electron number density, as we discuss later in more detail. Here eµA is the frame, the inverse of the coframe eAµ,
and associated to the spacetime metric gµ⌫ as gµ⌫ = eAµe

B
⌫⌘AB with ⌘AB = diag(�1,+1,+1) as usual. The covariant

derivative, Dµ, encodes the strain gauge field and spin connection of the frame. For example, acting on the spinor,

Dµ = @µ ⌥ iAµ � i

2
⌦µABS

AB (15)

with Aµ the gauge field, and the last term comprises the spin-connection ⌦µAB and Lorentz generators SAB and
makes the theory geometric.3 The signs in (14) and (15) should be taken consistently, either choosing the upper or
lower signs, and again reflect the choice of Dirac point being described – thus the two Dirac fields, corresponding
to the two distinct Dirac points, have opposite charge but couple to the same geometry. The spin connection is
simply the canonical torsion free one associated to the frame. While one doesn’t expect to see torsion without
dislocations [41], it is striking that it really is the torsion free connection that enters here. We have no rigorous
mathematical understanding why, beyond the heuristic of there being no dislocations. The tensors C�µ⌫ and D�µ⌫⇢

derive from lattice invariants, and are remnants of the lattice structure. The truncation above including these higher
covariant derivative terms allows us, for the first time, to consistently describe the metric to quadratic order in O(✏2)
which is one of our main goals here. Working to higher order in the metric deformation requires an increasing number
of such higher covariant derivative terms. In particular while the dispersion relation of the Dirac points are corrected
at O(✏), on general grounds they are only sensitive to the homogeneous (but anisotropic) part of the hopping function
deformation (as for example studied in [39]). They become sensitive to inhomogeneity in the deformation only at
O(✏2), and so our effective theory allows us access to these effects.

The theory is fully coordinate, frame and gauge covariant. However given the origin of the theory, it is natural to
take time to be the usual lab time of the tight binding model. Then all the quantities entering above, apart from the
dynamical field  itself, are independent of time, so static.4 The metric takes the (ultrastatic) form,

ds2effective = �c2effdt
2 + gij(~�)d�

id�j (16)

3
Let us briefly comment on coupling the effective theory to an external electromagnetic field. For purely transverse magnetic fields

and purely in-plane electric fields, we simply make the replacement Astrain ! Astrain + AEM for the K point field, and for K
0
,

Astrain ! Astrain �AEM . It would be interesting to understand precisely how tilted fields would couple to the effective theory.
4

One could in theory consider time-dependent elastic deformations of graphene, like in [42], but this is outside of the scope of our analysis.
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For the undeformed lattice, so tn(~x) = 1 then there are two Dirac points, whose wavevectors, defined by the conditionP
n e

ia ~K·~̀n = 0, can be taken as (see figure 1),

~K =
1

a

✓
� 4⇡

3
p
3
, 0

◆
, ~K 0 = � ~K. (57)

Let us first consider the K point. Taking smooth functions  1(t, ~x),  2(t, ~x) of time, and of lattice coordinates so
that they spatially vary slowly, so @i 1,2 ⇠ O(1), then we may write,

K : A~xA(t) =  1(t, ~xA)e
� i⇡

4 e+i ~K·~xA , B~xB (t) =  2(t, ~xB)e
+ i⇡

4 e+i ~K·~xB . (58)

Alternatively, near the K 0 point, we take,

K 0 : A~xA(t) =  2(t, ~xA)e
� i⇡

4 e�i ~K·~xA , B~xB (t) =  1(t, ~xB)e
+ i⇡

4 e�i ~K·~xB . (59)

Then for both Dirac points we can recast the continuum limit of the above Schrödinger system as,

0 = i~@t

 
 1

� 2

!
� iT

X

n

 
0 +e+ia ~K·~̀n

�e�ia ~K·~̀n 0

!
a~̀n · ~@

 
 1

 2

!
+O(a2) . (60)

Now we introduce spacetime coordinates xµ with index µ = 0, 1, 2, which coincide with our lab time and lattice
coordinates, so xµ = (t, ~x). Further we introduce a frame eµA (with frame index A = 0, 1, 2) as,

eµA =

0

B@

1
ceff

0 0

0 1 0

0 0 1

1

CA (61)

which corresponds to the spacetime metric, gµ⌫ , being Minkowski spacetime in usual coordinates,

gµ⌫ =

 
�c2eff 0

0 �ij

!
(62)

with ceff = 3aT
2~ giving the effective speed of light. Then for both K and K 0 we may write the Schrödinger system

simply in massless Dirac equation form in this flat Minkowski spacetime as,

0 = eµA�
A@µ +O(a) ,  =

 
 1

 2

!
(63)

where the Dirac Gamma matrices are,

�A =
�
�0, �I

�
=
�
�i�3,�1,�2

�
(64)

with �I the Pauli matrices, where we split the frame index into time and spatial components A = (0, I). Note that
since the K and K 0 points are inequivalent, the full low energy effective theory has two flavors of massless Dirac
spinors living on the same spacetime and we have picked conventions so the local Lorentz frame is the same for both
of them. Since this tight-binding model has no electron-electron interactions, these two flavors are free fields and do
not interaction with each other.

Why do we call this the continuum limit? We have assumed that  1,2 are slowly varying, so that in our units
@i1 . . . @ik 1,2 ⇠ O(1). This implies that the time dependence in the wavefunctions A~xA(t), B~xA(t) goes as ⇠ O(Ta/~).
Considering smaller wavelength variations would requires the higher order terms in a to be accounted for, and
correspond to higher frequencies, and thus higher energies. An important point is that this continuum limit describes
only low energies/frequencies for the wavefunctions A~xA(t), B~xA(t), and while  1,2 are slowly spatially varying, the
wavefunctions themselves certainly are not. This proves to be a crucial point in what follows, and we will return to
it later.

B. Preliminaries

Before we continue to consider perturbed and spatially varying hopping functions, it is convenient to firstly consider
the continuum limit of the undistorted tight binding model to higher order in the low energy expansion, so given our
units, the expansion in a. We will also detail the local symmetries that arise in identifying low energy continuum
fields with the discrete wavefunctions.
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effective theory is that since the gauge field goes as Ai ⇠ O(✏/a), there is mixing between covariant derivative orders
in this theory due to the inverse factor of a. We refer to this inverse scaling with a as giving a ‘large magnetic field’ –
more precisely it is large relative to ✏, but we should tune ✏ such that its amplitude actually remains small if we are
to stay in a regime where we may apply perturbation theory. Very schematically the leading one derivative term goes
as,

aeµA�
ADµ ⇠ a@ + ✏Ã + ✏a@ + ✏a (23)

where we have suppressed all indices and written A ⇠ ✏
a Ã so that Ã ⇠ O(1). This contains the undeformed Dirac

term, the first term on the righthand side, and a leading correction (in red) from the gauge field. These constitute
the leading effective theory due to inhomogeneous hopping functions. While this red term naively dominates the
Dirac term in terms of the expansion due to the gauge field have a factor of 1/a, it is suppressed by a factor of ✏. As
mentioned above, the natural coupling to hold fixed is ✏/a as a ! 0, rather than simply ✏, as it is ✏/a that controls the
relative size of the gauge field contribution compared to the undeformed Dirac term. The blue terms are subleading
to the red gauge field contribution, due to the factor of a, and come from the non-trivial frame. Now consider the
same schematic expansion for the two derivative term;

ia2 ⌘AB�
AeB�Dµ (C

�µ⌫D⌫ ) ⇠ a2@2 + ✏aÃ@ + ✏a(@Ã) + ✏2Ã2 + ✏a2@2 + ✏a2@ + ✏a2 (24)

The key point is that the components of this where one of the covariant derivative contributes a gauge field (those in
blue) are of the same order as the blue contribution from the one derivative term above in equation (23). Note that if
both covariant derivatives contribute a gauge field (the purple term) the contribution is dominant in a, but suppressed
now due to two powers of ✏. The blue contributions coming from both the one and two covariant derivative terms in
equations (23) and (24) then constitute the next correction to the effective theory at order O(✏) after the leading red
term from the gauge field. Hence we see the (blue) frame corrections from the one derivative term mix with these
contributions from the two derivative terms at the same order – thus one cannot consider these frame corrections
without also including the two derivative term too.

Due to this mixing we will see later that if we wish to consistently derive the contribution from the gauge field and
metric at some order ⇠ ✏paq, we are required to include up to (1 + p + q) covariant derivative terms, and we need
all contributions to the metric and gauge field going as ⇠ ✏man for m  p and m + n  p + q, where m � 1 and
for the metric corrections have n � 0 and for the gauge field they have n � �1. Thus the structure of the first few
truncations is;

Covariant derivatives included Gauge field contributions Metric contributions
Dirac term only ✏

a Trivial flat metric
Dirac + two derivative ✏

a , ✏, ✏2

a ✏

Dirac, two and three derivatives ✏
a , ✏, ✏a, ✏2

a , ✏2 ✏, ✏a, ✏2

For the leading truncation to one covariant derivative we see there are no metric corrections – it is simply the flat
space Dirac equation with gauge field. Including the two derivative term allows the first consistent corrections to
the metric, those at order O(✏). However, as noted, this is not sufficient to describe the corrections to the dispersion
relation from inhomogeneous deformations. For that we require the theory given explicitly above, with up to three
derivatives, which allows the metric deformation to be described at O(✏2).

In the special case that the hopping functions are tuned so that the gauge field vanishes, at least at leading order
O(✏/a), then conventional relativistic power counting is restored. In this case the leading effective theory is simply the
curved spacetime Dirac equation as shown in [26]. However, as discussed there, this tuning appears very unnatural
– we may think of it as having to fine tune away a relevant operator. Further, one can consider a simple model of
elasticity for the graphene membrane and one finds that energetics do not prefer vanishing strain gauge field when
distorted. Interestingly the metric above (19) is the one derived in [26] to all orders in ✏ for such fine tuning. Here we
only derive it up to the quadratic order in the metric deformation – however it is natural to wonder whether it holds
to all orders in the presence of the gauge field.

IV. VARYING HOPPING FROM A DEFORMED LATTICE

The results above describe the low energy physics of the tight-binding model in terms of its lattice coordinates xi

and slowly varying hopping functions. We will derive these in detail later in the paper. In order to relate them to a
distortion of graphene, we need an embedding map from the lab coordinates to the graphene lattice, and further a
bond model that predicts the hopping functions based on this embedded lattice geometry.
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III. SUMMARY OF THE EFFECTIVE THEORY FOR THE LATTICE MODEL

Since the derivation of the low energy effective theory for the above lattice model is somewhat technical, we will
summarize here its structure, and give results to the order that allows the electrometric to be described at quadratic
order in the hopping function perturbation, so to O(✏2). The full derivation of the results summarized here is given
in Section V, but we believe it is beneficial to have an overview of these results before delving into the technicalities.

Following the discussion above we write the lattice tight-binding Hamiltonian with perturbatively deformed hopping
functions that are slowly varying as,

H = T
X

n,~xA

tn(~xA +
a

2
~̀
n)

⇣
a†~xA

b~xA+a~̀n
+ h.c.

⌘
(11)

and write the deformation of the hopping functions perturbatively in ✏ and a as,

tn(~x) = 1 + ✏�1tn(~x) + ✏2�2tn(~x) + . . . (12)

having factored out the equilibrium hopping strength T above, where the O(✏k) coefficient function is derived from
our smooth functions �k,mtn(~x) described above as,

�ktn(~x) = �k,0tn(~x) + a�k,1tn(~x) + a2�k,2tn(~x) + . . . . (13)

We reiterate again that the �k,mtn(~x) which describe the continuum limit have no explicit ✏ or a dependence, and are
simply fixed functions of the lattice coordinates ~x as we scale towards the continuum, taking a ! 0, and deform the
system with ✏. The low energy behaviour of the Dirac points of this lattice model are captured by the continuum
effective theory living in 2+1-dimensions, whose truncation to three covariant derivatives takes the explicit form,

0 = aeµA�
ADµ ± ia2 ⌘AB�

AeB�Dµ (C
�µ⌫D⌫ ) + a3 ⌘AB�

AeB�D
�µ⌫⇢DµD⌫D⇢ +O(✏4, ✏3a, ✏2a2, ✏a3, a4)

(14)

where  is a 2-component Dirac spinor field, and the sign represents the choice of Dirac point that the theory is to
describe. This is a free field theory, since the tight-binding lattice model has only hopping terms, and has no electron-
electron interactions. The spinor is normalized such that its particle number density agrees with the microscopic
electron number density, as we discuss later in more detail. Here eµA is the frame, the inverse of the coframe eAµ,
and associated to the spacetime metric gµ⌫ as gµ⌫ = eAµe

B
⌫⌘AB with ⌘AB = diag(�1,+1,+1) as usual. The covariant

derivative, Dµ, encodes the strain gauge field and spin connection of the frame. For example, acting on the spinor,

Dµ = @µ ⌥ iAµ � i

2
⌦µABS

AB (15)

with Aµ the gauge field, and the last term comprises the spin-connection ⌦µAB and Lorentz generators SAB and
makes the theory geometric.3 The signs in (14) and (15) should be taken consistently, either choosing the upper or
lower signs, and again reflect the choice of Dirac point being described – thus the two Dirac fields, corresponding
to the two distinct Dirac points, have opposite charge but couple to the same geometry. The spin connection is
simply the canonical torsion free one associated to the frame. While one doesn’t expect to see torsion without
dislocations [41], it is striking that it really is the torsion free connection that enters here. We have no rigorous
mathematical understanding why, beyond the heuristic of there being no dislocations. The tensors C�µ⌫ and D�µ⌫⇢

derive from lattice invariants, and are remnants of the lattice structure. The truncation above including these higher
covariant derivative terms allows us, for the first time, to consistently describe the metric to quadratic order in O(✏2)
which is one of our main goals here. Working to higher order in the metric deformation requires an increasing number
of such higher covariant derivative terms. In particular while the dispersion relation of the Dirac points are corrected
at O(✏), on general grounds they are only sensitive to the homogeneous (but anisotropic) part of the hopping function
deformation (as for example studied in [39]). They become sensitive to inhomogeneity in the deformation only at
O(✏2), and so our effective theory allows us access to these effects.

The theory is fully coordinate, frame and gauge covariant. However given the origin of the theory, it is natural to
take time to be the usual lab time of the tight binding model. Then all the quantities entering above, apart from the
dynamical field  itself, are independent of time, so static.4 The metric takes the (ultrastatic) form,

ds2effective = �c2effdt
2 + gij(~�)d�

id�j (16)

3
Let us briefly comment on coupling the effective theory to an external electromagnetic field. For purely transverse magnetic fields

and purely in-plane electric fields, we simply make the replacement Astrain ! Astrain + AEM for the K point field, and for K
0
,

Astrain ! Astrain �AEM . It would be interesting to understand precisely how tilted fields would couple to the effective theory.
4

One could in theory consider time-dependent elastic deformations of graphene, like in [42], but this is outside of the scope of our analysis.
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and likewise for �n� and �nf . Since we are first expanding in the deformation parameter ✏, and only afterwards we
expand in a, we may expand the exponential factor above as,

e
i�(~x)

a ' ei
~K·~x
✓
1 +

i✏

a
�1�+

i✏2

a
�2�� ✏2

2a2
(�1�)

2 +O(✏3)

◆
(99)

and then for each term in this expansion, we expand the �n� in powers of a. Having performed this expansion also
in a, so we have a double expansion in both ✏ and a, it is convenient to introduce a new expansion parameter,

� =
✏

a
(100)

so that we may write,

e
i�(~x)

a ' ei
~K·~x
✓
1 + i�

�
�1,0�+ a�1,1�+ a2�1,2�+O(a3)

�
� �2

✓
1

2
(�1,0�)

2 + a�1,0��1,1�� 2ia�2,0�+O(a2)

◆
+O(�3)

◆
.

(101)

While written in ✏ and a the two limits ✏ ! 0 and a ! 0 do not commute – taking ✏ ! 0 with a finite allows the
expansion of the exponential above, but the reverse, a ! 0 with finite ✏, gives a diverging phase and the exponential
cannot be expanded. Thus we justify our earlier statements, that the expansion in ✏ should be performed first, and
then afterwards the one in a, so that this exponential can be expanded. Alternatively we may view the condition that
we may expand the exponential in ✏ and a as being that both � and a are small. Thus ✏/a must be held small as we
take the continuum limit a ! 0 as stated earlier.

It is interesting to consider the magnitude of ✏ in rippling suspended graphene, even though this involves out of
plane displacement, which, as discussed above, may not be well captured by the simple tight-binding model. For such
ripples the height is approximately ⇠ 0.5nm and the wavelength is ⇠ 5nm and these configurations are frozen in time,
as deduced from STM microscopy [49]. Thus in our units L = 1 corresponds to 5nm, and so the graphene lattice
spacing, which is ⇠ 0.25nm gives approximately a ⇠ 0.05. On the other hand, the height function h can be written
as h ⇠

p
✏ cos

�
x
2⇡

�
, where

p
✏ ⇠ 0.1 to give a ripple height of 0.5nm. Hence ✏ ⇠ 0.01, leading to a ratio � = ✏/a ⇠ 0.2,

which is small, but not very small. Thus even for these seemingly low amplitude ripples, corrections in � will likely
be important.

Finally the Schrödinger system can then be written in the form,

0 =
1X

p=0

1X

q=0

ap�qOp,q(~x)

 
 1(~x)

 2(~x)

!
(102)

for spatial differential operators Op,q which depend only on ~x (with the single exception of O1,0, which contains the
one time derivative), and on the various functions �mtn, �n,m�, �n,m�, �n,mf and their derivatives, but not on ✏ or
a. The terms Op,0 are those of the undeformed model, giving, in lattice coordinates,

O1,0 =
1

ceff
�0@t + �iI�

I@i , O2,0 = ±i ⌘AB�
A�B� C�µ⌫@µ@⌫ , O3,0 = ⌘AB�

A�B� D�µ⌫⇢@µ@⌫@⇢ (103)

as we saw above. Now we must match this to a continuum description.

1. Structure of the effective theory

A key requirement of the continuum description is that it should have local frame rotation and gauge symmetry.
The effective theory therefore contains a gauge field and frame, with its associated spin connection, and all derivatives
must be covariant with respect to these. Anticipating the correct form, we perform the double expansion of the frame
and gauge field firstly in ✏ and then a as,

Aµ =
�
0, Ai

�
, Ai =

1X

n=1

✏n�nAi , �nAi =
1

a

1X

m=0

am�n,mAi (104)

where we emphasize that the expansion in a above starts with the power a�1, and for the frame,

eµA =

 
1

ceff
0

0 eiI

!
, eiI = �iI +

1X

n=1

✏n�ne
i
I , �ne

i
I =

1X

m=0

am�n,meiI . (105)

1

Ai =
✏

3a

✓
�t1 + �t2 � 2�t3
�
p
3 (�t1 � �t2)

◆
(1)

[ eg.  Vozmediano, Katsnelson, Guinea,  Phys Reports ’10]
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• Then it was claimed that the full effect of deformation caused 
curved spacetime (to leading low energy order)


• The frame is perturbed;


• This is an analog gravity model — and very interesting
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a0 a1 . . . aM�1 aM aM+1 aM+2 . . .

✏0 0 0 . . . 0 TM,0 0 0 . . .
✏1 0 0 . . . TM,1 TM+1,1 TM+2,1 TM+3,1 . . .

...
...

...
...

...
...

...
...

✏M�1 0 TM,M�1 . . . T2M�2,M�1 T2M�1,M�1 T2M,M�1 T2M+1,M�1 . . .
✏M TM,M TM+1,M . . . T2M�1,M T2M,M T2M+1,M T2M+2,M . . .

✏M+1 TM+1,M+1 TM+2,M+1 . . . T2M,M+1 T2M+1,M+1 T2M+2,M+1 T2M+3,M+1 . . .

...
...

...
...

...
...

A corollary of this discussion is that if we consider a term with M derivatives of the above form, then,

aMQµ1...µMDµ1 · · ·DµM contributes to Op,q for p � M (115)

unlike in usual effective field theory where these terms would only contribute to Op,q with p� q � M . Alternatively
we may say that the equations Op,q with p  M only involve contributions from terms in the equation of motion with
M derivatives or less. Let us now see how this works in practice.

2. Leading order - Op,q for p  1 - flat Dirac with large magnetic field

Considering all the lattice equations Op,q for p  1, yields the non-trivial equations O1,0 and O1,1, and these involve
only the one covariant derivative term, i.e. the leading Dirac equation term. We find that to this leading order the
continuum theory matching the lattice model is,

0 = aeµA�
ADµ +O(✏2, ✏a, a2) (116)

where we have a flat undeformed frame and non-trivial magnetic gauge field, found from solving O1,0 and O1,1,

eµA =

0

B@

1
ceff

0 0

0 1 0

0 0 1

1

CA+O(✏) , Ai =
✏

a
(�1,0Ai +O(a)) +O(

✏2

a
) , f = 1 +O(✏) (117)

where,

�1,0Ai =
1

3

 
�1,0t1 + �1,0t2 � 2�1,0t3
�
p
3 (�1,0t1 � �1,0t2)

!
� @i(�1,0�) (118)

and we see the gauge transformation enter, with gauge parameter �1,0�. Subleading corrections in powers of ✏ or a to
the frame and gauge field then only affect the higher order equations Op,q for p > 1, and these also contain contributions
from higher covariant derivative terms – thus these subleading corrections cannot be considered consistently without
also including these higher covariant derivative terms too.

This was a key conclusion of our paper [26], namely that for the leading order effective theory – the Dirac equation
coupled to the strain gauge field – whilst the gauge field is non-trivial in general, the frame, and thus the metric, is
undeformed.

3. Second order - Op,q for p  2 - curved space Dirac and higher covariant derivative term with large magnetic field

Now we take the lattice equations Op,q for p  2, which give the previous equations O1,0 and O1,1, and at next
order also O2,0, O2,1 and O2,2. The equation O2,0 is solved by adding the two derivative term for the undeformed
case given above in equation (65), and so the full effective description up to two derivatives is,

0 = aeµA�
ADµ ± ia2 ⌘AB�

AeB�C
�µ⌫DµD⌫ +O(✏3, ✏2a, ✏a2, a3) (119)

with the upper sign for the K point, and the lower for the K 0 point. We note that the coefficient C�µ⌫ , given in
equation (22) has a factor involving det(gij), but this doesn’t contribute here – at this order we could consistently
simply take the non-zero components Cijk = �✏klKijl/4, so they are just given by the lattice invariants.
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so that its action on a spinor is,

⇤1/2(x) = e�
i
2 ✓(x)�

3

=

 
e

i✓
2 0

0 e�
i✓
2

!
. (84)

Let us now further restrict our attention to the case that the metric is also static, so time independent. Then we
may take the frame to be static, eiI = eiI(~x), and the metric then has the above form with static spatial geometry
gij = gij(~x), and is referred to as an ‘ultrastatic’ geometry (i.e. one that is static with constant gtt and gti = 0). To
preserve this form further restricts our local rotation symmetry to only depend on space, and not time.

Now looking at the above explicit expression for the spin connection in equation (78), we notice that the object
JCAB = e⌫A@Ce⌫B only has spatial components for such a frame. Since we are in two spatial dimensions the term that
sums over signed permutations of JCAB then must vanish simply leaving ⌦µAB = 2gµ⌫@[Ae

⌫
B]. The only non-vanishing

components of the spin connection can be written as,

⌦µ12 = �⌦µ21 = gµ⌫!
⌫ , !t = 0 , !i = ✏AB@Ae

i
B (85)

and so we may write the spinor connection in the simple form,

Dµ = @µ +
i

2
!µ�

3 . (86)

3. Gauge and frame symmetry

In writing (58) and (59) we have separated the spatial dependence of the wavefunctions into ‘slow’ variations encoded
by ( 1, 2) and ‘fast’ ones, governed by the phase factors e±i ~K·~xA . Since the Dirac point wavevector ~K ⇠ O(1/a)
these are rapidly varying phases, whose scale of variation is the lattice scale itself by design. As a consequence of this,
there is a local freedom in making the separation into fast and slow spatial variations for both wavefunctions, that
should not affect the physics of the system. More concretely taking for the K and K 0 points

A~xA(t) =  1(t, ~xA)e
i
2 (�⇡

2 ±�(~xA))e±i( ~K·~xA��(~xA)) , B~xB (t) =  2(t, ~xB)e
� i

2 (�⇡
2 ±�(~xB))e±i( ~K·~xB��(~xB)) (87)

the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs (‘�’) and second
subscript 2, 1 are for the K 0 point and where the time independent functions we have introduced �(~x),�(~x) ⇠ O(1),
and are both slowly varying, so that @i1 . . . @ik�(~x) ⇠ O(1) and likewise for �, then parameterizes the freedom in
making this split into fast and slow spatial variation. Different choices for these slowly spatially varying functions
�(~x) and �(~x) are then different parameterizations, and physics should be independent of this.

This local invariance manifests elegantly in the continuum Dirac limit as local gauge symmetry and frame rotation
symmetry. We introduce a U(1) gauge field Aµ which the spinor field  is charged under, and define the gauged
covariant derivative on a spinor field as,

Dµ = @µ ⌥ iAµ � i

2
⌦µABS

AB (88)

where again the upper (‘�’) sign for the K point, and the lower (‘+’) sign is for the K 0 point. Thus we see that
we assign the Dirac field opposite charges at the two Dirac points. We also require the action of more covariant
derivatives acting on  . Letting  ;⌫1...⌫n = D⌫1 . . . D⌫n , then these are defined recursively by,

Dµ( ;µ1...µn�1) = rµ( ;µ1...µn�1)⌥ iAµ( ;µ1...µn�1)�
i

2
⌦µBCS

BC( ;µ1...µn�1) (89)

where rµ is the usual spacetime covariant derivative acting on a tensor field, and as above we are suppressing the
spinor indices.

Now using these gauged covariant derivatives, writing the wavefunctions as above, then the previous continuum
limit of undeformed graphene (65) can be written as,

0 = eµA�
ADµ ± ia ⌘AB�

AeB�C
�µ⌫DµD⌫ + a2 ⌘AB�

AeB�D
�µ⌫⇢DµD⌫D⇢ +O(a3) (90)

where the upper (‘+’) sign is for the K point, and the lower (‘�’) sign is for the K 0 point, and the gauge field, coframe
and torsion-free spin connection are given by,

eAµ =

0

B@
ceff 0 0

0 cos� � sin�

0 + sin� cos�

1

CA , Ai = @i� !i = @i� (91)
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and given the ultrastatic form of the frame, and that � is only a function of the spatial coordinates, the covariant
derivative takes the form,

Dt = @t , Di = @i ⌥ iAi +
i

2
!i�

3 , (92)

and we have analogous results for DµD⌫ and DµD⌫D⇢ . We see the simple structure of the spin connection term
arising from the Abelian local frame rotations, but note the important point that the gauge connection and spin
connection have a distinct spinor structure from each other.

We see the gauge field is pure gauge, so is unphysical and can be removed by simply setting � = 0 as we had
previously. Further the freedom in � simply results in a spatial rotation of the frame field, and correspondingly a
non-trivial spin connection. However we emphasize here that this rotation is purely a local freedom in rotating the
frame bundle, and doesn’t affect the spacetime metric at all, which remains as in the previous equation (62), so in
fact the connection �⇢µ⌫ = 0 so that rµ = @µ here.

C. Continuum of the spatially deformed lattice model

Now we turn to the continuum limit when the hopping functions are deformed to be slowly spatially varying as in
the Hamiltonian in equation (11). We may write the resulting Schrödinger system (56) for one particles states as an
expansion in the parameters ✏ and a,

⌥ =
i~
T
@tA~xA �

X

n

tn(~xA +
a~̀n
2

)B~xA+a~̀n
= 0 (93)

⌥0 =
i~
T
@tB~xB �

X

n

tn(~xB � a~̀n
2

)A~xB�a~̀n
= 0 (94)

noting the expansion of the hopping functions introduced earlier in equation (12). We expand the ⌥ equation as,

⌥ =
1X

n=0

✏n⌥n , ⌥n =
1X

m=0

am⌥n,m (95)

and then the solution ⌥ = 0 implies that order by order ⌥n,m = 0, and we do similarly for ⌥0. As above we introduce
slowly spatially varying wavefunctions,  1,2(t, ~x), and now also a slowly varying phase modulation function �(~x) and
wavefunction rescaling f(~x), so @i1 . . . @ik� ⇠ O(1) and likewise for f(~x), and use these to write,

A~xA(t) =  1,2(t, ~xA)f(~x)e
i
2 (�

⇡
2 ±�(~xA))e±

i�(~xA)
a , B~xB (t) =  2,1(t, ~xB)f(~x)e

� i
2 (�

⇡
2 ±�(~xB))e±

i�(~xB)
a (96)

and as above, the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs
(‘�’) and second subscript 2, 1 are for the K 0 point.

While � slowly varies, the inverse factor of a multiplying it in the exponential means that the phase rapidly
varies, changing on lattice scales. Note that a natural choice of f is f = (det gij)1/4, which will ensure that as we
mentioned previously, the number density of the continuum Dirac field is the same as the microscopic electron density,p

|gij | ̄�t = |A|2 + |B|2. In fact we will find that such a choice is also necessary to recover the torsion-free spin
connection. We note that the earlier work [8, 10] specifically worked with the Weyl rescaled field  ̂ = (det gij)�1/4 ,
which as discussed before can be thought of as working in a different Weyl frame with only nontrivial gtt [22]. However
the higher derivative terms are not Weyl invariant, and so we can only think of this as working with a spinor density
instead of a canonically normalized spinor.

We perturbatively expand about ✏ = 0, the undeformed model as,

�(~x) = � 4⇡

3
p
3
x+

1X

n=1

✏n�n�(~x) , �(~x) =
1X

n=1

✏n�n�(~x) , f(~x) = 1 +
1X

n=1

✏n�nf(~x) (97)

so that for ✏ = 0 then 1
a�(~x) =

~K · ~x, and further expand the perturbative functions �n� in a as,

�n� =
1X

m=0

am�n,m� (98)
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[ de Juan, Sturla, Vozmediano,  Phys. Rev. Lett. ’12 ] 



• First we consider undeformed theory to higher order;


• This yields a low energy expansion;


• Controlled by lattice invariants;

A subtlety
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1. Expansion to third order

Taking the same ansatz (58) for the wavefunctions as before, and expanding the Schrödinger system to the next
two orders in a then yields,

0 = eµA�
A@µ ± ia ⌘AB�

AeB�C
�µ⌫@µ@⌫ + a2 ⌘AB�

AeB�D
�µ⌫⇢@µ@⌫@⇢ +O(a3) (65)

where the constants C�µ⌫ , D�µ⌫↵ have only non-vanishing spatial components and are given in the earlier equation (22)
except here we are taking the trivial flat spatial frame (61) and hence the metric determinant factor in those expressions

is simply |gij | = 1. Then one finds C1ij =

 
�1/4 0

0 1/4

!ij

and C2ij =

 
0 1/4

1/4 0

!ij

, and all other components

vanish. The first term, with two derivatives, was explored in momentum space in [47, 48]. The sign in front of
the two covariant derivative term is determined by the choice of Dirac point – the upper sign (‘+’) is for the K
point, the lower sign (‘�0) is for the K 0 point. We see that the corrections to the continuum limit take the form of
higher derivative terms, and retain a memory of the lattice structure through the invariant tensor Kijk. From the
perspective of effective field theory we may think of these as irrelevant higher dimension operators that break the
Lorentz invariance of the leading Dirac term. However we emphasize here that it is precisely such subleading effects
in the effective theory, such as curvature of the electrometric, that derive from the microscopic structure of the lattice
model that we are interested in here.

2. Curved space Dirac equation

Let us now give a quick review of the curved spacetime Dirac equation, in part to outline the conventions we will
use. Given a frame eµA(x) and its inverse coframe eAµ(x), so that eµAe

A
⌫ = �µ⌫ and eAµe

µ
B = �AB at all spacetime

points, then the spacetime metric is given by the coframe and the Minkowski metric ⌘AB as,

gµ⌫(x) = ⌘ABe
A
µe

B
⌫ , ⌘AB =

 
�1 0

0 �ij

!
. (66)

Having written the metric in terms of a frame introduces a local Lorentz symmetry that acts as,

eAµ(x) ! ⇤A
B(x)e

B
µ(x) (67)

with ⇤A
B(x) a Lorentz matrix valued function of spacetime. Since Lorentz matrices obey the defining matrix condition

⌘ = ⇤T ⌘⇤, we see this transformation leaves the spacetime metric invariant.
From the metric we have the unique torsion free metric compatible connection, the Levi-Civita symbol, defining

the covariant derivative rµ on a covector field vµ as,

rµv⌫ = @µv⌫ � �⇢µ⌫v⇢ , �⇢µ⌫ =
1

2
g⇢� (@µg⌫� + @⌫gµ� � @�gµ⌫) . (68)

Given the set of covector fields eAµ, for A = 0, 1, 2, we define the frame connection,

�AµB = �e⌫Brµe
A
⌫ (69)

and this allows us to write a covariant derivative for a frame valued field, vA(x), as,

Dµv
A = @µv

A + �AµBv
B (70)

so that under a local Lorentz frame transformation,

Dµv
A ! ⇤A
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⌫ . (72)
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and further, with this choice of frame, the tensors C�µ⌫ and D�µ⌫⇢ are orthogonal to the time direction, so they have
only spatial components which are static. An interesting consequence of this is that the effective theory above remains
second order in time derivatives, even though it has higher numbers of spatial derivatives. In particular, in this frame,
the canonical momenta for the spinor is unchanged from that of the leading Dirac equation and the Hamiltonian is
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In order to define these various quantities above we take the spatial coordinates ~� to be the lattice coordinates ~x.
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where this expression correctly gives the behaviour at orders O(✏), O(✏a) and O(✏2) (in fact the O(✏a) contribution
vanishes) which is consistent with the order that the theory is written to above. Since we have a local frame invariance,
any spatial frame components can be taken consistent with this metric. An important point that will be discussed in
detail later is that the subleading correction in a at order O(✏), so the contribution going as ⇠ ✏a, must be included
in order to derive the metric at order O(✏2). Full detail of the frame components including subleading terms in a will
be given later. Defining,

�tn = tn � 1 (20)

then the explicit expression for the magnetic part of the gauge field to the order in ✏ and a that the above truncation
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up to a gauge transformation. This expression encompasses the behaviour at orders O(✏/a), O(✏), O(✏a), O(✏2/a) and
O(✏2), as well as O(✏3/a), and as for the metric the first subleading corrections in a, here at orders O(✏) and O(✏2)
vanish. Again these subleading corrections in a at orders O(✏) and O(✏2) are required in order to consistently solve
for the metric. Finally the tensors C�µ⌫ and D�µ⌫⇢ are given by the expressions,
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with all other components (ie. those with a time index) vanishing, and here |g| = det(gij) and ✏ij is the antisymmetric
spatial Levi-Civita symbol with 1 = ✏12 = �✏21. We emphasize that these expressions for the components gij , Ai,
Cijk and Dijkl are not tensor equations, and hold only when we take lattice coordinates.

A key result that will be discussed in the next section is that using a simple model to map an in-plane distortion
of the lattice to deformed hopping functions results in curvature of this electrometric at quadratic order O(✏2) in the
deformation. Thus even though the lattice is only deformed in-plane, the effective metric governing this Dirac theory
generally becomes curved.

Usually in such an effective theory power counting goes with covariant derivatives, and so one may truncate to
terms with some number of derivatives, and terms with more derivatives are subleading to this, and it is consistent to
ignore them. This would be seen due to the increasing powers of a in the coefficients of the higher derivative terms,
and thus naively this makes increasingly higher derivative terms increasingly irrelevant in the low energy continuum
limit where we take a ! 0 (in our units where the deformation scale is O(1)). However the key novel feature of this
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where this expression correctly gives the behaviour at orders O(✏), O(✏a) and O(✏2) (in fact the O(✏a) contribution
vanishes) which is consistent with the order that the theory is written to above. Since we have a local frame invariance,
any spatial frame components can be taken consistent with this metric. An important point that will be discussed in
detail later is that the subleading correction in a at order O(✏), so the contribution going as ⇠ ✏a, must be included
in order to derive the metric at order O(✏2). Full detail of the frame components including subleading terms in a will
be given later. Defining,
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up to a gauge transformation. This expression encompasses the behaviour at orders O(✏/a), O(✏), O(✏a), O(✏2/a) and
O(✏2), as well as O(✏3/a), and as for the metric the first subleading corrections in a, here at orders O(✏) and O(✏2)
vanish. Again these subleading corrections in a at orders O(✏) and O(✏2) are required in order to consistently solve
for the metric. Finally the tensors C�µ⌫ and D�µ⌫⇢ are given by the expressions,
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with all other components (ie. those with a time index) vanishing, and here |g| = det(gij) and ✏ij is the antisymmetric
spatial Levi-Civita symbol with 1 = ✏12 = �✏21. We emphasize that these expressions for the components gij , Ai,
Cijk and Dijkl are not tensor equations, and hold only when we take lattice coordinates.

A key result that will be discussed in the next section is that using a simple model to map an in-plane distortion
of the lattice to deformed hopping functions results in curvature of this electrometric at quadratic order O(✏2) in the
deformation. Thus even though the lattice is only deformed in-plane, the effective metric governing this Dirac theory
generally becomes curved.

Usually in such an effective theory power counting goes with covariant derivatives, and so one may truncate to
terms with some number of derivatives, and terms with more derivatives are subleading to this, and it is consistent to
ignore them. This would be seen due to the increasing powers of a in the coefficients of the higher derivative terms,
and thus naively this makes increasingly higher derivative terms increasingly irrelevant in the low energy continuum
limit where we take a ! 0 (in our units where the deformation scale is O(1)). However the key novel feature of this
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where this expression correctly gives the behaviour at orders O(✏), O(✏a) and O(✏2) (in fact the O(✏a) contribution
vanishes) which is consistent with the order that the theory is written to above. Since we have a local frame invariance,
any spatial frame components can be taken consistent with this metric. An important point that will be discussed in
detail later is that the subleading correction in a at order O(✏), so the contribution going as ⇠ ✏a, must be included
in order to derive the metric at order O(✏2). Full detail of the frame components including subleading terms in a will
be given later. Defining,
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then the explicit expression for the magnetic part of the gauge field to the order in ✏ and a that the above truncation
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up to a gauge transformation. This expression encompasses the behaviour at orders O(✏/a), O(✏), O(✏a), O(✏2/a) and
O(✏2), as well as O(✏3/a), and as for the metric the first subleading corrections in a, here at orders O(✏) and O(✏2)
vanish. Again these subleading corrections in a at orders O(✏) and O(✏2) are required in order to consistently solve
for the metric. Finally the tensors C�µ⌫ and D�µ⌫⇢ are given by the expressions,
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with all other components (ie. those with a time index) vanishing, and here |g| = det(gij) and ✏ij is the antisymmetric
spatial Levi-Civita symbol with 1 = ✏12 = �✏21. We emphasize that these expressions for the components gij , Ai,
Cijk and Dijkl are not tensor equations, and hold only when we take lattice coordinates.

A key result that will be discussed in the next section is that using a simple model to map an in-plane distortion
of the lattice to deformed hopping functions results in curvature of this electrometric at quadratic order O(✏2) in the
deformation. Thus even though the lattice is only deformed in-plane, the effective metric governing this Dirac theory
generally becomes curved.

Usually in such an effective theory power counting goes with covariant derivatives, and so one may truncate to
terms with some number of derivatives, and terms with more derivatives are subleading to this, and it is consistent to
ignore them. This would be seen due to the increasing powers of a in the coefficients of the higher derivative terms,
and thus naively this makes increasingly higher derivative terms increasingly irrelevant in the low energy continuum
limit where we take a ! 0 (in our units where the deformation scale is O(1)). However the key novel feature of this
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only spatial components which are static. An interesting consequence of this is that the effective theory above remains
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where this expression correctly gives the behaviour at orders O(✏), O(✏a) and O(✏2) (in fact the O(✏a) contribution
vanishes) which is consistent with the order that the theory is written to above. Since we have a local frame invariance,
any spatial frame components can be taken consistent with this metric. An important point that will be discussed in
detail later is that the subleading correction in a at order O(✏), so the contribution going as ⇠ ✏a, must be included
in order to derive the metric at order O(✏2). Full detail of the frame components including subleading terms in a will
be given later. Defining,
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then the explicit expression for the magnetic part of the gauge field to the order in ✏ and a that the above truncation
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up to a gauge transformation. This expression encompasses the behaviour at orders O(✏/a), O(✏), O(✏a), O(✏2/a) and
O(✏2), as well as O(✏3/a), and as for the metric the first subleading corrections in a, here at orders O(✏) and O(✏2)
vanish. Again these subleading corrections in a at orders O(✏) and O(✏2) are required in order to consistently solve
for the metric. Finally the tensors C�µ⌫ and D�µ⌫⇢ are given by the expressions,
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with all other components (ie. those with a time index) vanishing, and here |g| = det(gij) and ✏ij is the antisymmetric
spatial Levi-Civita symbol with 1 = ✏12 = �✏21. We emphasize that these expressions for the components gij , Ai,
Cijk and Dijkl are not tensor equations, and hold only when we take lattice coordinates.

A key result that will be discussed in the next section is that using a simple model to map an in-plane distortion
of the lattice to deformed hopping functions results in curvature of this electrometric at quadratic order O(✏2) in the
deformation. Thus even though the lattice is only deformed in-plane, the effective metric governing this Dirac theory
generally becomes curved.

Usually in such an effective theory power counting goes with covariant derivatives, and so one may truncate to
terms with some number of derivatives, and terms with more derivatives are subleading to this, and it is consistent to
ignore them. This would be seen due to the increasing powers of a in the coefficients of the higher derivative terms,
and thus naively this makes increasingly higher derivative terms increasingly irrelevant in the low energy continuum
limit where we take a ! 0 (in our units where the deformation scale is O(1)). However the key novel feature of this
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as the effects of curvature.

Let us consider now writing the theory in lab frame. Firstly we may transform the strain tensor, precisely since
it is a tensor, to lab coordinates �lab

ij ( ~X). Working to this order it is important to remember that the invariant
Kijk which takes simple ±1, 0 values in lattice coordinates no longer does so after a spatial coordinate transform.
To write our expressions in a convenient form we may define �lab

i ( ~X) to be the transform of the covector field
�i(~x) = Kijk�jk(~x). After doing so, we may give expressions for the gauge field and electrometric in lab coordinates
for our full approximation, as,
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Here �IJ and ✏IJ are the usual Kronecker delta, and antisymmetric Levi-Civita symbol, and we only require the
components of KIJK at O(✏0) in the expression above, and these don’t change with the transformation. Interestingly,
written in this form, the only differences are the change in the coefficient of the linear term in strain for the electrometric
(which derives from the coordinate transformation of the leading Euclidean metric �ij , and we saw at linear order)
together with a similar change in one quadratic coefficient for the gauge field – both of these are shown in the above
equations in red. However, an important point to emphasize is that to use these quantities in the effective theory
we have to remember that the coefficients of the higher covariant derivative terms, built from the metric and lattice
invariants, also must be consistently transformed.

V. DERIVING THE EFFECTIVE THEORY OF THE LATTICE TIGHT-BINDING MODEL

For most of the remainder of this paper we will focus on the Hamiltonian (11) with perturbatively deformed hopping
functions that are slowly varying, and give the derivation of the effective theory summarized above, thinking in terms
of the intrinsic description in lattice coordinates. Rather than work with an embedding picture, and bond model, we
will simply give results purely in terms of the hopping functions themselves, but note that using the discussion in the
previous section, we may always translate to a lab picture if we have a specific embedding and bond model. In order
to make the somewhat involved computations involved here more accessible, we have made available a Mathematica
notebook which performs the explicit matching of the effective theory to the lattice model that we describe in what
follows.7

A. Continuum limit of undeformed lattice model

We are interested in the band structure, given by the one particle states of the above Hamiltonian. A general
one-particle state is given by,

| (t)i =
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@
X
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†
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X
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B~xB (t)b
†
~xB

1

A |0i (55)

and then its time evolution is given by the Schrödinger equation, i~@t | i = H | i, which can be resolved as,
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n
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2
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. (56)

7
This may be downloaded from https://sites.google.com/view/graphene-effective-theory.
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For the undeformed lattice, so tn(~x) = 1 then there are two Dirac points, whose wavevectors, defined by the conditionP
n e

ia ~K·~̀n = 0, can be taken as (see figure 1),

~K =
1

a

✓
� 4⇡
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◆
, ~K 0 = � ~K. (57)

Let us first consider the K point. Taking smooth functions  1(t, ~x),  2(t, ~x) of time, and of lattice coordinates so
that they spatially vary slowly, so @i 1,2 ⇠ O(1), then we may write,

K : A~xA(t) =  1(t, ~xA)e
� i⇡

4 e+i ~K·~xA , B~xB (t) =  2(t, ~xB)e
+ i⇡
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Alternatively, near the K 0 point, we take,

K 0 : A~xA(t) =  2(t, ~xA)e
� i⇡

4 e�i ~K·~xA , B~xB (t) =  1(t, ~xB)e
+ i⇡

4 e�i ~K·~xB . (59)

Then for both Dirac points we can recast the continuum limit of the above Schrödinger system as,
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Now we introduce spacetime coordinates xµ with index µ = 0, 1, 2, which coincide with our lab time and lattice
coordinates, so xµ = (t, ~x). Further we introduce a frame eµA (with frame index A = 0, 1, 2) as,

eµA =

0

B@

1
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0 0

0 1 0

0 0 1

1

CA (61)

which corresponds to the spacetime metric, gµ⌫ , being Minkowski spacetime in usual coordinates,

gµ⌫ =

 
�c2eff 0

0 �ij

!
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with ceff = 3aT
2~ giving the effective speed of light. Then for both K and K 0 we may write the Schrödinger system

simply in massless Dirac equation form in this flat Minkowski spacetime as,
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where the Dirac Gamma matrices are,
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�
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with �I the Pauli matrices, where we split the frame index into time and spatial components A = (0, I). Note that
since the K and K 0 points are inequivalent, the full low energy effective theory has two flavors of massless Dirac
spinors living on the same spacetime and we have picked conventions so the local Lorentz frame is the same for both
of them. Since this tight-binding model has no electron-electron interactions, these two flavors are free fields and do
not interaction with each other.

Why do we call this the continuum limit? We have assumed that  1,2 are slowly varying, so that in our units
@i1 . . . @ik 1,2 ⇠ O(1). This implies that the time dependence in the wavefunctions A~xA(t), B~xA(t) goes as ⇠ O(Ta/~).
Considering smaller wavelength variations would requires the higher order terms in a to be accounted for, and
correspond to higher frequencies, and thus higher energies. An important point is that this continuum limit describes
only low energies/frequencies for the wavefunctions A~xA(t), B~xA(t), and while  1,2 are slowly spatially varying, the
wavefunctions themselves certainly are not. This proves to be a crucial point in what follows, and we will return to
it later.

B. Preliminaries

Before we continue to consider perturbed and spatially varying hopping functions, it is convenient to firstly consider
the continuum limit of the undistorted tight binding model to higher order in the low energy expansion, so given our
units, the expansion in a. We will also detail the local symmetries that arise in identifying low energy continuum
fields with the discrete wavefunctions.
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Let us now further restrict our attention to the case that the metric is also static, so time independent. Then we
may take the frame to be static, eiI = eiI(~x), and the metric then has the above form with static spatial geometry
gij = gij(~x), and is referred to as an ‘ultrastatic’ geometry (i.e. one that is static with constant gtt and gti = 0). To
preserve this form further restricts our local rotation symmetry to only depend on space, and not time.

Now looking at the above explicit expression for the spin connection in equation (78), we notice that the object
JCAB = e⌫A@Ce⌫B only has spatial components for such a frame. Since we are in two spatial dimensions the term that
sums over signed permutations of JCAB then must vanish simply leaving ⌦µAB = 2gµ⌫@[Ae

⌫
B]. The only non-vanishing

components of the spin connection can be written as,

⌦µ12 = �⌦µ21 = gµ⌫!
⌫ , !t = 0 , !i = ✏AB@Ae

i
B (85)

and so we may write the spinor connection in the simple form,

Dµ = @µ +
i

2
!µ�

3 . (86)

3. Gauge and frame symmetry

In writing (58) and (59) we have separated the spatial dependence of the wavefunctions into ‘slow’ variations encoded
by ( 1, 2) and ‘fast’ ones, governed by the phase factors e±i ~K·~xA . Since the Dirac point wavevector ~K ⇠ O(1/a)
these are rapidly varying phases, whose scale of variation is the lattice scale itself by design. As a consequence of this,
there is a local freedom in making the separation into fast and slow spatial variations for both wavefunctions, that
should not affect the physics of the system. More concretely taking for the K and K 0 points

A~xA(t) =  1(t, ~xA)e
i
2 (�⇡

2 ±�(~xA))e±i( ~K·~xA��(~xA)) , B~xB (t) =  2(t, ~xB)e
� i

2 (�⇡
2 ±�(~xB))e±i( ~K·~xB��(~xB)) (87)

the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs (‘�’) and second
subscript 2, 1 are for the K 0 point and where the time independent functions we have introduced �(~x),�(~x) ⇠ O(1),
and are both slowly varying, so that @i1 . . . @ik�(~x) ⇠ O(1) and likewise for �, then parameterizes the freedom in
making this split into fast and slow spatial variation. Different choices for these slowly spatially varying functions
�(~x) and �(~x) are then different parameterizations, and physics should be independent of this.

This local invariance manifests elegantly in the continuum Dirac limit as local gauge symmetry and frame rotation
symmetry. We introduce a U(1) gauge field Aµ which the spinor field  is charged under, and define the gauged
covariant derivative on a spinor field as,

Dµ = @µ ⌥ iAµ � i

2
⌦µABS

AB (88)

where again the upper (‘�’) sign for the K point, and the lower (‘+’) sign is for the K 0 point. Thus we see that
we assign the Dirac field opposite charges at the two Dirac points. We also require the action of more covariant
derivatives acting on  . Letting  ;⌫1...⌫n = D⌫1 . . . D⌫n , then these are defined recursively by,

Dµ( ;µ1...µn�1) = rµ( ;µ1...µn�1)⌥ iAµ( ;µ1...µn�1)�
i

2
⌦µBCS

BC( ;µ1...µn�1) (89)

where rµ is the usual spacetime covariant derivative acting on a tensor field, and as above we are suppressing the
spinor indices.

Now using these gauged covariant derivatives, writing the wavefunctions as above, then the previous continuum
limit of undeformed graphene (65) can be written as,

0 = eµA�
ADµ ± ia ⌘AB�

AeB�C
�µ⌫DµD⌫ + a2 ⌘AB�

AeB�D
�µ⌫⇢DµD⌫D⇢ +O(a3) (90)

where the upper (‘+’) sign is for the K point, and the lower (‘�’) sign is for the K 0 point, and the gauge field, coframe
and torsion-free spin connection are given by,

eAµ =

0
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and given the ultrastatic form of the frame, and that � is only a function of the spatial coordinates, the covariant
derivative takes the form,

Dt = @t , Di = @i ⌥ iAi +
i

2
!i�

3 , (92)

and we have analogous results for DµD⌫ and DµD⌫D⇢ . We see the simple structure of the spin connection term
arising from the Abelian local frame rotations, but note the important point that the gauge connection and spin
connection have a distinct spinor structure from each other.

We see the gauge field is pure gauge, so is unphysical and can be removed by simply setting � = 0 as we had
previously. Further the freedom in � simply results in a spatial rotation of the frame field, and correspondingly a
non-trivial spin connection. However we emphasize here that this rotation is purely a local freedom in rotating the
frame bundle, and doesn’t affect the spacetime metric at all, which remains as in the previous equation (62), so in
fact the connection �⇢µ⌫ = 0 so that rµ = @µ here.

C. Continuum of the spatially deformed lattice model

Now we turn to the continuum limit when the hopping functions are deformed to be slowly spatially varying as in
the Hamiltonian in equation (11). We may write the resulting Schrödinger system (56) for one particles states as an
expansion in the parameters ✏ and a,

⌥ =
i~
T
@tA~xA �

X

n

tn(~xA +
a~̀n
2

)B~xA+a~̀n
= 0 (93)

⌥0 =
i~
T
@tB~xB �

X

n

tn(~xB � a~̀n
2

)A~xB�a~̀n
= 0 (94)

noting the expansion of the hopping functions introduced earlier in equation (12). We expand the ⌥ equation as,

⌥ =
1X

n=0

✏n⌥n , ⌥n =
1X

m=0

am⌥n,m (95)

and then the solution ⌥ = 0 implies that order by order ⌥n,m = 0, and we do similarly for ⌥0. As above we introduce
slowly spatially varying wavefunctions,  1,2(t, ~x), and now also a slowly varying phase modulation function �(~x) and
wavefunction rescaling f(~x), so @i1 . . . @ik� ⇠ O(1) and likewise for f(~x), and use these to write,

A~xA(t) =  1,2(t, ~xA)f(~x)e
i
2 (�

⇡
2 ±�(~xA))e±

i�(~xA)
a , B~xB (t) =  2,1(t, ~xB)f(~x)e

� i
2 (�

⇡
2 ±�(~xB))e±

i�(~xB)
a (96)

and as above, the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs
(‘�’) and second subscript 2, 1 are for the K 0 point.

While � slowly varies, the inverse factor of a multiplying it in the exponential means that the phase rapidly
varies, changing on lattice scales. Note that a natural choice of f is f = (det gij)1/4, which will ensure that as we
mentioned previously, the number density of the continuum Dirac field is the same as the microscopic electron density,p

|gij | ̄�t = |A|2 + |B|2. In fact we will find that such a choice is also necessary to recover the torsion-free spin
connection. We note that the earlier work [8, 10] specifically worked with the Weyl rescaled field  ̂ = (det gij)�1/4 ,
which as discussed before can be thought of as working in a different Weyl frame with only nontrivial gtt [22]. However
the higher derivative terms are not Weyl invariant, and so we can only think of this as working with a spinor density
instead of a canonically normalized spinor.

We perturbatively expand about ✏ = 0, the undeformed model as,

�(~x) = � 4⇡
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3
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✏n�nf(~x) (97)

so that for ✏ = 0 then 1
a�(~x) =

~K · ~x, and further expand the perturbative functions �n� in a as,

�n� =
1X

m=0

am�n,m� (98)
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as the effects of curvature.

Let us consider now writing the theory in lab frame. Firstly we may transform the strain tensor, precisely since
it is a tensor, to lab coordinates �lab

ij ( ~X). Working to this order it is important to remember that the invariant
Kijk which takes simple ±1, 0 values in lattice coordinates no longer does so after a spatial coordinate transform.
To write our expressions in a convenient form we may define �lab

i ( ~X) to be the transform of the covector field
�i(~x) = Kijk�jk(~x). After doing so, we may give expressions for the gauge field and electrometric in lab coordinates
for our full approximation, as,
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Here �IJ and ✏IJ are the usual Kronecker delta, and antisymmetric Levi-Civita symbol, and we only require the
components of KIJK at O(✏0) in the expression above, and these don’t change with the transformation. Interestingly,
written in this form, the only differences are the change in the coefficient of the linear term in strain for the electrometric
(which derives from the coordinate transformation of the leading Euclidean metric �ij , and we saw at linear order)
together with a similar change in one quadratic coefficient for the gauge field – both of these are shown in the above
equations in red. However, an important point to emphasize is that to use these quantities in the effective theory
we have to remember that the coefficients of the higher covariant derivative terms, built from the metric and lattice
invariants, also must be consistently transformed.

V. DERIVING THE EFFECTIVE THEORY OF THE LATTICE TIGHT-BINDING MODEL

For most of the remainder of this paper we will focus on the Hamiltonian (11) with perturbatively deformed hopping
functions that are slowly varying, and give the derivation of the effective theory summarized above, thinking in terms
of the intrinsic description in lattice coordinates. Rather than work with an embedding picture, and bond model, we
will simply give results purely in terms of the hopping functions themselves, but note that using the discussion in the
previous section, we may always translate to a lab picture if we have a specific embedding and bond model. In order
to make the somewhat involved computations involved here more accessible, we have made available a Mathematica
notebook which performs the explicit matching of the effective theory to the lattice model that we describe in what
follows.7

A. Continuum limit of undeformed lattice model

We are interested in the band structure, given by the one particle states of the above Hamiltonian. A general
one-particle state is given by,
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A |0i (55)

and then its time evolution is given by the Schrödinger equation, i~@t | i = H | i, which can be resolved as,
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7
This may be downloaded from https://sites.google.com/view/graphene-effective-theory.
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and given the ultrastatic form of the frame, and that � is only a function of the spatial coordinates, the covariant
derivative takes the form,

Dt = @t , Di = @i ⌥ iAi +
i

2
!i�

3 , (92)

and we have analogous results for DµD⌫ and DµD⌫D⇢ . We see the simple structure of the spin connection term
arising from the Abelian local frame rotations, but note the important point that the gauge connection and spin
connection have a distinct spinor structure from each other.
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noting the expansion of the hopping functions introduced earlier in equation (12). We expand the ⌥ equation as,
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so that its action on a spinor is,
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2

!
. (84)

Let us now further restrict our attention to the case that the metric is also static, so time independent. Then we
may take the frame to be static, eiI = eiI(~x), and the metric then has the above form with static spatial geometry
gij = gij(~x), and is referred to as an ‘ultrastatic’ geometry (i.e. one that is static with constant gtt and gti = 0). To
preserve this form further restricts our local rotation symmetry to only depend on space, and not time.

Now looking at the above explicit expression for the spin connection in equation (78), we notice that the object
JCAB = e⌫A@Ce⌫B only has spatial components for such a frame. Since we are in two spatial dimensions the term that
sums over signed permutations of JCAB then must vanish simply leaving ⌦µAB = 2gµ⌫@[Ae

⌫
B]. The only non-vanishing

components of the spin connection can be written as,

⌦µ12 = �⌦µ21 = gµ⌫!
⌫ , !t = 0 , !i = ✏AB@Ae

i
B (85)

and so we may write the spinor connection in the simple form,

Dµ = @µ +
i

2
!µ�

3 . (86)

3. Gauge and frame symmetry

In writing (58) and (59) we have separated the spatial dependence of the wavefunctions into ‘slow’ variations encoded
by ( 1, 2) and ‘fast’ ones, governed by the phase factors e±i ~K·~xA . Since the Dirac point wavevector ~K ⇠ O(1/a)
these are rapidly varying phases, whose scale of variation is the lattice scale itself by design. As a consequence of this,
there is a local freedom in making the separation into fast and slow spatial variations for both wavefunctions, that
should not affect the physics of the system. More concretely taking for the K and K 0 points
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the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs (‘�’) and second
subscript 2, 1 are for the K 0 point and where the time independent functions we have introduced �(~x),�(~x) ⇠ O(1),
and are both slowly varying, so that @i1 . . . @ik�(~x) ⇠ O(1) and likewise for �, then parameterizes the freedom in
making this split into fast and slow spatial variation. Different choices for these slowly spatially varying functions
�(~x) and �(~x) are then different parameterizations, and physics should be independent of this.

This local invariance manifests elegantly in the continuum Dirac limit as local gauge symmetry and frame rotation
symmetry. We introduce a U(1) gauge field Aµ which the spinor field  is charged under, and define the gauged
covariant derivative on a spinor field as,

Dµ = @µ ⌥ iAµ � i

2
⌦µABS

AB (88)

where again the upper (‘�’) sign for the K point, and the lower (‘+’) sign is for the K 0 point. Thus we see that
we assign the Dirac field opposite charges at the two Dirac points. We also require the action of more covariant
derivatives acting on  . Letting  ;⌫1...⌫n = D⌫1 . . . D⌫n , then these are defined recursively by,

Dµ( ;µ1...µn�1) = rµ( ;µ1...µn�1)⌥ iAµ( ;µ1...µn�1)�
i

2
⌦µBCS

BC( ;µ1...µn�1) (89)

where rµ is the usual spacetime covariant derivative acting on a tensor field, and as above we are suppressing the
spinor indices.

Now using these gauged covariant derivatives, writing the wavefunctions as above, then the previous continuum
limit of undeformed graphene (65) can be written as,

0 = eµA�
ADµ ± ia ⌘AB�

AeB�C
�µ⌫DµD⌫ + a2 ⌘AB�

AeB�D
�µ⌫⇢DµD⌫D⇢ +O(a3) (90)

where the upper (‘+’) sign is for the K point, and the lower (‘�’) sign is for the K 0 point, and the gauge field, coframe
and torsion-free spin connection are given by,

eAµ =

0

B@
ceff 0 0

0 cos� � sin�

0 + sin� cos�

1

CA , Ai = @i� !i = @i� (91)
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effective theory is that since the gauge field goes as Ai ⇠ O(✏/a), there is mixing between covariant derivative orders
in this theory due to the inverse factor of a. We refer to this inverse scaling with a as giving a ‘large magnetic field’ –
more precisely it is large relative to ✏, but we should tune ✏ such that its amplitude actually remains small if we are
to stay in a regime where we may apply perturbation theory. Very schematically the leading one derivative term goes
as,

aeµA�
ADµ ⇠ a@ + ✏Ã + ✏a@ + ✏a (23)

where we have suppressed all indices and written A ⇠ ✏
a Ã so that Ã ⇠ O(1). This contains the undeformed Dirac

term, the first term on the righthand side, and a leading correction (in red) from the gauge field. These constitute
the leading effective theory due to inhomogeneous hopping functions. While this red term naively dominates the
Dirac term in terms of the expansion due to the gauge field have a factor of 1/a, it is suppressed by a factor of ✏. As
mentioned above, the natural coupling to hold fixed is ✏/a as a ! 0, rather than simply ✏, as it is ✏/a that controls the
relative size of the gauge field contribution compared to the undeformed Dirac term. The blue terms are subleading
to the red gauge field contribution, due to the factor of a, and come from the non-trivial frame. Now consider the
same schematic expansion for the two derivative term;

ia2 ⌘AB�
AeB�Dµ (C

�µ⌫D⌫ ) ⇠ a2@2 + ✏aÃ@ + ✏a(@Ã) + ✏2Ã2 + ✏a2@2 + ✏a2@ + ✏a2 (24)

The key point is that the components of this where one of the covariant derivative contributes a gauge field (those in
blue) are of the same order as the blue contribution from the one derivative term above in equation (23). Note that if
both covariant derivatives contribute a gauge field (the purple term) the contribution is dominant in a, but suppressed
now due to two powers of ✏. The blue contributions coming from both the one and two covariant derivative terms in
equations (23) and (24) then constitute the next correction to the effective theory at order O(✏) after the leading red
term from the gauge field. Hence we see the (blue) frame corrections from the one derivative term mix with these
contributions from the two derivative terms at the same order – thus one cannot consider these frame corrections
without also including the two derivative term too.

Due to this mixing we will see later that if we wish to consistently derive the contribution from the gauge field and
metric at some order ⇠ ✏paq, we are required to include up to (1 + p + q) covariant derivative terms, and we need
all contributions to the metric and gauge field going as ⇠ ✏man for m  p and m + n  p + q, where m � 1 and
for the metric corrections have n � 0 and for the gauge field they have n � �1. Thus the structure of the first few
truncations is;

Covariant derivatives included Gauge field contributions Metric contributions
Dirac term only ✏

a Trivial flat metric
Dirac + two derivative ✏

a , ✏, ✏2

a ✏

Dirac, two and three derivatives ✏
a , ✏, ✏a, ✏2

a , ✏2 ✏, ✏a, ✏2

For the leading truncation to one covariant derivative we see there are no metric corrections – it is simply the flat
space Dirac equation with gauge field. Including the two derivative term allows the first consistent corrections to
the metric, those at order O(✏). However, as noted, this is not sufficient to describe the corrections to the dispersion
relation from inhomogeneous deformations. For that we require the theory given explicitly above, with up to three
derivatives, which allows the metric deformation to be described at O(✏2).

In the special case that the hopping functions are tuned so that the gauge field vanishes, at least at leading order
O(✏/a), then conventional relativistic power counting is restored. In this case the leading effective theory is simply the
curved spacetime Dirac equation as shown in [26]. However, as discussed there, this tuning appears very unnatural
– we may think of it as having to fine tune away a relevant operator. Further, one can consider a simple model of
elasticity for the graphene membrane and one finds that energetics do not prefer vanishing strain gauge field when
distorted. Interestingly the metric above (19) is the one derived in [26] to all orders in ✏ for such fine tuning. Here we
only derive it up to the quadratic order in the metric deformation – however it is natural to wonder whether it holds
to all orders in the presence of the gauge field.

IV. VARYING HOPPING FROM A DEFORMED LATTICE

The results above describe the low energy physics of the tight-binding model in terms of its lattice coordinates xi

and slowly varying hopping functions. We will derive these in detail later in the paper. In order to relate them to a
distortion of graphene, we need an embedding map from the lab coordinates to the graphene lattice, and further a
bond model that predicts the hopping functions based on this embedded lattice geometry.
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distortion of graphene, we need an embedding map from the lab coordinates to the graphene lattice, and further a
bond model that predicts the hopping functions based on this embedded lattice geometry.

Frame correction
Terms of same order

Spin connection correction



• We find that a consistent structure requires consistent truncation 
in both  and  expansions;


• Hence first metric corrections require including two derivative 
term…
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so that its action on a spinor is,

⇤1/2(x) = e�
i
2 ✓(x)�

3

=

 
e

i✓
2 0

0 e�
i✓
2

!
. (84)

Let us now further restrict our attention to the case that the metric is also static, so time independent. Then we
may take the frame to be static, eiI = eiI(~x), and the metric then has the above form with static spatial geometry
gij = gij(~x), and is referred to as an ‘ultrastatic’ geometry (i.e. one that is static with constant gtt and gti = 0). To
preserve this form further restricts our local rotation symmetry to only depend on space, and not time.

Now looking at the above explicit expression for the spin connection in equation (78), we notice that the object
JCAB = e⌫A@Ce⌫B only has spatial components for such a frame. Since we are in two spatial dimensions the term that
sums over signed permutations of JCAB then must vanish simply leaving ⌦µAB = 2gµ⌫@[Ae

⌫
B]. The only non-vanishing

components of the spin connection can be written as,

⌦µ12 = �⌦µ21 = gµ⌫!
⌫ , !t = 0 , !i = ✏AB@Ae

i
B (85)

and so we may write the spinor connection in the simple form,

Dµ = @µ +
i

2
!µ�

3 . (86)

3. Gauge and frame symmetry

In writing (58) and (59) we have separated the spatial dependence of the wavefunctions into ‘slow’ variations encoded
by ( 1, 2) and ‘fast’ ones, governed by the phase factors e±i ~K·~xA . Since the Dirac point wavevector ~K ⇠ O(1/a)
these are rapidly varying phases, whose scale of variation is the lattice scale itself by design. As a consequence of this,
there is a local freedom in making the separation into fast and slow spatial variations for both wavefunctions, that
should not affect the physics of the system. More concretely taking for the K and K 0 points

A~xA(t) =  1(t, ~xA)e
i
2 (�⇡

2 ±�(~xA))e±i( ~K·~xA��(~xA)) , B~xB (t) =  2(t, ~xB)e
� i

2 (�⇡
2 ±�(~xB))e±i( ~K·~xB��(~xB)) (87)

the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs (‘�’) and second
subscript 2, 1 are for the K 0 point and where the time independent functions we have introduced �(~x),�(~x) ⇠ O(1),
and are both slowly varying, so that @i1 . . . @ik�(~x) ⇠ O(1) and likewise for �, then parameterizes the freedom in
making this split into fast and slow spatial variation. Different choices for these slowly spatially varying functions
�(~x) and �(~x) are then different parameterizations, and physics should be independent of this.

This local invariance manifests elegantly in the continuum Dirac limit as local gauge symmetry and frame rotation
symmetry. We introduce a U(1) gauge field Aµ which the spinor field  is charged under, and define the gauged
covariant derivative on a spinor field as,

Dµ = @µ ⌥ iAµ � i

2
⌦µABS

AB (88)

where again the upper (‘�’) sign for the K point, and the lower (‘+’) sign is for the K 0 point. Thus we see that
we assign the Dirac field opposite charges at the two Dirac points. We also require the action of more covariant
derivatives acting on  . Letting  ;⌫1...⌫n = D⌫1 . . . D⌫n , then these are defined recursively by,

Dµ( ;µ1...µn�1) = rµ( ;µ1...µn�1)⌥ iAµ( ;µ1...µn�1)�
i

2
⌦µBCS

BC( ;µ1...µn�1) (89)

where rµ is the usual spacetime covariant derivative acting on a tensor field, and as above we are suppressing the
spinor indices.

Now using these gauged covariant derivatives, writing the wavefunctions as above, then the previous continuum
limit of undeformed graphene (65) can be written as,

0 = eµA�
ADµ ± ia ⌘AB�

AeB�C
�µ⌫DµD⌫ + a2 ⌘AB�

AeB�D
�µ⌫⇢DµD⌫D⇢ +O(a3) (90)

where the upper (‘+’) sign is for the K point, and the lower (‘�’) sign is for the K 0 point, and the gauge field, coframe
and torsion-free spin connection are given by,

eAµ =

0

B@
ceff 0 0

0 cos� � sin�

0 + sin� cos�

1

CA , Ai = @i� !i = @i� (91)
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effective theory is that since the gauge field goes as Ai ⇠ O(✏/a), there is mixing between covariant derivative orders
in this theory due to the inverse factor of a. We refer to this inverse scaling with a as giving a ‘large magnetic field’ –
more precisely it is large relative to ✏, but we should tune ✏ such that its amplitude actually remains small if we are
to stay in a regime where we may apply perturbation theory. Very schematically the leading one derivative term goes
as,

aeµA�
ADµ ⇠ a@ + ✏Ã + ✏a@ + ✏a (23)

where we have suppressed all indices and written A ⇠ ✏
a Ã so that Ã ⇠ O(1). This contains the undeformed Dirac

term, the first term on the righthand side, and a leading correction (in red) from the gauge field. These constitute
the leading effective theory due to inhomogeneous hopping functions. While this red term naively dominates the
Dirac term in terms of the expansion due to the gauge field have a factor of 1/a, it is suppressed by a factor of ✏. As
mentioned above, the natural coupling to hold fixed is ✏/a as a ! 0, rather than simply ✏, as it is ✏/a that controls the
relative size of the gauge field contribution compared to the undeformed Dirac term. The blue terms are subleading
to the red gauge field contribution, due to the factor of a, and come from the non-trivial frame. Now consider the
same schematic expansion for the two derivative term;

ia2 ⌘AB�
AeB�Dµ (C

�µ⌫D⌫ ) ⇠ a2@2 + ✏aÃ@ + ✏a(@Ã) + ✏2Ã2 + ✏a2@2 + ✏a2@ + ✏a2 (24)

The key point is that the components of this where one of the covariant derivative contributes a gauge field (those in
blue) are of the same order as the blue contribution from the one derivative term above in equation (23). Note that if
both covariant derivatives contribute a gauge field (the purple term) the contribution is dominant in a, but suppressed
now due to two powers of ✏. The blue contributions coming from both the one and two covariant derivative terms in
equations (23) and (24) then constitute the next correction to the effective theory at order O(✏) after the leading red
term from the gauge field. Hence we see the (blue) frame corrections from the one derivative term mix with these
contributions from the two derivative terms at the same order – thus one cannot consider these frame corrections
without also including the two derivative term too.

Due to this mixing we will see later that if we wish to consistently derive the contribution from the gauge field and
metric at some order ⇠ ✏paq, we are required to include up to (1 + p + q) covariant derivative terms, and we need
all contributions to the metric and gauge field going as ⇠ ✏man for m  p and m + n  p + q, where m � 1 and
for the metric corrections have n � 0 and for the gauge field they have n � �1. Thus the structure of the first few
truncations is;

Covariant derivatives included Gauge field contributions Metric contributions
Dirac term only ✏

a Trivial flat metric
Dirac + two derivative ✏

a , ✏, ✏2

a ✏

Dirac, two and three derivatives ✏
a , ✏, ✏a, ✏2

a , ✏2 ✏, ✏a, ✏2

For the leading truncation to one covariant derivative we see there are no metric corrections – it is simply the flat
space Dirac equation with gauge field. Including the two derivative term allows the first consistent corrections to
the metric, those at order O(✏). However, as noted, this is not sufficient to describe the corrections to the dispersion
relation from inhomogeneous deformations. For that we require the theory given explicitly above, with up to three
derivatives, which allows the metric deformation to be described at O(✏2).

In the special case that the hopping functions are tuned so that the gauge field vanishes, at least at leading order
O(✏/a), then conventional relativistic power counting is restored. In this case the leading effective theory is simply the
curved spacetime Dirac equation as shown in [26]. However, as discussed there, this tuning appears very unnatural
– we may think of it as having to fine tune away a relevant operator. Further, one can consider a simple model of
elasticity for the graphene membrane and one finds that energetics do not prefer vanishing strain gauge field when
distorted. Interestingly the metric above (19) is the one derived in [26] to all orders in ✏ for such fine tuning. Here we
only derive it up to the quadratic order in the metric deformation – however it is natural to wonder whether it holds
to all orders in the presence of the gauge field.

IV. VARYING HOPPING FROM A DEFORMED LATTICE

The results above describe the low energy physics of the tight-binding model in terms of its lattice coordinates xi

and slowly varying hopping functions. We will derive these in detail later in the paper. In order to relate them to a
distortion of graphene, we need an embedding map from the lab coordinates to the graphene lattice, and further a
bond model that predicts the hopping functions based on this embedded lattice geometry.



• We expand in orders of  and ;


• Write Schrödinger system;


• Write wavefunctions including frame and gauge;
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and given the ultrastatic form of the frame, and that � is only a function of the spatial coordinates, the covariant
derivative takes the form,

Dt = @t , Di = @i ⌥ iAi +
i

2
!i�

3 , (92)

and we have analogous results for DµD⌫ and DµD⌫D⇢ . We see the simple structure of the spin connection term
arising from the Abelian local frame rotations, but note the important point that the gauge connection and spin
connection have a distinct spinor structure from each other.

We see the gauge field is pure gauge, so is unphysical and can be removed by simply setting � = 0 as we had
previously. Further the freedom in � simply results in a spatial rotation of the frame field, and correspondingly a
non-trivial spin connection. However we emphasize here that this rotation is purely a local freedom in rotating the
frame bundle, and doesn’t affect the spacetime metric at all, which remains as in the previous equation (62), so in
fact the connection �⇢µ⌫ = 0 so that rµ = @µ here.

C. Continuum of the spatially deformed lattice model

Now we turn to the continuum limit when the hopping functions are deformed to be slowly spatially varying as in
the Hamiltonian in equation (11). We may write the resulting Schrödinger system (56) for one particles states as an
expansion in the parameters ✏ and a,

⌥ =
i~
T
@tA~xA �

X

n

tn(~xA +
a~̀n
2

)B~xA+a~̀n
= 0 (93)

⌥0 =
i~
T
@tB~xB �

X

n

tn(~xB � a~̀n
2

)A~xB�a~̀n
= 0 (94)

noting the expansion of the hopping functions introduced earlier in equation (12). We expand the ⌥ equation as,

⌥ =
1X

n=0

✏n⌥n , ⌥n =
1X

m=0

am⌥n,m (95)

and then the solution ⌥ = 0 implies that order by order ⌥n,m = 0, and we do similarly for ⌥0. As above we introduce
slowly spatially varying wavefunctions,  1,2(t, ~x), and now also a slowly varying phase modulation function �(~x) and
wavefunction rescaling f(~x), so @i1 . . . @ik� ⇠ O(1) and likewise for f(~x), and use these to write,

A~xA(t) =  1,2(t, ~xA)f(~x)e
i
2 (�

⇡
2 ±�(~xA))e±

i�(~xA)
a , B~xB (t) =  2,1(t, ~xB)f(~x)e

� i
2 (�

⇡
2 ±�(~xB))e±

i�(~xB)
a (96)

and as above, the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs
(‘�’) and second subscript 2, 1 are for the K 0 point.

While � slowly varies, the inverse factor of a multiplying it in the exponential means that the phase rapidly
varies, changing on lattice scales. Note that a natural choice of f is f = (det gij)1/4, which will ensure that as we
mentioned previously, the number density of the continuum Dirac field is the same as the microscopic electron density,p

|gij | ̄�t = |A|2 + |B|2. In fact we will find that such a choice is also necessary to recover the torsion-free spin
connection. We note that the earlier work [8, 10] specifically worked with the Weyl rescaled field  ̂ = (det gij)�1/4 ,
which as discussed before can be thought of as working in a different Weyl frame with only nontrivial gtt [22]. However
the higher derivative terms are not Weyl invariant, and so we can only think of this as working with a spinor density
instead of a canonically normalized spinor.

We perturbatively expand about ✏ = 0, the undeformed model as,

�(~x) = � 4⇡

3
p
3
x+

1X

n=1

✏n�n�(~x) , �(~x) =
1X

n=1

✏n�n�(~x) , f(~x) = 1 +
1X

n=1

✏n�nf(~x) (97)

so that for ✏ = 0 then 1
a�(~x) =

~K · ~x, and further expand the perturbative functions �n� in a as,

�n� =
1X

m=0

am�n,m� (98)
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III. SUMMARY OF THE EFFECTIVE THEORY FOR THE LATTICE MODEL

Since the derivation of the low energy effective theory for the above lattice model is somewhat technical, we will
summarize here its structure, and give results to the order that allows the electrometric to be described at quadratic
order in the hopping function perturbation, so to O(✏2). The full derivation of the results summarized here is given
in Section V, but we believe it is beneficial to have an overview of these results before delving into the technicalities.

Following the discussion above we write the lattice tight-binding Hamiltonian with perturbatively deformed hopping
functions that are slowly varying as,

H = T
X

n,~xA

tn(~xA +
a

2
~̀
n)

⇣
a†~xA

b~xA+a~̀n
+ h.c.

⌘
(11)

and write the deformation of the hopping functions perturbatively in ✏ and a as,

tn(~x) = 1 + ✏�1tn(~x) + ✏2�2tn(~x) + . . . (12)

having factored out the equilibrium hopping strength T above, where the O(✏k) coefficient function is derived from
our smooth functions �k,mtn(~x) described above as,

�ktn(~x) = �k,0tn(~x) + a�k,1tn(~x) + a2�k,2tn(~x) + . . . . (13)

We reiterate again that the �k,mtn(~x) which describe the continuum limit have no explicit ✏ or a dependence, and are
simply fixed functions of the lattice coordinates ~x as we scale towards the continuum, taking a ! 0, and deform the
system with ✏. The low energy behaviour of the Dirac points of this lattice model are captured by the continuum
effective theory living in 2+1-dimensions, whose truncation to three covariant derivatives takes the explicit form,

0 = aeµA�
ADµ ± ia2 ⌘AB�

AeB�Dµ (C
�µ⌫D⌫ ) + a3 ⌘AB�

AeB�D
�µ⌫⇢DµD⌫D⇢ +O(✏4, ✏3a, ✏2a2, ✏a3, a4)

(14)

where  is a 2-component Dirac spinor field, and the sign represents the choice of Dirac point that the theory is to
describe. This is a free field theory, since the tight-binding lattice model has only hopping terms, and has no electron-
electron interactions. The spinor is normalized such that its particle number density agrees with the microscopic
electron number density, as we discuss later in more detail. Here eµA is the frame, the inverse of the coframe eAµ,
and associated to the spacetime metric gµ⌫ as gµ⌫ = eAµe

B
⌫⌘AB with ⌘AB = diag(�1,+1,+1) as usual. The covariant

derivative, Dµ, encodes the strain gauge field and spin connection of the frame. For example, acting on the spinor,

Dµ = @µ ⌥ iAµ � i

2
⌦µABS

AB (15)

with Aµ the gauge field, and the last term comprises the spin-connection ⌦µAB and Lorentz generators SAB and
makes the theory geometric.3 The signs in (14) and (15) should be taken consistently, either choosing the upper or
lower signs, and again reflect the choice of Dirac point being described – thus the two Dirac fields, corresponding
to the two distinct Dirac points, have opposite charge but couple to the same geometry. The spin connection is
simply the canonical torsion free one associated to the frame. While one doesn’t expect to see torsion without
dislocations [41], it is striking that it really is the torsion free connection that enters here. We have no rigorous
mathematical understanding why, beyond the heuristic of there being no dislocations. The tensors C�µ⌫ and D�µ⌫⇢

derive from lattice invariants, and are remnants of the lattice structure. The truncation above including these higher
covariant derivative terms allows us, for the first time, to consistently describe the metric to quadratic order in O(✏2)
which is one of our main goals here. Working to higher order in the metric deformation requires an increasing number
of such higher covariant derivative terms. In particular while the dispersion relation of the Dirac points are corrected
at O(✏), on general grounds they are only sensitive to the homogeneous (but anisotropic) part of the hopping function
deformation (as for example studied in [39]). They become sensitive to inhomogeneity in the deformation only at
O(✏2), and so our effective theory allows us access to these effects.

The theory is fully coordinate, frame and gauge covariant. However given the origin of the theory, it is natural to
take time to be the usual lab time of the tight binding model. Then all the quantities entering above, apart from the
dynamical field  itself, are independent of time, so static.4 The metric takes the (ultrastatic) form,

ds2effective = �c2effdt
2 + gij(~�)d�

id�j (16)

3
Let us briefly comment on coupling the effective theory to an external electromagnetic field. For purely transverse magnetic fields

and purely in-plane electric fields, we simply make the replacement Astrain ! Astrain + AEM for the K point field, and for K
0
,

Astrain ! Astrain �AEM . It would be interesting to understand precisely how tilted fields would couple to the effective theory.
4

One could in theory consider time-dependent elastic deformations of graphene, like in [42], but this is outside of the scope of our analysis.
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and given the ultrastatic form of the frame, and that � is only a function of the spatial coordinates, the covariant
derivative takes the form,

Dt = @t , Di = @i ⌥ iAi +
i

2
!i�

3 , (92)

and we have analogous results for DµD⌫ and DµD⌫D⇢ . We see the simple structure of the spin connection term
arising from the Abelian local frame rotations, but note the important point that the gauge connection and spin
connection have a distinct spinor structure from each other.

We see the gauge field is pure gauge, so is unphysical and can be removed by simply setting � = 0 as we had
previously. Further the freedom in � simply results in a spatial rotation of the frame field, and correspondingly a
non-trivial spin connection. However we emphasize here that this rotation is purely a local freedom in rotating the
frame bundle, and doesn’t affect the spacetime metric at all, which remains as in the previous equation (62), so in
fact the connection �⇢µ⌫ = 0 so that rµ = @µ here.

C. Continuum of the spatially deformed lattice model

Now we turn to the continuum limit when the hopping functions are deformed to be slowly spatially varying as in
the Hamiltonian in equation (11). We may write the resulting Schrödinger system (56) for one particles states as an
expansion in the parameters ✏ and a,

⌥ =
i~
T
@tA~xA �

X

n

tn(~xA +
a~̀n
2

)B~xA+a~̀n
= 0 (93)

⌥0 =
i~
T
@tB~xB �

X

n

tn(~xB � a~̀n
2

)A~xB�a~̀n
= 0 (94)

noting the expansion of the hopping functions introduced earlier in equation (12). We expand the ⌥ equation as,

⌥ =
1X

n=0

✏n⌥n , ⌥n =
1X

m=0

am⌥n,m (95)

and then the solution ⌥ = 0 implies that order by order ⌥n,m = 0, and we do similarly for ⌥0. As above we introduce
slowly spatially varying wavefunctions,  1,2(t, ~x), and now also a slowly varying phase modulation function �(~x) and
wavefunction rescaling f(~x), so @i1 . . . @ik� ⇠ O(1) and likewise for f(~x), and use these to write,

A~xA(t) =  1,2(t, ~xA)f(~x)e
i
2 (�

⇡
2 ±�(~xA))e±

i�(~xA)
a , B~xB (t) =  2,1(t, ~xB)f(~x)e

� i
2 (�

⇡
2 ±�(~xB))e±

i�(~xB)
a (96)

and as above, the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs
(‘�’) and second subscript 2, 1 are for the K 0 point.

While � slowly varies, the inverse factor of a multiplying it in the exponential means that the phase rapidly
varies, changing on lattice scales. Note that a natural choice of f is f = (det gij)1/4, which will ensure that as we
mentioned previously, the number density of the continuum Dirac field is the same as the microscopic electron density,p

|gij | ̄�t = |A|2 + |B|2. In fact we will find that such a choice is also necessary to recover the torsion-free spin
connection. We note that the earlier work [8, 10] specifically worked with the Weyl rescaled field  ̂ = (det gij)�1/4 ,
which as discussed before can be thought of as working in a different Weyl frame with only nontrivial gtt [22]. However
the higher derivative terms are not Weyl invariant, and so we can only think of this as working with a spinor density
instead of a canonically normalized spinor.

We perturbatively expand about ✏ = 0, the undeformed model as,

�(~x) = � 4⇡

3
p
3
x+

1X

n=1

✏n�n�(~x) , �(~x) =
1X

n=1

✏n�n�(~x) , f(~x) = 1 +
1X

n=1

✏n�nf(~x) (97)

so that for ✏ = 0 then 1
a�(~x) =

~K · ~x, and further expand the perturbative functions �n� in a as,

�n� =
1X

m=0

am�n,m� (98)
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and given the ultrastatic form of the frame, and that � is only a function of the spatial coordinates, the covariant
derivative takes the form,
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and we have analogous results for DµD⌫ and DµD⌫D⇢ . We see the simple structure of the spin connection term
arising from the Abelian local frame rotations, but note the important point that the gauge connection and spin
connection have a distinct spinor structure from each other.

We see the gauge field is pure gauge, so is unphysical and can be removed by simply setting � = 0 as we had
previously. Further the freedom in � simply results in a spatial rotation of the frame field, and correspondingly a
non-trivial spin connection. However we emphasize here that this rotation is purely a local freedom in rotating the
frame bundle, and doesn’t affect the spacetime metric at all, which remains as in the previous equation (62), so in
fact the connection �⇢µ⌫ = 0 so that rµ = @µ here.

C. Continuum of the spatially deformed lattice model

Now we turn to the continuum limit when the hopping functions are deformed to be slowly spatially varying as in
the Hamiltonian in equation (11). We may write the resulting Schrödinger system (56) for one particles states as an
expansion in the parameters ✏ and a,
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and then the solution ⌥ = 0 implies that order by order ⌥n,m = 0, and we do similarly for ⌥0. As above we introduce
slowly spatially varying wavefunctions,  1,2(t, ~x), and now also a slowly varying phase modulation function �(~x) and
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and as above, the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs
(‘�’) and second subscript 2, 1 are for the K 0 point.

While � slowly varies, the inverse factor of a multiplying it in the exponential means that the phase rapidly
varies, changing on lattice scales. Note that a natural choice of f is f = (det gij)1/4, which will ensure that as we
mentioned previously, the number density of the continuum Dirac field is the same as the microscopic electron density,p

|gij | ̄�t = |A|2 + |B|2. In fact we will find that such a choice is also necessary to recover the torsion-free spin
connection. We note that the earlier work [8, 10] specifically worked with the Weyl rescaled field  ̂ = (det gij)�1/4 ,
which as discussed before can be thought of as working in a different Weyl frame with only nontrivial gtt [22]. However
the higher derivative terms are not Weyl invariant, and so we can only think of this as working with a spinor density
instead of a canonically normalized spinor.
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and given the ultrastatic form of the frame, and that � is only a function of the spatial coordinates, the covariant
derivative takes the form,
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and we have analogous results for DµD⌫ and DµD⌫D⇢ . We see the simple structure of the spin connection term
arising from the Abelian local frame rotations, but note the important point that the gauge connection and spin
connection have a distinct spinor structure from each other.

We see the gauge field is pure gauge, so is unphysical and can be removed by simply setting � = 0 as we had
previously. Further the freedom in � simply results in a spatial rotation of the frame field, and correspondingly a
non-trivial spin connection. However we emphasize here that this rotation is purely a local freedom in rotating the
frame bundle, and doesn’t affect the spacetime metric at all, which remains as in the previous equation (62), so in
fact the connection �⇢µ⌫ = 0 so that rµ = @µ here.

C. Continuum of the spatially deformed lattice model

Now we turn to the continuum limit when the hopping functions are deformed to be slowly spatially varying as in
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and then the solution ⌥ = 0 implies that order by order ⌥n,m = 0, and we do similarly for ⌥0. As above we introduce
slowly spatially varying wavefunctions,  1,2(t, ~x), and now also a slowly varying phase modulation function �(~x) and
wavefunction rescaling f(~x), so @i1 . . . @ik� ⇠ O(1) and likewise for f(~x), and use these to write,

A~xA(t) =  1,2(t, ~xA)f(~x)e
i
2 (�

⇡
2 ±�(~xA))e±

i�(~xA)
a , B~xB (t) =  2,1(t, ~xB)f(~x)e

� i
2 (�

⇡
2 ±�(~xB))e±

i�(~xB)
a (96)

and as above, the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs
(‘�’) and second subscript 2, 1 are for the K 0 point.

While � slowly varies, the inverse factor of a multiplying it in the exponential means that the phase rapidly
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connection. We note that the earlier work [8, 10] specifically worked with the Weyl rescaled field  ̂ = (det gij)�1/4 ,
which as discussed before can be thought of as working in a different Weyl frame with only nontrivial gtt [22]. However
the higher derivative terms are not Weyl invariant, and so we can only think of this as working with a spinor density
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arising from the Abelian local frame rotations, but note the important point that the gauge connection and spin
connection have a distinct spinor structure from each other.
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previously. Further the freedom in � simply results in a spatial rotation of the frame field, and correspondingly a
non-trivial spin connection. However we emphasize here that this rotation is purely a local freedom in rotating the
frame bundle, and doesn’t affect the spacetime metric at all, which remains as in the previous equation (62), so in
fact the connection �⇢µ⌫ = 0 so that rµ = @µ here.
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and then the solution ⌥ = 0 implies that order by order ⌥n,m = 0, and we do similarly for ⌥0. As above we introduce
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(‘�’) and second subscript 2, 1 are for the K 0 point.
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and we have analogous results for DµD⌫ and DµD⌫D⇢ . We see the simple structure of the spin connection term
arising from the Abelian local frame rotations, but note the important point that the gauge connection and spin
connection have a distinct spinor structure from each other.

We see the gauge field is pure gauge, so is unphysical and can be removed by simply setting � = 0 as we had
previously. Further the freedom in � simply results in a spatial rotation of the frame field, and correspondingly a
non-trivial spin connection. However we emphasize here that this rotation is purely a local freedom in rotating the
frame bundle, and doesn’t affect the spacetime metric at all, which remains as in the previous equation (62), so in
fact the connection �⇢µ⌫ = 0 so that rµ = @µ here.
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Now we turn to the continuum limit when the hopping functions are deformed to be slowly spatially varying as in
the Hamiltonian in equation (11). We may write the resulting Schrödinger system (56) for one particles states as an
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⌥ =
1X

n=0

✏n⌥n , ⌥n =
1X

m=0

am⌥n,m (95)

and then the solution ⌥ = 0 implies that order by order ⌥n,m = 0, and we do similarly for ⌥0. As above we introduce
slowly spatially varying wavefunctions,  1,2(t, ~x), and now also a slowly varying phase modulation function �(~x) and
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and as above, the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs
(‘�’) and second subscript 2, 1 are for the K 0 point.

While � slowly varies, the inverse factor of a multiplying it in the exponential means that the phase rapidly
varies, changing on lattice scales. Note that a natural choice of f is f = (det gij)1/4, which will ensure that as we
mentioned previously, the number density of the continuum Dirac field is the same as the microscopic electron density,p

|gij | ̄�t = |A|2 + |B|2. In fact we will find that such a choice is also necessary to recover the torsion-free spin
connection. We note that the earlier work [8, 10] specifically worked with the Weyl rescaled field  ̂ = (det gij)�1/4 ,
which as discussed before can be thought of as working in a different Weyl frame with only nontrivial gtt [22]. However
the higher derivative terms are not Weyl invariant, and so we can only think of this as working with a spinor density
instead of a canonically normalized spinor.

We perturbatively expand about ✏ = 0, the undeformed model as,
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previously. Further the freedom in � simply results in a spatial rotation of the frame field, and correspondingly a
non-trivial spin connection. However we emphasize here that this rotation is purely a local freedom in rotating the
frame bundle, and doesn’t affect the spacetime metric at all, which remains as in the previous equation (62), so in
fact the connection �⇢µ⌫ = 0 so that rµ = @µ here.
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(‘�’) and second subscript 2, 1 are for the K 0 point.

While � slowly varies, the inverse factor of a multiplying it in the exponential means that the phase rapidly
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which as discussed before can be thought of as working in a different Weyl frame with only nontrivial gtt [22]. However
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and we have analogous results for DµD⌫ and DµD⌫D⇢ . We see the simple structure of the spin connection term
arising from the Abelian local frame rotations, but note the important point that the gauge connection and spin
connection have a distinct spinor structure from each other.

We see the gauge field is pure gauge, so is unphysical and can be removed by simply setting � = 0 as we had
previously. Further the freedom in � simply results in a spatial rotation of the frame field, and correspondingly a
non-trivial spin connection. However we emphasize here that this rotation is purely a local freedom in rotating the
frame bundle, and doesn’t affect the spacetime metric at all, which remains as in the previous equation (62), so in
fact the connection �⇢µ⌫ = 0 so that rµ = @µ here.
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and then the solution ⌥ = 0 implies that order by order ⌥n,m = 0, and we do similarly for ⌥0. As above we introduce
slowly spatially varying wavefunctions,  1,2(t, ~x), and now also a slowly varying phase modulation function �(~x) and
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and as above, the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs
(‘�’) and second subscript 2, 1 are for the K 0 point.

While � slowly varies, the inverse factor of a multiplying it in the exponential means that the phase rapidly
varies, changing on lattice scales. Note that a natural choice of f is f = (det gij)1/4, which will ensure that as we
mentioned previously, the number density of the continuum Dirac field is the same as the microscopic electron density,p
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connection. We note that the earlier work [8, 10] specifically worked with the Weyl rescaled field  ̂ = (det gij)�1/4 ,
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and likewise for �n� and �nf . Since we are first expanding in the deformation parameter ✏, and only afterwards we
expand in a, we may expand the exponential factor above as,
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and then for each term in this expansion, we expand the �n� in powers of a. Having performed this expansion also
in a, so we have a double expansion in both ✏ and a, it is convenient to introduce a new expansion parameter,
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a
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so that we may write,
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While written in ✏ and a the two limits ✏ ! 0 and a ! 0 do not commute – taking ✏ ! 0 with a finite allows the
expansion of the exponential above, but the reverse, a ! 0 with finite ✏, gives a diverging phase and the exponential
cannot be expanded. Thus we justify our earlier statements, that the expansion in ✏ should be performed first, and
then afterwards the one in a, so that this exponential can be expanded. Alternatively we may view the condition that
we may expand the exponential in ✏ and a as being that both � and a are small. Thus ✏/a must be held small as we
take the continuum limit a ! 0 as stated earlier.

It is interesting to consider the magnitude of ✏ in rippling suspended graphene, even though this involves out of
plane displacement, which, as discussed above, may not be well captured by the simple tight-binding model. For such
ripples the height is approximately ⇠ 0.5nm and the wavelength is ⇠ 5nm and these configurations are frozen in time,
as deduced from STM microscopy [49]. Thus in our units L = 1 corresponds to 5nm, and so the graphene lattice
spacing, which is ⇠ 0.25nm gives approximately a ⇠ 0.05. On the other hand, the height function h can be written
as h ⇠

p
✏ cos

�
x
2⇡

�
, where

p
✏ ⇠ 0.1 to give a ripple height of 0.5nm. Hence ✏ ⇠ 0.01, leading to a ratio � = ✏/a ⇠ 0.2,

which is small, but not very small. Thus even for these seemingly low amplitude ripples, corrections in � will likely
be important.

Finally the Schrödinger system can then be written in the form,
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for spatial differential operators Op,q which depend only on ~x (with the single exception of O1,0, which contains the
one time derivative), and on the various functions �mtn, �n,m�, �n,m�, �n,mf and their derivatives, but not on ✏ or
a. The terms Op,0 are those of the undeformed model, giving, in lattice coordinates,
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as we saw above. Now we must match this to a continuum description.

1. Structure of the effective theory

A key requirement of the continuum description is that it should have local frame rotation and gauge symmetry.
The effective theory therefore contains a gauge field and frame, with its associated spin connection, and all derivatives
must be covariant with respect to these. Anticipating the correct form, we perform the double expansion of the frame
and gauge field firstly in ✏ and then a as,
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where we emphasize that the expansion in a above starts with the power a�1, and for the frame,
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and likewise for �n� and �nf . Since we are first expanding in the deformation parameter ✏, and only afterwards we
expand in a, we may expand the exponential factor above as,
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and then for each term in this expansion, we expand the �n� in powers of a. Having performed this expansion also
in a, so we have a double expansion in both ✏ and a, it is convenient to introduce a new expansion parameter,
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so that we may write,
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While written in ✏ and a the two limits ✏ ! 0 and a ! 0 do not commute – taking ✏ ! 0 with a finite allows the
expansion of the exponential above, but the reverse, a ! 0 with finite ✏, gives a diverging phase and the exponential
cannot be expanded. Thus we justify our earlier statements, that the expansion in ✏ should be performed first, and
then afterwards the one in a, so that this exponential can be expanded. Alternatively we may view the condition that
we may expand the exponential in ✏ and a as being that both � and a are small. Thus ✏/a must be held small as we
take the continuum limit a ! 0 as stated earlier.

It is interesting to consider the magnitude of ✏ in rippling suspended graphene, even though this involves out of
plane displacement, which, as discussed above, may not be well captured by the simple tight-binding model. For such
ripples the height is approximately ⇠ 0.5nm and the wavelength is ⇠ 5nm and these configurations are frozen in time,
as deduced from STM microscopy [49]. Thus in our units L = 1 corresponds to 5nm, and so the graphene lattice
spacing, which is ⇠ 0.25nm gives approximately a ⇠ 0.05. On the other hand, the height function h can be written
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, where
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✏ ⇠ 0.1 to give a ripple height of 0.5nm. Hence ✏ ⇠ 0.01, leading to a ratio � = ✏/a ⇠ 0.2,

which is small, but not very small. Thus even for these seemingly low amplitude ripples, corrections in � will likely
be important.
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for spatial differential operators Op,q which depend only on ~x (with the single exception of O1,0, which contains the
one time derivative), and on the various functions �mtn, �n,m�, �n,m�, �n,mf and their derivatives, but not on ✏ or
a. The terms Op,0 are those of the undeformed model, giving, in lattice coordinates,
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as we saw above. Now we must match this to a continuum description.

1. Structure of the effective theory

A key requirement of the continuum description is that it should have local frame rotation and gauge symmetry.
The effective theory therefore contains a gauge field and frame, with its associated spin connection, and all derivatives
must be covariant with respect to these. Anticipating the correct form, we perform the double expansion of the frame
and gauge field firstly in ✏ and then a as,
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where we emphasize that the expansion in a above starts with the power a�1, and for the frame,
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and likewise for �n� and �nf . Since we are first expanding in the deformation parameter ✏, and only afterwards we
expand in a, we may expand the exponential factor above as,
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While written in ✏ and a the two limits ✏ ! 0 and a ! 0 do not commute – taking ✏ ! 0 with a finite allows the
expansion of the exponential above, but the reverse, a ! 0 with finite ✏, gives a diverging phase and the exponential
cannot be expanded. Thus we justify our earlier statements, that the expansion in ✏ should be performed first, and
then afterwards the one in a, so that this exponential can be expanded. Alternatively we may view the condition that
we may expand the exponential in ✏ and a as being that both � and a are small. Thus ✏/a must be held small as we
take the continuum limit a ! 0 as stated earlier.

It is interesting to consider the magnitude of ✏ in rippling suspended graphene, even though this involves out of
plane displacement, which, as discussed above, may not be well captured by the simple tight-binding model. For such
ripples the height is approximately ⇠ 0.5nm and the wavelength is ⇠ 5nm and these configurations are frozen in time,
as deduced from STM microscopy [49]. Thus in our units L = 1 corresponds to 5nm, and so the graphene lattice
spacing, which is ⇠ 0.25nm gives approximately a ⇠ 0.05. On the other hand, the height function h can be written
as h ⇠

p
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, where
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✏ ⇠ 0.1 to give a ripple height of 0.5nm. Hence ✏ ⇠ 0.01, leading to a ratio � = ✏/a ⇠ 0.2,

which is small, but not very small. Thus even for these seemingly low amplitude ripples, corrections in � will likely
be important.

Finally the Schrödinger system can then be written in the form,
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for spatial differential operators Op,q which depend only on ~x (with the single exception of O1,0, which contains the
one time derivative), and on the various functions �mtn, �n,m�, �n,m�, �n,mf and their derivatives, but not on ✏ or
a. The terms Op,0 are those of the undeformed model, giving, in lattice coordinates,

O1,0 =
1
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as we saw above. Now we must match this to a continuum description.

1. Structure of the effective theory

A key requirement of the continuum description is that it should have local frame rotation and gauge symmetry.
The effective theory therefore contains a gauge field and frame, with its associated spin connection, and all derivatives
must be covariant with respect to these. Anticipating the correct form, we perform the double expansion of the frame
and gauge field firstly in ✏ and then a as,
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where we emphasize that the expansion in a above starts with the power a�1, and for the frame,
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and given the ultrastatic form of the frame, and that � is only a function of the spatial coordinates, the covariant
derivative takes the form,

Dt = @t , Di = @i ⌥ iAi +
i

2
!i�

3 , (92)

and we have analogous results for DµD⌫ and DµD⌫D⇢ . We see the simple structure of the spin connection term
arising from the Abelian local frame rotations, but note the important point that the gauge connection and spin
connection have a distinct spinor structure from each other.

We see the gauge field is pure gauge, so is unphysical and can be removed by simply setting � = 0 as we had
previously. Further the freedom in � simply results in a spatial rotation of the frame field, and correspondingly a
non-trivial spin connection. However we emphasize here that this rotation is purely a local freedom in rotating the
frame bundle, and doesn’t affect the spacetime metric at all, which remains as in the previous equation (62), so in
fact the connection �⇢µ⌫ = 0 so that rµ = @µ here.

C. Continuum of the spatially deformed lattice model

Now we turn to the continuum limit when the hopping functions are deformed to be slowly spatially varying as in
the Hamiltonian in equation (11). We may write the resulting Schrödinger system (56) for one particles states as an
expansion in the parameters ✏ and a,
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= 0 (94)

noting the expansion of the hopping functions introduced earlier in equation (12). We expand the ⌥ equation as,
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1X

m=0

am⌥n,m (95)

and then the solution ⌥ = 0 implies that order by order ⌥n,m = 0, and we do similarly for ⌥0. As above we introduce
slowly spatially varying wavefunctions,  1,2(t, ~x), and now also a slowly varying phase modulation function �(~x) and
wavefunction rescaling f(~x), so @i1 . . . @ik� ⇠ O(1) and likewise for f(~x), and use these to write,

A~xA(t) =  1,2(t, ~xA)f(~x)e
i
2 (�
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i�(~xA)
a , B~xB (t) =  2,1(t, ~xB)f(~x)e

� i
2 (�
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i�(~xB)
a (96)

and as above, the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs
(‘�’) and second subscript 2, 1 are for the K 0 point.

While � slowly varies, the inverse factor of a multiplying it in the exponential means that the phase rapidly
varies, changing on lattice scales. Note that a natural choice of f is f = (det gij)1/4, which will ensure that as we
mentioned previously, the number density of the continuum Dirac field is the same as the microscopic electron density,p

|gij | ̄�t = |A|2 + |B|2. In fact we will find that such a choice is also necessary to recover the torsion-free spin
connection. We note that the earlier work [8, 10] specifically worked with the Weyl rescaled field  ̂ = (det gij)�1/4 ,
which as discussed before can be thought of as working in a different Weyl frame with only nontrivial gtt [22]. However
the higher derivative terms are not Weyl invariant, and so we can only think of this as working with a spinor density
instead of a canonically normalized spinor.

We perturbatively expand about ✏ = 0, the undeformed model as,
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so that for ✏ = 0 then 1
a�(~x) =

~K · ~x, and further expand the perturbative functions �n� in a as,

�n� =
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m=0

am�n,m� (98)
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An aside on ripples
Effective theory

STM image: Zan et al ‘12 

depending on sample preparation e.g. defect mediated local changes

in graphene stiffness, unintentional bending of a supporting grid or

mechanical strain during fabrication.29 Equally, the question as to

whether these ripples are dynamic or static is a subject of great

interest and is hitherto unresolved. In a previous STEMstudy,30 using

Fourier filtering procedures, we have shown that ripples in mono-

layer graphene have wavelengths on the scale of 5 to 10 nm, and

amplitudes of typically 0.5 nm. Ripple patterns observed in the

STEM have proven to change in subsequent scans, being strongly

influenced by the time varying point defect distribution which is

driven by the electron beam interactions with the film. In the present

STM images of suspended graphene we observe distinct topographic

ripple features, which strongly resemble the ripples of STEM data in

terms of shape, wavelength and height. We have systematically

imaged graphene addressing many different areas of suspended

material, and conducting repeat scans in given areas. In doing so we

established the general topography and also the stability of ripples in

suspended graphene; examples are given in Fig. 4(a) and (b), where

height variations (ripple amplitude) of the order of 1 nm were

observed. A line profile (blue dotted line in Fig. 4(b)) shows the height

variation across a 10 nm frame size in the inset Fig. 4(b). The images

in Fig. 4(a) and (b) represent the first and last in a long sequence of

repeated imaging. The ripples are stable, i.e. no changes, aside from

small sample drift, are detected over a time period of about 5 minutes

of continuous imaging. The same situation, on a magnified scale, is

evident in Fig. 4(c) and (d), showing a different area of graphene.

Again, the images in Fig. 4(c) and (d) are the first and the last of

a series. The ripple amplitude here is about 4 !A, which can be seen

from the line profile shown in the inset. In both sets of images (a, b

and c, d) the lateral periodicity or wavelength of the ripples is

a few (!5) nm.

Fig. 3 High resolution monolayer and bilayer graphene region. (a) Raw

and (b) FFT filtered images. Hexagonal monolayer (solid line square)

and triangular bilayer (dotted line square) structures can be observed in

both images. The image acquisition parameters were: Vbias ¼ +0.6 V and

I ¼ 0.5 nA.

Fig. 4 High resolution 3D STM images of monolayer graphene. (a) First and (b) last image from an image series showing a 10 nm2 area; (c) first and (d)

last image from an image series showing a 5 nm2 area. Both image pairs demonstrate that the ripples are static. The acquisition parameters were: Vbias ¼
+0.6 V (tip bias) and I¼ 0.5 nA for (a) and (b) and +0.8 V and 0.6 nA for (c) and (d). Insets in (a) and (c) show the 2D counterparts. Insets in (b) and (d)

show a line profile taken along the blue dotted lines.
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and likewise for �n� and �nf . Since we are first expanding in the deformation parameter ✏, and only afterwards we
expand in a, we may expand the exponential factor above as,
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and then for each term in this expansion, we expand the �n� in powers of a. Having performed this expansion also
in a, so we have a double expansion in both ✏ and a, it is convenient to introduce a new expansion parameter,
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While written in ✏ and a the two limits ✏ ! 0 and a ! 0 do not commute – taking ✏ ! 0 with a finite allows the
expansion of the exponential above, but the reverse, a ! 0 with finite ✏, gives a diverging phase and the exponential
cannot be expanded. Thus we justify our earlier statements, that the expansion in ✏ should be performed first, and
then afterwards the one in a, so that this exponential can be expanded. Alternatively we may view the condition that
we may expand the exponential in ✏ and a as being that both � and a are small. Thus ✏/a must be held small as we
take the continuum limit a ! 0 as stated earlier.

It is interesting to consider the magnitude of ✏ in rippling suspended graphene, even though this involves out of
plane displacement, which, as discussed above, may not be well captured by the simple tight-binding model. For such
ripples the height is approximately ⇠ 0.5nm and the wavelength is ⇠ 5nm and these configurations are frozen in time,
as deduced from STM microscopy [49]. Thus in our units L = 1 corresponds to 5nm, and so the graphene lattice
spacing, which is ⇠ 0.25nm gives approximately a ⇠ 0.05. On the other hand, the height function h can be written
as h ⇠

p
✏ cos

�
x
2⇡

�
, where

p
✏ ⇠ 0.1 to give a ripple height of 0.5nm. Hence ✏ ⇠ 0.01, leading to a ratio � = ✏/a ⇠ 0.2,

which is small, but not very small. Thus even for these seemingly low amplitude ripples, corrections in � will likely
be important.

Finally the Schrödinger system can then be written in the form,
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for spatial differential operators Op,q which depend only on ~x (with the single exception of O1,0, which contains the
one time derivative), and on the various functions �mtn, �n,m�, �n,m�, �n,mf and their derivatives, but not on ✏ or
a. The terms Op,0 are those of the undeformed model, giving, in lattice coordinates,
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1

ceff
�0@t + �iI�

I@i , O2,0 = ±i ⌘AB�
A�B� C�µ⌫@µ@⌫ , O3,0 = ⌘AB�
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as we saw above. Now we must match this to a continuum description.

1. Structure of the effective theory

A key requirement of the continuum description is that it should have local frame rotation and gauge symmetry.
The effective theory therefore contains a gauge field and frame, with its associated spin connection, and all derivatives
must be covariant with respect to these. Anticipating the correct form, we perform the double expansion of the frame
and gauge field firstly in ✏ and then a as,
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where we emphasize that the expansion in a above starts with the power a�1, and for the frame,
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and likewise for �n� and �nf . Since we are first expanding in the deformation parameter ✏, and only afterwards we
expand in a, we may expand the exponential factor above as,
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and then for each term in this expansion, we expand the �n� in powers of a. Having performed this expansion also
in a, so we have a double expansion in both ✏ and a, it is convenient to introduce a new expansion parameter,
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While written in ✏ and a the two limits ✏ ! 0 and a ! 0 do not commute – taking ✏ ! 0 with a finite allows the
expansion of the exponential above, but the reverse, a ! 0 with finite ✏, gives a diverging phase and the exponential
cannot be expanded. Thus we justify our earlier statements, that the expansion in ✏ should be performed first, and
then afterwards the one in a, so that this exponential can be expanded. Alternatively we may view the condition that
we may expand the exponential in ✏ and a as being that both � and a are small. Thus ✏/a must be held small as we
take the continuum limit a ! 0 as stated earlier.

It is interesting to consider the magnitude of ✏ in rippling suspended graphene, even though this involves out of
plane displacement, which, as discussed above, may not be well captured by the simple tight-binding model. For such
ripples the height is approximately ⇠ 0.5nm and the wavelength is ⇠ 5nm and these configurations are frozen in time,
as deduced from STM microscopy [49]. Thus in our units L = 1 corresponds to 5nm, and so the graphene lattice
spacing, which is ⇠ 0.25nm gives approximately a ⇠ 0.05. On the other hand, the height function h can be written
as h ⇠
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✏ cos
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, where

p
✏ ⇠ 0.1 to give a ripple height of 0.5nm. Hence ✏ ⇠ 0.01, leading to a ratio � = ✏/a ⇠ 0.2,

which is small, but not very small. Thus even for these seemingly low amplitude ripples, corrections in � will likely
be important.

Finally the Schrödinger system can then be written in the form,
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for spatial differential operators Op,q which depend only on ~x (with the single exception of O1,0, which contains the
one time derivative), and on the various functions �mtn, �n,m�, �n,m�, �n,mf and their derivatives, but not on ✏ or
a. The terms Op,0 are those of the undeformed model, giving, in lattice coordinates,

O1,0 =
1

ceff
�0@t + �iI�

I@i , O2,0 = ±i ⌘AB�
A�B� C�µ⌫@µ@⌫ , O3,0 = ⌘AB�

A�B� D�µ⌫⇢@µ@⌫@⇢ (103)

as we saw above. Now we must match this to a continuum description.

1. Structure of the effective theory

A key requirement of the continuum description is that it should have local frame rotation and gauge symmetry.
The effective theory therefore contains a gauge field and frame, with its associated spin connection, and all derivatives
must be covariant with respect to these. Anticipating the correct form, we perform the double expansion of the frame
and gauge field firstly in ✏ and then a as,
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where we emphasize that the expansion in a above starts with the power a�1, and for the frame,
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and likewise for �n� and �nf . Since we are first expanding in the deformation parameter ✏, and only afterwards we
expand in a, we may expand the exponential factor above as,
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and then for each term in this expansion, we expand the �n� in powers of a. Having performed this expansion also
in a, so we have a double expansion in both ✏ and a, it is convenient to introduce a new expansion parameter,
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While written in ✏ and a the two limits ✏ ! 0 and a ! 0 do not commute – taking ✏ ! 0 with a finite allows the
expansion of the exponential above, but the reverse, a ! 0 with finite ✏, gives a diverging phase and the exponential
cannot be expanded. Thus we justify our earlier statements, that the expansion in ✏ should be performed first, and
then afterwards the one in a, so that this exponential can be expanded. Alternatively we may view the condition that
we may expand the exponential in ✏ and a as being that both � and a are small. Thus ✏/a must be held small as we
take the continuum limit a ! 0 as stated earlier.

It is interesting to consider the magnitude of ✏ in rippling suspended graphene, even though this involves out of
plane displacement, which, as discussed above, may not be well captured by the simple tight-binding model. For such
ripples the height is approximately ⇠ 0.5nm and the wavelength is ⇠ 5nm and these configurations are frozen in time,
as deduced from STM microscopy [49]. Thus in our units L = 1 corresponds to 5nm, and so the graphene lattice
spacing, which is ⇠ 0.25nm gives approximately a ⇠ 0.05. On the other hand, the height function h can be written
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for spatial differential operators Op,q which depend only on ~x (with the single exception of O1,0, which contains the
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as we saw above. Now we must match this to a continuum description.

1. Structure of the effective theory

A key requirement of the continuum description is that it should have local frame rotation and gauge symmetry.
The effective theory therefore contains a gauge field and frame, with its associated spin connection, and all derivatives
must be covariant with respect to these. Anticipating the correct form, we perform the double expansion of the frame
and gauge field firstly in ✏ and then a as,

Aµ =
�
0, Ai

�
, Ai =

1X

n=1

✏n�nAi , �nAi =
1

a

1X

m=0

am�n,mAi (104)

where we emphasize that the expansion in a above starts with the power a�1, and for the frame,
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A corollary of this discussion is that if we consider a term with M derivatives of the above form, then,

aMQµ1...µMDµ1 · · ·DµM contributes to Op,q for p � M (115)

unlike in usual effective field theory where these terms would only contribute to Op,q with p� q � M . Alternatively
we may say that the equations Op,q with p  M only involve contributions from terms in the equation of motion with
M derivatives or less. Let us now see how this works in practice.

2. Leading order - Op,q for p  1 - flat Dirac with large magnetic field

Considering all the lattice equations Op,q for p  1, yields the non-trivial equations O1,0 and O1,1, and these involve
only the one covariant derivative term, i.e. the leading Dirac equation term. We find that to this leading order the
continuum theory matching the lattice model is,

0 = aeµA�
ADµ +O(✏2, ✏a, a2) (116)

where we have a flat undeformed frame and non-trivial magnetic gauge field, found from solving O1,0 and O1,1,
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where,
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and we see the gauge transformation enter, with gauge parameter �1,0�. Subleading corrections in powers of ✏ or a to
the frame and gauge field then only affect the higher order equations Op,q for p > 1, and these also contain contributions
from higher covariant derivative terms – thus these subleading corrections cannot be considered consistently without
also including these higher covariant derivative terms too.

This was a key conclusion of our paper [26], namely that for the leading order effective theory – the Dirac equation
coupled to the strain gauge field – whilst the gauge field is non-trivial in general, the frame, and thus the metric, is
undeformed.

3. Second order - Op,q for p  2 - curved space Dirac and higher covariant derivative term with large magnetic field

Now we take the lattice equations Op,q for p  2, which give the previous equations O1,0 and O1,1, and at next
order also O2,0, O2,1 and O2,2. The equation O2,0 is solved by adding the two derivative term for the undeformed
case given above in equation (65), and so the full effective description up to two derivatives is,

0 = aeµA�
ADµ ± ia2 ⌘AB�

AeB�C
�µ⌫DµD⌫ +O(✏3, ✏2a, ✏a2, a3) (119)

with the upper sign for the K point, and the lower for the K 0 point. We note that the coefficient C�µ⌫ , given in
equation (22) has a factor involving det(gij), but this doesn’t contribute here – at this order we could consistently
simply take the non-zero components Cijk = �✏klKijl/4, so they are just given by the lattice invariants.
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we may say that the equations Op,q with p  M only involve contributions from terms in the equation of motion with
M derivatives or less. Let us now see how this works in practice.
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only the one covariant derivative term, i.e. the leading Dirac equation term. We find that to this leading order the
continuum theory matching the lattice model is,
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and we see the gauge transformation enter, with gauge parameter �1,0�. Subleading corrections in powers of ✏ or a to
the frame and gauge field then only affect the higher order equations Op,q for p > 1, and these also contain contributions
from higher covariant derivative terms – thus these subleading corrections cannot be considered consistently without
also including these higher covariant derivative terms too.

This was a key conclusion of our paper [26], namely that for the leading order effective theory – the Dirac equation
coupled to the strain gauge field – whilst the gauge field is non-trivial in general, the frame, and thus the metric, is
undeformed.

3. Second order - Op,q for p  2 - curved space Dirac and higher covariant derivative term with large magnetic field

Now we take the lattice equations Op,q for p  2, which give the previous equations O1,0 and O1,1, and at next
order also O2,0, O2,1 and O2,2. The equation O2,0 is solved by adding the two derivative term for the undeformed
case given above in equation (65), and so the full effective description up to two derivatives is,
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with the upper sign for the K point, and the lower for the K 0 point. We note that the coefficient C�µ⌫ , given in
equation (22) has a factor involving det(gij), but this doesn’t contribute here – at this order we could consistently
simply take the non-zero components Cijk = �✏klKijl/4, so they are just given by the lattice invariants.
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and likewise for �n� and �nf . Since we are first expanding in the deformation parameter ✏, and only afterwards we
expand in a, we may expand the exponential factor above as,
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and then for each term in this expansion, we expand the �n� in powers of a. Having performed this expansion also
in a, so we have a double expansion in both ✏ and a, it is convenient to introduce a new expansion parameter,
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While written in ✏ and a the two limits ✏ ! 0 and a ! 0 do not commute – taking ✏ ! 0 with a finite allows the
expansion of the exponential above, but the reverse, a ! 0 with finite ✏, gives a diverging phase and the exponential
cannot be expanded. Thus we justify our earlier statements, that the expansion in ✏ should be performed first, and
then afterwards the one in a, so that this exponential can be expanded. Alternatively we may view the condition that
we may expand the exponential in ✏ and a as being that both � and a are small. Thus ✏/a must be held small as we
take the continuum limit a ! 0 as stated earlier.

It is interesting to consider the magnitude of ✏ in rippling suspended graphene, even though this involves out of
plane displacement, which, as discussed above, may not be well captured by the simple tight-binding model. For such
ripples the height is approximately ⇠ 0.5nm and the wavelength is ⇠ 5nm and these configurations are frozen in time,
as deduced from STM microscopy [49]. Thus in our units L = 1 corresponds to 5nm, and so the graphene lattice
spacing, which is ⇠ 0.25nm gives approximately a ⇠ 0.05. On the other hand, the height function h can be written
as h ⇠

p
✏ cos

�
x
2⇡

�
, where

p
✏ ⇠ 0.1 to give a ripple height of 0.5nm. Hence ✏ ⇠ 0.01, leading to a ratio � = ✏/a ⇠ 0.2,

which is small, but not very small. Thus even for these seemingly low amplitude ripples, corrections in � will likely
be important.

Finally the Schrödinger system can then be written in the form,
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(102)

for spatial differential operators Op,q which depend only on ~x (with the single exception of O1,0, which contains the
one time derivative), and on the various functions �mtn, �n,m�, �n,m�, �n,mf and their derivatives, but not on ✏ or
a. The terms Op,0 are those of the undeformed model, giving, in lattice coordinates,
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as we saw above. Now we must match this to a continuum description.

1. Structure of the effective theory

A key requirement of the continuum description is that it should have local frame rotation and gauge symmetry.
The effective theory therefore contains a gauge field and frame, with its associated spin connection, and all derivatives
must be covariant with respect to these. Anticipating the correct form, we perform the double expansion of the frame
and gauge field firstly in ✏ and then a as,
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where we emphasize that the expansion in a above starts with the power a�1, and for the frame,
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This frame determines the metric which then has gtt = �c2eff , gti = 0 and an analogous expansion for its spatial
components,

gij = eIie
I
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am�n,mgij (106)

and likewise for the Christoffel symbols and torsion free spin connection, !µ, as in equation (85), which have only
non-vanishing spatial components, again with expansions as above,
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The key feature of this expansion is that the leading behaviour of the magnetic gauge field goes inversely with a, so
Ai ⇠ ✏/a. As we have emphasized earlier, first expanding in infinitessimal ✏, and then in a, this leading behaviour
Ai ' ✏�1Ai is perturbatively small. However, formally the function �1Ai ⇠ 1/a itself diverges in the continuum limit
a ! 0 and hence we term this the large magnetic field, understanding that we should ensure ✏/a is finite and small as
we take the continuum limit a ! 0 to ensure we can perform a perturbative expansion.

Terms in the effective continuum description will involve quantities constructed from lattice invariants and their
derivatives, and covariant derivatives of the spinor field  = ( 1, 2). Let’s consider a term which we schematically
write as,

aMQµ1...µMDµ1 · · ·DµM (108)

where we have suppressed all spinor indices and Gamma matrices. Here the tensor Q is constructed from the lattice
data, so from the coupling functions tn and the lattice vectors ~̀n. Since the tn have an expansion in ✏ and a, then we
may write,
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where the leading term, Qµ1...µM
0,0 will comprise constants that are independent of ~x, but the subleading terms

Qµ1...µM
n,m (~x) for n � 1 will be slowly varying functions of position via the couplings that slowly spatially vary. The

covariant derivative for the K point may be expanded as,
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where we have suppressed all indices, and we have a similar expansion for the derivative at the K 0 point (which differs
by signs). The presence of the gauge field contributing terms going as 1/a changes the structure of the effective field
theory from the more usual case in relativistic QFT, and implies that higher covariant derivative terms may contribute
at lower orders in the derivative expansion due to these gauge terms. Thus the terms above can be expanded as,

aMQµ1...µMDµ1 · · ·DµM = aMTM,0 +
1X

p=0

1X

q=1

ap�qTp,q (112)

for an M -th derivative term, where we have,

Tp,q = 0 8 p < M (113)

but are otherwise non-trivial. If A did not have large leading behaviour, so �n,0A = 0, then one would have Tp,q = 0
for p� q < M . However due to the presence of the large magnetic field, gauge field terms such as,

aMQµ1...µMAµ1@µ2 · · · @µM , aMQµ1...µM@µ1Aµ2@µ3 · · · @µM , aMQµ1...µMAµ1Aµ2@µ3 · · · @µM (114)

contribute to lower orders in the a expansion. While each gauge field contributes an inverse a, it also comes with an
additional factor ✏. Thus this term has zero contributions for p  M but will generally have non-trivial contributions
Tp,q otherwise. Pictorially we have,
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A corollary of this discussion is that if we consider a term with M derivatives of the above form, then,

aMQµ1...µMDµ1 · · ·DµM contributes to Op,q for p � M (115)

unlike in usual effective field theory where these terms would only contribute to Op,q with p� q � M . Alternatively
we may say that the equations Op,q with p  M only involve contributions from terms in the equation of motion with
M derivatives or less. Let us now see how this works in practice.

2. Leading order - Op,q for p  1 - flat Dirac with large magnetic field

Considering all the lattice equations Op,q for p  1, yields the non-trivial equations O1,0 and O1,1, and these involve
only the one covariant derivative term, i.e. the leading Dirac equation term. We find that to this leading order the
continuum theory matching the lattice model is,

0 = aeµA�
ADµ +O(✏2, ✏a, a2) (116)

where we have a flat undeformed frame and non-trivial magnetic gauge field, found from solving O1,0 and O1,1,

eµA =

0

B@

1
ceff

0 0

0 1 0

0 0 1

1

CA+O(✏) , Ai =
✏

a
(�1,0Ai +O(a)) +O(

✏2

a
) , f = 1 +O(✏) (117)

where,

�1,0Ai =
1

3

 
�1,0t1 + �1,0t2 � 2�1,0t3
�
p
3 (�1,0t1 � �1,0t2)

!
� @i(�1,0�) (118)

and we see the gauge transformation enter, with gauge parameter �1,0�. Subleading corrections in powers of ✏ or a to
the frame and gauge field then only affect the higher order equations Op,q for p > 1, and these also contain contributions
from higher covariant derivative terms – thus these subleading corrections cannot be considered consistently without
also including these higher covariant derivative terms too.

This was a key conclusion of our paper [26], namely that for the leading order effective theory – the Dirac equation
coupled to the strain gauge field – whilst the gauge field is non-trivial in general, the frame, and thus the metric, is
undeformed.

3. Second order - Op,q for p  2 - curved space Dirac and higher covariant derivative term with large magnetic field

Now we take the lattice equations Op,q for p  2, which give the previous equations O1,0 and O1,1, and at next
order also O2,0, O2,1 and O2,2. The equation O2,0 is solved by adding the two derivative term for the undeformed
case given above in equation (65), and so the full effective description up to two derivatives is,

0 = aeµA�
ADµ ± ia2 ⌘AB�

AeB�C
�µ⌫DµD⌫ +O(✏3, ✏2a, ✏a2, a3) (119)

with the upper sign for the K point, and the lower for the K 0 point. We note that the coefficient C�µ⌫ , given in
equation (22) has a factor involving det(gij), but this doesn’t contribute here – at this order we could consistently
simply take the non-zero components Cijk = �✏klKijl/4, so they are just given by the lattice invariants.
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A corollary of this discussion is that if we consider a term with M derivatives of the above form, then,

aMQµ1...µMDµ1 · · ·DµM contributes to Op,q for p � M (115)

unlike in usual effective field theory where these terms would only contribute to Op,q with p� q � M . Alternatively
we may say that the equations Op,q with p  M only involve contributions from terms in the equation of motion with
M derivatives or less. Let us now see how this works in practice.

2. Leading order - Op,q for p  1 - flat Dirac with large magnetic field

Considering all the lattice equations Op,q for p  1, yields the non-trivial equations O1,0 and O1,1, and these involve
only the one covariant derivative term, i.e. the leading Dirac equation term. We find that to this leading order the
continuum theory matching the lattice model is,

0 = aeµA�
ADµ +O(✏2, ✏a, a2) (116)

where we have a flat undeformed frame and non-trivial magnetic gauge field, found from solving O1,0 and O1,1,
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and we see the gauge transformation enter, with gauge parameter �1,0�. Subleading corrections in powers of ✏ or a to
the frame and gauge field then only affect the higher order equations Op,q for p > 1, and these also contain contributions
from higher covariant derivative terms – thus these subleading corrections cannot be considered consistently without
also including these higher covariant derivative terms too.

This was a key conclusion of our paper [26], namely that for the leading order effective theory – the Dirac equation
coupled to the strain gauge field – whilst the gauge field is non-trivial in general, the frame, and thus the metric, is
undeformed.

3. Second order - Op,q for p  2 - curved space Dirac and higher covariant derivative term with large magnetic field

Now we take the lattice equations Op,q for p  2, which give the previous equations O1,0 and O1,1, and at next
order also O2,0, O2,1 and O2,2. The equation O2,0 is solved by adding the two derivative term for the undeformed
case given above in equation (65), and so the full effective description up to two derivatives is,

0 = aeµA�
ADµ ± ia2 ⌘AB�

AeB�C
�µ⌫DµD⌫ +O(✏3, ✏2a, ✏a2, a3) (119)

with the upper sign for the K point, and the lower for the K 0 point. We note that the coefficient C�µ⌫ , given in
equation (22) has a factor involving det(gij), but this doesn’t contribute here – at this order we could consistently
simply take the non-zero components Cijk = �✏klKijl/4, so they are just given by the lattice invariants.
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In order to solve the remaining equations, O2,1 and O2,2, we must introduce a linear deformation to the spatial
frame, corrections to the gauge field, and also to the rescaling function f ,
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a
) . (120)

The terms in these expansions determined from the leading order equations, here just �1,0Ai, are as above. The new
subleading corrections are then determined by examining the new equations at this order i.e. Op,q with p = 2. The
equation O2,0 is the one from the undeformed theory and is satisfied by the choice for the two derivative term. Next
we consider O2,1 where the one derivative terms on  fix the frame correction as,
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and we recognize the term involving �1,0� as a perturbative frame rotation. The terms in O2,1 with no derivatives on
 determine the rescaling function to be,

�1,0f = �1

3
(�1,0t1 + �1,0t2 + �1,0t3) (122)

which is the leading correction in the expansion of f = (det gij)1/4. Continuing, we determine the correction �1,1Ai

to the gauge field from O1,1, obtaining,
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Finally, the remaining equations O2,2 determine the ✏2 correction to the gauge field,
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where again we see the gauge freedom associated to the choice �2,0�, and now we see this quadratic correction to the
gauge field has contributions from the quadratic deformation of the couplings, �2,0tn, but also non-linear terms in the
leading deformations �1,0tn.

We explicitly see another key conclusion of our paper [26], namely that while the frame becomes perturbed from
being trivial, so that we may consider the Dirac term to live in a curved space, at the same time one must also
introduce a second covariant derivative term for consistency. One cannot truncate to a curved space Dirac equation
(plus strain gauge field), since the higher derivative term must be included to match to the microscopic lattice theory
at the subleading order where the frame becomes non-trivial.

4. Third order - Op,q for p  3 - O(✏2) corrections to the metric

We now give the theory to third order. It takes the form above, with additional corrections to the metric, gauge
field, rescaling function f , and to the higher covariant derivative terms. To this third order the equations Op,q for
p  3 are solved by the continuum theory,
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(125)

where now we have added a three covariant derivative term with coefficient given by the invariant D�µ⌫⇢ as defined
in (22), and again the upper sign is for the K point and the lower one is for the K 0 point. The spatial frame, gauge
field and rescaling function now must have expansions as,
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and given the ultrastatic form of the frame, and that � is only a function of the spatial coordinates, the covariant
derivative takes the form,

Dt = @t , Di = @i ⌥ iAi +
i

2
!i�

3 , (92)

and we have analogous results for DµD⌫ and DµD⌫D⇢ . We see the simple structure of the spin connection term
arising from the Abelian local frame rotations, but note the important point that the gauge connection and spin
connection have a distinct spinor structure from each other.

We see the gauge field is pure gauge, so is unphysical and can be removed by simply setting � = 0 as we had
previously. Further the freedom in � simply results in a spatial rotation of the frame field, and correspondingly a
non-trivial spin connection. However we emphasize here that this rotation is purely a local freedom in rotating the
frame bundle, and doesn’t affect the spacetime metric at all, which remains as in the previous equation (62), so in
fact the connection �⇢µ⌫ = 0 so that rµ = @µ here.

C. Continuum of the spatially deformed lattice model

Now we turn to the continuum limit when the hopping functions are deformed to be slowly spatially varying as in
the Hamiltonian in equation (11). We may write the resulting Schrödinger system (56) for one particles states as an
expansion in the parameters ✏ and a,

⌥ =
i~
T
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n
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a~̀n
2

)B~xA+a~̀n
= 0 (93)
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T
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n

tn(~xB � a~̀n
2

)A~xB�a~̀n
= 0 (94)

noting the expansion of the hopping functions introduced earlier in equation (12). We expand the ⌥ equation as,

⌥ =
1X

n=0

✏n⌥n , ⌥n =
1X

m=0

am⌥n,m (95)

and then the solution ⌥ = 0 implies that order by order ⌥n,m = 0, and we do similarly for ⌥0. As above we introduce
slowly spatially varying wavefunctions,  1,2(t, ~x), and now also a slowly varying phase modulation function �(~x) and
wavefunction rescaling f(~x), so @i1 . . . @ik� ⇠ O(1) and likewise for f(~x), and use these to write,

A~xA(t) =  1,2(t, ~xA)f(~x)e
i
2 (�
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� i
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and as above, the upper signs (‘+’) as well as the first subscript 1, then 2 are for the K point, and the lower signs
(‘�’) and second subscript 2, 1 are for the K 0 point.

While � slowly varies, the inverse factor of a multiplying it in the exponential means that the phase rapidly
varies, changing on lattice scales. Note that a natural choice of f is f = (det gij)1/4, which will ensure that as we
mentioned previously, the number density of the continuum Dirac field is the same as the microscopic electron density,p

|gij | ̄�t = |A|2 + |B|2. In fact we will find that such a choice is also necessary to recover the torsion-free spin
connection. We note that the earlier work [8, 10] specifically worked with the Weyl rescaled field  ̂ = (det gij)�1/4 ,
which as discussed before can be thought of as working in a different Weyl frame with only nontrivial gtt [22]. However
the higher derivative terms are not Weyl invariant, and so we can only think of this as working with a spinor density
instead of a canonically normalized spinor.

We perturbatively expand about ✏ = 0, the undeformed model as,

�(~x) = � 4⇡

3
p
3
x+

1X

n=1

✏n�n�(~x) , �(~x) =
1X

n=1
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n=1

✏n�nf(~x) (97)

so that for ✏ = 0 then 1
a�(~x) =

~K · ~x, and further expand the perturbative functions �n� in a as,

�n� =
1X

m=0

am�n,m� (98)
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for some 2-d spatial coordinates �i, where ceff = 3aT
2~ gives the effective sound speed for the undeformed Dirac

point. Writing the 2-d metric gelectro = gij(~�)d�id�j , we term the 2-d geometry given by the Riemannian manifold
(R2, gelectro) the ‘electronic geometry’, and gelectro the ‘electronic metric’ or more compactly the ‘electrometric’. We
will use the notation ⌃electro = (R2, gelectro). The gauge field is also purely magnetic and static,

A = Ai(~�)d�
i (17)

and further, with this choice of frame, the tensors C�µ⌫ and D�µ⌫⇢ are orthogonal to the time direction, so they have
only spatial components which are static. An interesting consequence of this is that the effective theory above remains
second order in time derivatives, even though it has higher numbers of spatial derivatives. In particular, in this frame,
the canonical momenta for the spinor is unchanged from that of the leading Dirac equation and the Hamiltonian is
given as,

H =

Z
d2x

p
g
⇥
a ̄�AeiADi ± ia2�Ae

A
i C

ijkDj ̄Dk + a3�Ae
A
i D

ijk`Dj ̄DkD` + . . .
⇤
. (18)

In order to define these various quantities above we take the spatial coordinates ~� to be the lattice coordinates ~x.
Then the electrometric takes the remarkably elegant form,

gij(~x) =
3

�2

X

n

(�ij �
4

3
`in`

j
n)t

2
n(~x) +O(✏3, ✏2a, ✏a2) , �2 = (

X

n

t2n)
2 � 2(

X

m

t4m) (19)

where this expression correctly gives the behaviour at orders O(✏), O(✏a) and O(✏2) (in fact the O(✏a) contribution
vanishes) which is consistent with the order that the theory is written to above. Since we have a local frame invariance,
any spatial frame components can be taken consistent with this metric. An important point that will be discussed in
detail later is that the subleading correction in a at order O(✏), so the contribution going as ⇠ ✏a, must be included
in order to derive the metric at order O(✏2). Full detail of the frame components including subleading terms in a will
be given later. Defining,

�tn = tn � 1 (20)

then the explicit expression for the magnetic part of the gauge field to the order in ✏ and a that the above truncation
applies, is,
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up to a gauge transformation. This expression encompasses the behaviour at orders O(✏/a), O(✏), O(✏a), O(✏2/a) and
O(✏2), as well as O(✏3/a), and as for the metric the first subleading corrections in a, here at orders O(✏) and O(✏2)
vanish. Again these subleading corrections in a at orders O(✏) and O(✏2) are required in order to consistently solve
for the metric. Finally the tensors C�µ⌫ and D�µ⌫⇢ are given by the expressions,
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with all other components (ie. those with a time index) vanishing, and here |g| = det(gij) and ✏ij is the antisymmetric
spatial Levi-Civita symbol with 1 = ✏12 = �✏21. We emphasize that these expressions for the components gij , Ai,
Cijk and Dijkl are not tensor equations, and hold only when we take lattice coordinates.

A key result that will be discussed in the next section is that using a simple model to map an in-plane distortion
of the lattice to deformed hopping functions results in curvature of this electrometric at quadratic order O(✏2) in the
deformation. Thus even though the lattice is only deformed in-plane, the effective metric governing this Dirac theory
generally becomes curved.

Usually in such an effective theory power counting goes with covariant derivatives, and so one may truncate to
terms with some number of derivatives, and terms with more derivatives are subleading to this, and it is consistent to
ignore them. This would be seen due to the increasing powers of a in the coefficients of the higher derivative terms,
and thus naively this makes increasingly higher derivative terms increasingly irrelevant in the low energy continuum
limit where we take a ! 0 (in our units where the deformation scale is O(1)). However the key novel feature of this
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where this expression correctly gives the behaviour at orders O(✏), O(✏a) and O(✏2) (in fact the O(✏a) contribution
vanishes) which is consistent with the order that the theory is written to above. Since we have a local frame invariance,
any spatial frame components can be taken consistent with this metric. An important point that will be discussed in
detail later is that the subleading correction in a at order O(✏), so the contribution going as ⇠ ✏a, must be included
in order to derive the metric at order O(✏2). Full detail of the frame components including subleading terms in a will
be given later. Defining,
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up to a gauge transformation. This expression encompasses the behaviour at orders O(✏/a), O(✏), O(✏a), O(✏2/a) and
O(✏2), as well as O(✏3/a), and as for the metric the first subleading corrections in a, here at orders O(✏) and O(✏2)
vanish. Again these subleading corrections in a at orders O(✏) and O(✏2) are required in order to consistently solve
for the metric. Finally the tensors C�µ⌫ and D�µ⌫⇢ are given by the expressions,
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with all other components (ie. those with a time index) vanishing, and here |g| = det(gij) and ✏ij is the antisymmetric
spatial Levi-Civita symbol with 1 = ✏12 = �✏21. We emphasize that these expressions for the components gij , Ai,
Cijk and Dijkl are not tensor equations, and hold only when we take lattice coordinates.

A key result that will be discussed in the next section is that using a simple model to map an in-plane distortion
of the lattice to deformed hopping functions results in curvature of this electrometric at quadratic order O(✏2) in the
deformation. Thus even though the lattice is only deformed in-plane, the effective metric governing this Dirac theory
generally becomes curved.

Usually in such an effective theory power counting goes with covariant derivatives, and so one may truncate to
terms with some number of derivatives, and terms with more derivatives are subleading to this, and it is consistent to
ignore them. This would be seen due to the increasing powers of a in the coefficients of the higher derivative terms,
and thus naively this makes increasingly higher derivative terms increasingly irrelevant in the low energy continuum
limit where we take a ! 0 (in our units where the deformation scale is O(1)). However the key novel feature of this
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In order to solve the remaining equations, O2,1 and O2,2, we must introduce a linear deformation to the spatial
frame, corrections to the gauge field, and also to the rescaling function f ,
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The terms in these expansions determined from the leading order equations, here just �1,0Ai, are as above. The new
subleading corrections are then determined by examining the new equations at this order i.e. Op,q with p = 2. The
equation O2,0 is the one from the undeformed theory and is satisfied by the choice for the two derivative term. Next
we consider O2,1 where the one derivative terms on  fix the frame correction as,

�1,0e
i
I =

 
2
3�1,0t1 +

2
3�1,0t2 �

1
3�1,0t3

1p
3
�1,0t1 � 1p

3
�1,0t2

1p
3
�1,0t1 � 1p

3
�1,0t2 �1,0t3

!
+

 
0 �1,0�

��1,0� 0

!
(121)

and we recognize the term involving �1,0� as a perturbative frame rotation. The terms in O2,1 with no derivatives on
 determine the rescaling function to be,
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3
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which is the leading correction in the expansion of f = (det gij)1/4. Continuing, we determine the correction �1,1Ai
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Finally, the remaining equations O2,2 determine the ✏2 correction to the gauge field,

�2,0Ai =
1

3

 
�2,0t1 + �2,0t2 � 2�2,0t3
�
p
3 (�2,0t1 � �2,0t2)

!
+

1

18

 
�1,0t21 + �1,0t22 � 2�1,0t23 + 8�1,0t1�1,0t3 + 8�1,0t2�1,0t3 � 16�1,0t1�1t2

�
p
3
�
�1,0t21 � �1,0t22 + 8�1,0t2�1,0t3 � 8�1,0t1�1,0t3

�
!

�@i(�2,0�) (124)

where again we see the gauge freedom associated to the choice �2,0�, and now we see this quadratic correction to the
gauge field has contributions from the quadratic deformation of the couplings, �2,0tn, but also non-linear terms in the
leading deformations �1,0tn.

We explicitly see another key conclusion of our paper [26], namely that while the frame becomes perturbed from
being trivial, so that we may consider the Dirac term to live in a curved space, at the same time one must also
introduce a second covariant derivative term for consistency. One cannot truncate to a curved space Dirac equation
(plus strain gauge field), since the higher derivative term must be included to match to the microscopic lattice theory
at the subleading order where the frame becomes non-trivial.

4. Third order - Op,q for p  3 - O(✏2) corrections to the metric

We now give the theory to third order. It takes the form above, with additional corrections to the metric, gauge
field, rescaling function f , and to the higher covariant derivative terms. To this third order the equations Op,q for
p  3 are solved by the continuum theory,
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where now we have added a three covariant derivative term with coefficient given by the invariant D�µ⌫⇢ as defined
in (22), and again the upper sign is for the K point and the lower one is for the K 0 point. The spatial frame, gauge
field and rescaling function now must have expansions as,
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In order to solve the remaining equations, O2,1 and O2,2, we must introduce a linear deformation to the spatial
frame, corrections to the gauge field, and also to the rescaling function f ,
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The terms in these expansions determined from the leading order equations, here just �1,0Ai, are as above. The new
subleading corrections are then determined by examining the new equations at this order i.e. Op,q with p = 2. The
equation O2,0 is the one from the undeformed theory and is satisfied by the choice for the two derivative term. Next
we consider O2,1 where the one derivative terms on  fix the frame correction as,
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and we recognize the term involving �1,0� as a perturbative frame rotation. The terms in O2,1 with no derivatives on
 determine the rescaling function to be,
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where again we see the gauge freedom associated to the choice �2,0�, and now we see this quadratic correction to the
gauge field has contributions from the quadratic deformation of the couplings, �2,0tn, but also non-linear terms in the
leading deformations �1,0tn.

We explicitly see another key conclusion of our paper [26], namely that while the frame becomes perturbed from
being trivial, so that we may consider the Dirac term to live in a curved space, at the same time one must also
introduce a second covariant derivative term for consistency. One cannot truncate to a curved space Dirac equation
(plus strain gauge field), since the higher derivative term must be included to match to the microscopic lattice theory
at the subleading order where the frame becomes non-trivial.

4. Third order - Op,q for p  3 - O(✏2) corrections to the metric

We now give the theory to third order. It takes the form above, with additional corrections to the metric, gauge
field, rescaling function f , and to the higher covariant derivative terms. To this third order the equations Op,q for
p  3 are solved by the continuum theory,
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where now we have added a three covariant derivative term with coefficient given by the invariant D�µ⌫⇢ as defined
in (22), and again the upper sign is for the K point and the lower one is for the K 0 point. The spatial frame, gauge
field and rescaling function now must have expansions as,
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In order to solve the remaining equations, O2,1 and O2,2, we must introduce a linear deformation to the spatial
frame, corrections to the gauge field, and also to the rescaling function f ,
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The terms in these expansions determined from the leading order equations, here just �1,0Ai, are as above. The new
subleading corrections are then determined by examining the new equations at this order i.e. Op,q with p = 2. The
equation O2,0 is the one from the undeformed theory and is satisfied by the choice for the two derivative term. Next
we consider O2,1 where the one derivative terms on  fix the frame correction as,
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and we recognize the term involving �1,0� as a perturbative frame rotation. The terms in O2,1 with no derivatives on
 determine the rescaling function to be,
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which is the leading correction in the expansion of f = (det gij)1/4. Continuing, we determine the correction �1,1Ai
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Finally, the remaining equations O2,2 determine the ✏2 correction to the gauge field,
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where again we see the gauge freedom associated to the choice �2,0�, and now we see this quadratic correction to the
gauge field has contributions from the quadratic deformation of the couplings, �2,0tn, but also non-linear terms in the
leading deformations �1,0tn.

We explicitly see another key conclusion of our paper [26], namely that while the frame becomes perturbed from
being trivial, so that we may consider the Dirac term to live in a curved space, at the same time one must also
introduce a second covariant derivative term for consistency. One cannot truncate to a curved space Dirac equation
(plus strain gauge field), since the higher derivative term must be included to match to the microscopic lattice theory
at the subleading order where the frame becomes non-trivial.

4. Third order - Op,q for p  3 - O(✏2) corrections to the metric

We now give the theory to third order. It takes the form above, with additional corrections to the metric, gauge
field, rescaling function f , and to the higher covariant derivative terms. To this third order the equations Op,q for
p  3 are solved by the continuum theory,
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where now we have added a three covariant derivative term with coefficient given by the invariant D�µ⌫⇢ as defined
in (22), and again the upper sign is for the K point and the lower one is for the K 0 point. The spatial frame, gauge
field and rescaling function now must have expansions as,

eiI = �iI + ✏
�
�1,0e

i
I + a�1,1e

i
I +O(a2)

�
+ ✏2

�
�2,0e

i
I +O(a)

�
+O(✏3)

Ai =
✏

a

�
�1,0Ai + a�1,1Ai + a2�1,2Ai +O(a3)

�
+

✏2

a

�
�2,0Ai + a�2,1Ai +O(a2)

�
+

✏3

a
(�3,0Ai +O(a)) +O(

✏4

a
)

f = 1 + ✏
�
�1,0f + a�1,1f +O(a2)

�
+ ✏2 (�2,0f +O(a)) +O(✏3) (126)



• To this order we find and ‘electrometric’;
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Finally at the last order O3,3 we determine the ✏3 correction to the gauge field,
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As described in the summary Section III, we may give compact and elegant expressions for the electrometric and
gauge field that encompass all the subleading corrections detailed above. We begin by defining the quantity,
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and then to this order we find that the determinant of the metric is given by the expansion of the expression,
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As mentioned previously, the rescaling function is given by the quarter power of this determinant of the metric,
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to this order, by which we mean that if we write the metric as, gij = �ij + ✏
�
�1,0gij + a�1,1gij +O(a2)

�
+
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and �2,0gij . Remarkably this is precisely the same expression for the electrometric as in our paper [26] which we
derived when the hopping functions were fine tuned to ensure the gauge field vanished. In that case one can compute
the metric fully non-perturbatively in ✏, and we obtained the above expression with no corrections. It is then a very
interesting question here whether, in the presence of a large gauge field, the form (137) still holds to all orders in ✏
and a. We similarly find a compact expression for the strain gauge field. Firstly we define,
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elegantly encodes all the gauge field contributions detailed above, namely �1,0Ai, �1,1Ai, �1,2Ai, �2,0Ai, �2,1Ai and
�3,0Ai.

VI. EXAMPLE: ARMCHAIR DEFORMATION AND COMPARISON TO EXACT DIAGONALIZATION

As a check of our continuum effective theory we compare its solution to the low energy spectrum of the distorted
tight-binding model found by numerical diagonalization. For the moment we will work in terms of the lattice model
hopping functions in the lattice coordinates ~x = (x, y). We consider an “Armchair” deformation, so one that varies
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and �2,0gij . Remarkably this is precisely the same expression for the electrometric as in our paper [26] which we
derived when the hopping functions were fine tuned to ensure the gauge field vanished. In that case one can compute
the metric fully non-perturbatively in ✏, and we obtained the above expression with no corrections. It is then a very
interesting question here whether, in the presence of a large gauge field, the form (137) still holds to all orders in ✏
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elegantly encodes all the gauge field contributions detailed above, namely �1,0Ai, �1,1Ai, �1,2Ai, �2,0Ai, �2,1Ai and
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VI. EXAMPLE: ARMCHAIR DEFORMATION AND COMPARISON TO EXACT DIAGONALIZATION

As a check of our continuum effective theory we compare its solution to the low energy spectrum of the distorted
tight-binding model found by numerical diagonalization. For the moment we will work in terms of the lattice model
hopping functions in the lattice coordinates ~x = (x, y). We consider an “Armchair” deformation, so one that varies
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As described in the summary Section III, we may give compact and elegant expressions for the electrometric and
gauge field that encompass all the subleading corrections detailed above. We begin by defining the quantity,
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and �2,0gij . Remarkably this is precisely the same expression for the electrometric as in our paper [26] which we
derived when the hopping functions were fine tuned to ensure the gauge field vanished. In that case one can compute
the metric fully non-perturbatively in ✏, and we obtained the above expression with no corrections. It is then a very
interesting question here whether, in the presence of a large gauge field, the form (137) still holds to all orders in ✏
and a. We similarly find a compact expression for the strain gauge field. Firstly we define,

�tn = tn � 1 (138)

and then we find that,

Ai =
1

a�2
✏ij
X

m

h
`jm�tm

 
2 +

X

n

(3�mn�tn) +
X

n,p

✓✓
1

3
+ 2�mn � 3�np

◆
�tn�tp

◆!

+a2
✓
1

4
`jm`km`lm � 3

8
Kjkl +

1

6
�jk`lm

◆
@k@l�tm

i
+O(

✏4

a
, ✏3, ✏2a, ✏a2) (139)

elegantly encodes all the gauge field contributions detailed above, namely �1,0Ai, �1,1Ai, �1,2Ai, �2,0Ai, �2,1Ai and
�3,0Ai.

VI. EXAMPLE: ARMCHAIR DEFORMATION AND COMPARISON TO EXACT DIAGONALIZATION

As a check of our continuum effective theory we compare its solution to the low energy spectrum of the distorted
tight-binding model found by numerical diagonalization. For the moment we will work in terms of the lattice model
hopping functions in the lattice coordinates ~x = (x, y). We consider an “Armchair” deformation, so one that varies
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As described in the summary Section III, we may give compact and elegant expressions for the electrometric and
gauge field that encompass all the subleading corrections detailed above. We begin by defining the quantity,
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and then to this order we find that the determinant of the metric is given by the expansion of the expression,

det(gij) =
3

�2
+O(✏3, ✏2a, ✏a2) (135)
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and �2,0gij . Remarkably this is precisely the same expression for the electrometric as in our paper [26] which we
derived when the hopping functions were fine tuned to ensure the gauge field vanished. In that case one can compute
the metric fully non-perturbatively in ✏, and we obtained the above expression with no corrections. It is then a very
interesting question here whether, in the presence of a large gauge field, the form (137) still holds to all orders in ✏
and a. We similarly find a compact expression for the strain gauge field. Firstly we define,

�tn = tn � 1 (138)

and then we find that,

Ai =
1

a�2
✏ij
X

m

h
`jm�tm

 
2 +

X

n

(3�mn�tn) +
X

n,p

✓✓
1

3
+ 2�mn � 3�np

◆
�tn�tp

◆!

+a2
✓
1

4
`jm`km`lm � 3

8
Kjkl +

1

6
�jk`lm

◆
@k@l�tm

i
+O(

✏4

a
, ✏3, ✏2a, ✏a2) (139)

elegantly encodes all the gauge field contributions detailed above, namely �1,0Ai, �1,1Ai, �1,2Ai, �2,0Ai, �2,1Ai and
�3,0Ai.
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As a check of our continuum effective theory we compare its solution to the low energy spectrum of the distorted
tight-binding model found by numerical diagonalization. For the moment we will work in terms of the lattice model
hopping functions in the lattice coordinates ~x = (x, y). We consider an “Armchair” deformation, so one that varies
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As described in the summary Section III, we may give compact and elegant expressions for the electrometric and
gauge field that encompass all the subleading corrections detailed above. We begin by defining the quantity,
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and �2,0gij . Remarkably this is precisely the same expression for the electrometric as in our paper [26] which we
derived when the hopping functions were fine tuned to ensure the gauge field vanished. In that case one can compute
the metric fully non-perturbatively in ✏, and we obtained the above expression with no corrections. It is then a very
interesting question here whether, in the presence of a large gauge field, the form (137) still holds to all orders in ✏
and a. We similarly find a compact expression for the strain gauge field. Firstly we define,
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elegantly encodes all the gauge field contributions detailed above, namely �1,0Ai, �1,1Ai, �1,2Ai, �2,0Ai, �2,1Ai and
�3,0Ai.

VI. EXAMPLE: ARMCHAIR DEFORMATION AND COMPARISON TO EXACT DIAGONALIZATION

As a check of our continuum effective theory we compare its solution to the low energy spectrum of the distorted
tight-binding model found by numerical diagonalization. For the moment we will work in terms of the lattice model
hopping functions in the lattice coordinates ~x = (x, y). We consider an “Armchair” deformation, so one that varies



• We may embed lattice as;


• This gives an induced metric and strain tensor;

Elastic strain

9

The simplest bond model relates the hopping functions to bond lengths, where we think of these lengths as deter-
mining the degree of electron orbital overlap. In our lattice coordinates a bond between sites ~xA and ~xA + a~̀n is the
line,

~x = ~xA + �a~̀n , � = [0, 1] (25)

and we denote its length Ln,A. As the lattice embedding becomes distorted, these bond lengths will deviate from
their unperturbed value a. A common approximation is that the hopping functions have an exponential dependence
on bond length,

Tn,A

T
= e

��
⇣

Ln,A
a �1

⌘

(26)

and for graphene this constant �, the Grüneisen parameter, has been estimated to be � ' 3 [43]. However here we
will take a more general bond model,

Tn,A

T
= F

✓
Ln,A

a
� 1

◆
(27)

for some function, F , although we emphasize that this still assumes that there is no dependence on the bond angles.
To the order we will work to here, we will be sensitive to up to two derivatives of this function F about its zero
argument, the undistorted bond length, and we denote these as,

F (0) = 1 , F 0(0) = �� , F 00(0) = (⌧ � 1)� . (28)

In order to recover the exponential bond model we then simply take,

⌧ = � + 1 (29)

but we will leave it general for now to illustrate in what follows the sensitivity to the precise nature of the bond model.
In order to compute these hopping functions we need the geometry of the lattice embedding into the 3-d Euclidean

space of the laboratory, R3
lab which we describe using the spatial ‘lab coordinates’ (X,Y, Z). Let us denote the

collection of lattice sites ~xA, and the full lattice as �. We then imagine describing the embedding by providing a map
� ! R3

lab, or explicitly ~xA ! (X,Y, Z). Restricting to smooth slowly varying embeddings so that we may view the
lattice as the 2d space R2

lat described by the lattice coordinates ~x, the embedding is defined by the smooth map,

R2
lat ! R3

lab

~x ! (X(~x), Y (~x), Z(~x)) (30)

so that when it is evaluated on the lattice sites ~xA it gives the lattice embedding above, and slowly varying implies that
all derivatives @i1 . . . @imX ⇠ O(1) and similarly for Y and Z. We describe the pristine, or undeformed embedding,
as x = X, y = Y and Z = 0, and in this case the geometry induced (ie. pulled back from R3

lab) is simply the 2-d
Euclidean geometry with metric ds2(pristine) = �ijdxidxj .

We now consider embeddings which are a perturbative deformations of this pristine embedding. We define a
displacement field vi(~x) and height function h(x). Note that the displacement field is a vector field on R2

lat. Then
introducing the perturbation parameter ✏, we define the embedding map explicitly using the displacement vector field
and height function as,

R2
lat ! R3

lab

~x !
(

XI(~x) = �Ii
�
xi + ✏vi(~x)

�

Z(~x) =
p
✏h(~x)

(31)

where, as above, XI = (X,Y ). We note that we consider vi(~x) and h(~x) to be independent of the perturbation
parameter ✏ – thus having specified these we think of varying ✏ as moving us through a one-parameter family of
deformations. Then in our lattice coordinates the induced metric on R2

lat given by pulling back the lab Euclidean
metric is simply,

g(ind)ij = �ij + ✏

✓
�ik

@vk

@xj
+ �jk

@vk

@xi
+

@h

@xi

@h

@xj

◆
+ ✏2�kl

@vk

@xi

@vl

@xj
. (32)

We will denote the 2-d geometry induced by this embedding ⌃ind = (R2
lat, g

(ind)). The usual strain tensor is then
defined by comparing the induced, and the pristine metrics, so in lattice coordinates,

�ij =
1

2

⇣
g(ind)ij � �ij

⌘
(33)
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The simplest bond model relates the hopping functions to bond lengths, where we think of these lengths as deter-
mining the degree of electron orbital overlap. In our lattice coordinates a bond between sites ~xA and ~xA + a~̀n is the
line,

~x = ~xA + �a~̀n , � = [0, 1] (25)

and we denote its length Ln,A. As the lattice embedding becomes distorted, these bond lengths will deviate from
their unperturbed value a. A common approximation is that the hopping functions have an exponential dependence
on bond length,

Tn,A

T
= e

��
⇣

Ln,A
a �1

⌘

(26)

and for graphene this constant �, the Grüneisen parameter, has been estimated to be � ' 3 [43]. However here we
will take a more general bond model,

Tn,A

T
= F

✓
Ln,A

a
� 1

◆
(27)

for some function, F , although we emphasize that this still assumes that there is no dependence on the bond angles.
To the order we will work to here, we will be sensitive to up to two derivatives of this function F about its zero
argument, the undistorted bond length, and we denote these as,

F (0) = 1 , F 0(0) = �� , F 00(0) = (⌧ � 1)� . (28)

In order to recover the exponential bond model we then simply take,

⌧ = � + 1 (29)

but we will leave it general for now to illustrate in what follows the sensitivity to the precise nature of the bond model.
In order to compute these hopping functions we need the geometry of the lattice embedding into the 3-d Euclidean

space of the laboratory, R3
lab which we describe using the spatial ‘lab coordinates’ (X,Y, Z). Let us denote the

collection of lattice sites ~xA, and the full lattice as �. We then imagine describing the embedding by providing a map
� ! R3

lab, or explicitly ~xA ! (X,Y, Z). Restricting to smooth slowly varying embeddings so that we may view the
lattice as the 2d space R2

lat described by the lattice coordinates ~x, the embedding is defined by the smooth map,

R2
lat ! R3

lab

~x ! (X(~x), Y (~x), Z(~x)) (30)

so that when it is evaluated on the lattice sites ~xA it gives the lattice embedding above, and slowly varying implies that
all derivatives @i1 . . . @imX ⇠ O(1) and similarly for Y and Z. We describe the pristine, or undeformed embedding,
as x = X, y = Y and Z = 0, and in this case the geometry induced (ie. pulled back from R3

lab) is simply the 2-d
Euclidean geometry with metric ds2(pristine) = �ijdxidxj .

We now consider embeddings which are a perturbative deformations of this pristine embedding. We define a
displacement field vi(~x) and height function h(x). Note that the displacement field is a vector field on R2

lat. Then
introducing the perturbation parameter ✏, we define the embedding map explicitly using the displacement vector field
and height function as,

R2
lat ! R3

lab

~x !
(

XI(~x) = �Ii
�
xi + ✏vi(~x)

�

Z(~x) =
p
✏h(~x)

(31)

where, as above, XI = (X,Y ). We note that we consider vi(~x) and h(~x) to be independent of the perturbation
parameter ✏ – thus having specified these we think of varying ✏ as moving us through a one-parameter family of
deformations. Then in our lattice coordinates the induced metric on R2

lat given by pulling back the lab Euclidean
metric is simply,

g(ind)ij = �ij + ✏

✓
�ik

@vk

@xj
+ �jk

@vk

@xi
+

@h

@xi

@h

@xj

◆
+ ✏2�kl

@vk

@xi

@vl

@xj
. (32)

We will denote the 2-d geometry induced by this embedding ⌃ind = (R2
lat, g

(ind)). The usual strain tensor is then
defined by comparing the induced, and the pristine metrics, so in lattice coordinates,

�ij =
1

2

⇣
g(ind)ij � �ij

⌘
(33)
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The simplest bond model relates the hopping functions to bond lengths, where we think of these lengths as deter-
mining the degree of electron orbital overlap. In our lattice coordinates a bond between sites ~xA and ~xA + a~̀n is the
line,

~x = ~xA + �a~̀n , � = [0, 1] (25)

and we denote its length Ln,A. As the lattice embedding becomes distorted, these bond lengths will deviate from
their unperturbed value a. A common approximation is that the hopping functions have an exponential dependence
on bond length,

Tn,A

T
= e

��
⇣

Ln,A
a �1

⌘

(26)

and for graphene this constant �, the Grüneisen parameter, has been estimated to be � ' 3 [43]. However here we
will take a more general bond model,

Tn,A

T
= F

✓
Ln,A

a
� 1

◆
(27)

for some function, F , although we emphasize that this still assumes that there is no dependence on the bond angles.
To the order we will work to here, we will be sensitive to up to two derivatives of this function F about its zero
argument, the undistorted bond length, and we denote these as,

F (0) = 1 , F 0(0) = �� , F 00(0) = (⌧ � 1)� . (28)

In order to recover the exponential bond model we then simply take,

⌧ = � + 1 (29)

but we will leave it general for now to illustrate in what follows the sensitivity to the precise nature of the bond model.
In order to compute these hopping functions we need the geometry of the lattice embedding into the 3-d Euclidean

space of the laboratory, R3
lab which we describe using the spatial ‘lab coordinates’ (X,Y, Z). Let us denote the

collection of lattice sites ~xA, and the full lattice as �. We then imagine describing the embedding by providing a map
� ! R3

lab, or explicitly ~xA ! (X,Y, Z). Restricting to smooth slowly varying embeddings so that we may view the
lattice as the 2d space R2

lat described by the lattice coordinates ~x, the embedding is defined by the smooth map,

R2
lat ! R3

lab

~x ! (X(~x), Y (~x), Z(~x)) (30)

so that when it is evaluated on the lattice sites ~xA it gives the lattice embedding above, and slowly varying implies that
all derivatives @i1 . . . @imX ⇠ O(1) and similarly for Y and Z. We describe the pristine, or undeformed embedding,
as x = X, y = Y and Z = 0, and in this case the geometry induced (ie. pulled back from R3

lab) is simply the 2-d
Euclidean geometry with metric ds2(pristine) = �ijdxidxj .

We now consider embeddings which are a perturbative deformations of this pristine embedding. We define a
displacement field vi(~x) and height function h(x). Note that the displacement field is a vector field on R2

lat. Then
introducing the perturbation parameter ✏, we define the embedding map explicitly using the displacement vector field
and height function as,

R2
lat ! R3

lab

~x !
(

XI(~x) = �Ii
�
xi + ✏vi(~x)

�

Z(~x) =
p
✏h(~x)

(31)

where, as above, XI = (X,Y ). We note that we consider vi(~x) and h(~x) to be independent of the perturbation
parameter ✏ – thus having specified these we think of varying ✏ as moving us through a one-parameter family of
deformations. Then in our lattice coordinates the induced metric on R2

lat given by pulling back the lab Euclidean
metric is simply,

g(ind)ij = �ij + ✏

✓
�ik

@vk

@xj
+ �jk

@vk

@xi
+

@h

@xi

@h

@xj

◆
+ ✏2�kl

@vk

@xi

@vl

@xj
. (32)

We will denote the 2-d geometry induced by this embedding ⌃ind = (R2
lat, g

(ind)). The usual strain tensor is then
defined by comparing the induced, and the pristine metrics, so in lattice coordinates,

�ij =
1

2

⇣
g(ind)ij � �ij

⌘
(33)

[ from review Bowick, Travesset ]
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• We then choose a simple bond model;


• This assumes only dependence of bond length


• And then we can express the hopping functions in terms of strain;

Elastic strain
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The simplest bond model relates the hopping functions to bond lengths, where we think of these lengths as deter-
mining the degree of electron orbital overlap. In our lattice coordinates a bond between sites ~xA and ~xA + a~̀n is the
line,

~x = ~xA + �a~̀n , � = [0, 1] (25)

and we denote its length Ln,A. As the lattice embedding becomes distorted, these bond lengths will deviate from
their unperturbed value a. A common approximation is that the hopping functions have an exponential dependence
on bond length,

Tn,A

T
= e

��
⇣

Ln,A
a �1

⌘

(26)

and for graphene this constant �, the Grüneisen parameter, has been estimated to be � ' 3 [43]. However here we
will take a more general bond model,

Tn,A

T
= F

✓
Ln,A

a
� 1

◆
(27)

for some function, F , although we emphasize that this still assumes that there is no dependence on the bond angles.
To the order we will work to here, we will be sensitive to up to two derivatives of this function F about its zero
argument, the undistorted bond length, and we denote these as,

F (0) = 1 , F 0(0) = �� , F 00(0) = (⌧ � 1)� . (28)

In order to recover the exponential bond model we then simply take,

⌧ = � + 1 (29)

but we will leave it general for now to illustrate in what follows the sensitivity to the precise nature of the bond model.
In order to compute these hopping functions we need the geometry of the lattice embedding into the 3-d Euclidean

space of the laboratory, R3
lab which we describe using the spatial ‘lab coordinates’ (X,Y, Z). Let us denote the

collection of lattice sites ~xA, and the full lattice as �. We then imagine describing the embedding by providing a map
� ! R3

lab, or explicitly ~xA ! (X,Y, Z). Restricting to smooth slowly varying embeddings so that we may view the
lattice as the 2d space R2

lat described by the lattice coordinates ~x, the embedding is defined by the smooth map,

R2
lat ! R3

lab

~x ! (X(~x), Y (~x), Z(~x)) (30)

so that when it is evaluated on the lattice sites ~xA it gives the lattice embedding above, and slowly varying implies that
all derivatives @i1 . . . @imX ⇠ O(1) and similarly for Y and Z. We describe the pristine, or undeformed embedding,
as x = X, y = Y and Z = 0, and in this case the geometry induced (ie. pulled back from R3

lab) is simply the 2-d
Euclidean geometry with metric ds2(pristine) = �ijdxidxj .

We now consider embeddings which are a perturbative deformations of this pristine embedding. We define a
displacement field vi(~x) and height function h(x). Note that the displacement field is a vector field on R2

lat. Then
introducing the perturbation parameter ✏, we define the embedding map explicitly using the displacement vector field
and height function as,

R2
lat ! R3

lab

~x !
(

XI(~x) = �Ii
�
xi + ✏vi(~x)

�

Z(~x) =
p
✏h(~x)

(31)

where, as above, XI = (X,Y ). We note that we consider vi(~x) and h(~x) to be independent of the perturbation
parameter ✏ – thus having specified these we think of varying ✏ as moving us through a one-parameter family of
deformations. Then in our lattice coordinates the induced metric on R2

lat given by pulling back the lab Euclidean
metric is simply,

g(ind)ij = �ij + ✏

✓
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@vk

@xj
+ �jk

@vk

@xi
+

@h

@xi

@h

@xj

◆
+ ✏2�kl

@vk

@xi

@vl

@xj
. (32)

We will denote the 2-d geometry induced by this embedding ⌃ind = (R2
lat, g

(ind)). The usual strain tensor is then
defined by comparing the induced, and the pristine metrics, so in lattice coordinates,

�ij =
1

2

⇣
g(ind)ij � �ij

⌘
(33)
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The simplest bond model relates the hopping functions to bond lengths, where we think of these lengths as deter-
mining the degree of electron orbital overlap. In our lattice coordinates a bond between sites ~xA and ~xA + a~̀n is the
line,

~x = ~xA + �a~̀n , � = [0, 1] (25)

and we denote its length Ln,A. As the lattice embedding becomes distorted, these bond lengths will deviate from
their unperturbed value a. A common approximation is that the hopping functions have an exponential dependence
on bond length,

Tn,A

T
= e

��
⇣

Ln,A
a �1

⌘

(26)

and for graphene this constant �, the Grüneisen parameter, has been estimated to be � ' 3 [43]. However here we
will take a more general bond model,

Tn,A

T
= F

✓
Ln,A

a
� 1

◆
(27)

for some function, F , although we emphasize that this still assumes that there is no dependence on the bond angles.
To the order we will work to here, we will be sensitive to up to two derivatives of this function F about its zero
argument, the undistorted bond length, and we denote these as,

F (0) = 1 , F 0(0) = �� , F 00(0) = (⌧ � 1)� . (28)

In order to recover the exponential bond model we then simply take,

⌧ = � + 1 (29)

but we will leave it general for now to illustrate in what follows the sensitivity to the precise nature of the bond model.
In order to compute these hopping functions we need the geometry of the lattice embedding into the 3-d Euclidean

space of the laboratory, R3
lab which we describe using the spatial ‘lab coordinates’ (X,Y, Z). Let us denote the

collection of lattice sites ~xA, and the full lattice as �. We then imagine describing the embedding by providing a map
� ! R3

lab, or explicitly ~xA ! (X,Y, Z). Restricting to smooth slowly varying embeddings so that we may view the
lattice as the 2d space R2

lat described by the lattice coordinates ~x, the embedding is defined by the smooth map,

R2
lat ! R3

lab

~x ! (X(~x), Y (~x), Z(~x)) (30)

so that when it is evaluated on the lattice sites ~xA it gives the lattice embedding above, and slowly varying implies that
all derivatives @i1 . . . @imX ⇠ O(1) and similarly for Y and Z. We describe the pristine, or undeformed embedding,
as x = X, y = Y and Z = 0, and in this case the geometry induced (ie. pulled back from R3

lab) is simply the 2-d
Euclidean geometry with metric ds2(pristine) = �ijdxidxj .

We now consider embeddings which are a perturbative deformations of this pristine embedding. We define a
displacement field vi(~x) and height function h(x). Note that the displacement field is a vector field on R2

lat. Then
introducing the perturbation parameter ✏, we define the embedding map explicitly using the displacement vector field
and height function as,

R2
lat ! R3

lab

~x !
(

XI(~x) = �Ii
�
xi + ✏vi(~x)

�

Z(~x) =
p
✏h(~x)

(31)

where, as above, XI = (X,Y ). We note that we consider vi(~x) and h(~x) to be independent of the perturbation
parameter ✏ – thus having specified these we think of varying ✏ as moving us through a one-parameter family of
deformations. Then in our lattice coordinates the induced metric on R2

lat given by pulling back the lab Euclidean
metric is simply,

g(ind)ij = �ij + ✏
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@vk
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+ �jk

@vk

@xi
+
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@xi
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@xj

◆
+ ✏2�kl

@vk

@xi

@vl

@xj
. (32)

We will denote the 2-d geometry induced by this embedding ⌃ind = (R2
lat, g

(ind)). The usual strain tensor is then
defined by comparing the induced, and the pristine metrics, so in lattice coordinates,

�ij =
1

2

⇣
g(ind)ij � �ij

⌘
(33)
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and at this point these expressions for the strain tensor �ij are exact to all orders in ✏.
The physical distance between lattice sites at ~xA and ~xA+a~̀n under the distortion is then computed by integrating

the length of the line (25) so,

Ln,A = a

Z 1

0
d�

q
g(ind)ij (~xA + a�~̀n)`in`

j
n . (34)

The bonds of the pristine lattice have length a. Since the metric is slowly varying, we may Taylor expand the integrand
above in a, perform the integrals, and then working to O(a2) at order O(✏), and to O(a) at order O(✏2), the fractional
difference in bond length due to the deformation is,

Ln,A � a

a
= `in`

j
n�ij(~xn,A) +

a2

24
`in`

j
n(`

k
n@k)

2�ij(~xn,A)�
1

2

�
`in`

j
n�ij(~xn,A)

�2
+O(✏a3, ✏2a2, ✏3) (35)

where we have defined the location of the mid point of the bond, ~xn,A = ~xA + a
2
~̀
n, and we emphasize that here there

is no sum over the repeated index n, and that �ij ⇠ O(✏). Thus using that the components slowly vary, together with
the relations (6) and (8), we then find the bond model (27) determines the hopping functions as, 5

tn(~x) = 1� �

✓
`in`

j
n�ij(~x) +

a2

24
`in`

j
n(`

k
n@k)

2�ij(~x)

◆
+

�⌧

2

�
`in`

j
n�ij(~x)

�2
+O(✏a3, ✏2a2, ✏3) . (36)

Note that while we have kept track of corrections subleading in a, these necessarily involve precise details of the
deformation on lattice scales, and from an effective field theory point of view should be thought of as corrections from
irrelevant operators. Conversely this implies that when one is matching subleading corrections, as we are interested
in doing here, then they are necessary.

We pause to note that in [44] some quadratic corrections to the effective theory where considered. The effective
theory was given to linear order in the hopping functions, and then these were related to strain working to quadratic
order in the strain tensor as above. However we emphasize that it is inconsistent to do this – one must also include
the quadratic corrections in the hopping functions as we do here if one wishes to work to quadratic order in the
deformation or else one is clearly missing important contributions. 6

Given that vi(~x) and h(~x) are independent of ✏ and a, a perturbative expansion yields the coefficients defined
in (12). We may now give the expression for the (purely magnetic) gauge field A = Ai(~x)dxi, and electrometric
ds2electro = gij(~x)dxidxj , as determined from equations (19) and (21) in terms of the strain tensor as,

Ai(~x) = ��✏ij
2a

⇣
Kjkl

✓
�kl(~x) +

(� � ⌧)

2
�km(~x)�ml(~x)�

(3� + ⌧)

8
�k(~x)�l(~x)

◆

+
a2

12

�
9@j@k�k(~x)� 3@k@k�j(~x)� 7Kklm@k@l�jm(~x)

�
+O(✏a3, ✏2a2, ✏3)

⌘

gij(~x) = �ij + 2��ij(~x) + 4�2�ik(~x)�kj(~x) +
�(� + ⌧)

4

⇣
�ij (�kk(~x))

2 � 4�ij(~x)�kk(~x)� �i(~x)�j(~x)
⌘
+O(✏a2, ✏2a, ✏3)

(37)
where we have defined the covector �i given in lattice coordinates as �i = Kijk�jk. Quadratic corrections in ✏ for
homogeneous strain were studied in [15], and restricting to such deformations, our gauge field and metric above are
precisely consistent with their results (when expressed in lattice coordinates). A potentially confusing issue is that the
lattice geometry induced by the embedding, ⌃ind, is generally not the same as the spatial electronic geometry ⌃electro.
One might naively have expected these would coincide, but this is not the case. As we shall see, interestingly even
when ⌃ind is flat, with vanishing height function and only in-plane displacement, the electronic geometry generally is
curved at O(✏2).

Suppose we are interested in the tight-binding model with hopping functions induced from an embedding. The
procedure to use the effective theory is:

5
In [16] perturbation theory was carried out to second order when considering the effective geometry in the continuum limit, but it failed

to keep track of the higher derivative terms which we demonstrate are of the same order.
6

In ‘equations’ we might say, if the physics F we are interested in is a function of a variable �t, with an expansion F (�t) = a1�t+a2�t
2+. . .,

and �t is expressed in terms of another variable � perturbatively as �t(�) = b1� + b2�
2 + . . . then to express F in terms of � correctly

to quadratic order, F (�) = a1b1� + (a1b2 + a2(b1)2)�2 + . . . we must include the a2 quadratic term in the expression for F (�t) above.

If we only work with the linear truncation F
lin(�t) = a1�t, then F

lin(�) = a1�t(�) = a0 + a1b1� + a1b2�
2 + . . . and we clearly get the

quadratic term we are interested in wrong unless |a2(b1)2| ⌧ |a1b2|. In our case here, we see explicitly from equations (19) and (21)

that the coefficients a1,2 are simply O(1), as are the coefficients b1,2 from (36). Thus neglecting the quadratic behaviour of the lattice

model in the hopping functions relative to that induced in the relation of strain cannot be justified – for example the coefficients for the

quadratic terms in the strain in the gauge field in (37) go from
(��⌧)

2 ! (4��⌧)
2 and � (3�+⌧)

8 ! � ⌧
8 if we ignore the quadratic terms

in (21).



• Now we can write the effective theory in terms of strain.


• To leading order;


• Now for an in-plane diffeomorphism,


• Then the electrometric is also flat — so no `analog gravity’


• Note — it is not the same as the induced metric though!

Elastic strain
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which determines,

�1,0tn(~x) = �� `in`
j
n

✓
@vi

@xj
+

1

2

@h

@xi

@h

@xj

◆
, �1,1tn(~x) = 0 . (43)

Now �ij encodes the perturbative in-plane deformations vi(~x) and out of plane bending h(~x). From the perspective of
the induced metric g(ind)ij , the vi generate infinitessimal diffeomorphisms of the undeformed metric �ij , and therefore
do not change the geometry from being flat, but just the coordinates it is presented in. On the other hand, h(x)
induces a real change of the geometry and generates curvature.

At least at this linearized level, this relation is invertible. Given a perturbation of the hopping functions, this
uniquely prescribes the induced geometry of the lattice embedding that would generate such a deformation. Explicitly
to the same orders in ✏ and a we have,

�ij(~x) = � 1

3�

X

n

�
4`in`

j
n � �ij

�
�1,0tn(~x) +O(✏2, ✏a) (44)

and then the leading order perturbative vi and h that generate this geometry by straining and bending the pristine
embedding may be solved for. From above the gauge field and electrometric take the simple form,

Ai(~x) = � �

2a
✏ij

�
Kjkl�kl(~x) +O(✏2, ✏a2)

�
, gij(~x) = �ij + 2��ij(~x) +O(✏2, ✏a) (45)

to this order of approximation, in terms of the lattice coordinates, with Kijk the lattice invariant defined earlier
in (3). These expressions may be compared to those of de Juan et al [8]. In that work they choose to work with spinor
densities, rather than spinors as we do here, which effectively Weyl rescales their electrometric so that gtt 6=constant.
As discussed in [22], one can Weyl transform back to the ultrastatic frame we use here, and to canonically normalized
spinors, and in doing so their metric (given in [22]) precisely agrees with the above form. Note that to the leading
order given above, the gauge field is not affected by this Weyl scaling. However we stress again that at this order
where we first include the non-trivial metric, the contribution of the two derivative terms must also be included for
consistency, and this was missed in these previous analyses [8, 10, 19, 44, 46] as we have emphasized in [26].

We clearly see that the electrometric is not equal to the induced metric. Comparing (45) to gindij = �ij + 2�ij

(from (33)), we see they differ by a factor of � in the perturbation, as observed in [22]. However, at this order the
in-plane displacement field vi still acts simply as a diffeomorphism for the electrometric (as well as for the induced
metric) – it changes the coordinates, but doesn’t induce actual curvature. If we explicitly compute the Ricci scalar of
the electrometric we see,
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2
�
+O(✏2, ✏a) (46)

confirming that curvature is only generated by the out-of-plane deformation due to h(~x). The gauge field does however
see this in-plane displacement field vi, and the (gauge-invariant) magnetic field is,

B(~x) = Fxy =
✏�

2a

�
�2@x@yv

x(~x) + (@2
y � @2

x)v
y(~x)� 2@xh(~x) @x@yh(~x) + @yh(~x)(@

2
y � @2

x)h(~x)
�
+O(✏2, ✏a) . (47)

Now suppose we wish to analyse the physics of the effective theory using the lab reference frame. Having the theory
in lattice coordinates we may then simply coordinate transform to the lab coordinates as detailed above. Since the
gauge field is already O(✏), this coordinate transformation is trivial, so that,

Alab
I ( ~X) = ��✏

2a
�iI✏ij
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Kjkl�kl( ~X) +O(✏2, ✏a2)

⌘
. (48)

However there is an effect for the electrometric, which becomes,

glabIJ ( ~X) = �IJ + 2(� � 1)✏�iI�
j
J�ij( ~X) + ✏

@h( ~X)

@XI

@h( ~X)

@XJ
+O(✏2, ✏a) . (49)

We note that the components of the strain tensor do not transform at the leading order �ij ⇠ O(✏) we require here.
At this order, the Ricci scalar and magnetic field in lab frame take the same form as in lattice coordinates.

Recalling that the tight-binding model likely does not give a good approximation to physics in the case that the
graphene is bent out-of-plane, we see that geometrically this leading geometry from purely in-plane strain is rather
boring. While the electrometric is non-trivial, it is simply flat space in distorted coordinates. Hence not-withstanding
the fact that we must also include two derivative terms which were missed in the treatments of [8–25], it doesn’t
provide an interesting ‘analog gravity’ model, as there is no sense in which the geometry is curved. We will now
discuss how this becomes much more interesting at quadratic order in the strain.

σij = ϵ∂(ivj)

gind
ij ( ⃗x) = δij + 2σij( ⃗x) + …

4

concluding.

II. REVIEW OF THE SPATIALLY DEFORMED GRAPHENE TIGHT-BINDING MODEL

The atoms of the graphene lattice may be described by their positions in either 2-d lattice coordinates xi = (x, y)
or 3-d lab frame coordinates (X,Y, Z). For undistorted graphene we will take the plane of atoms to be located at
Z = 0, and writing XI = (X,Y ), choose our lattice coordinates to be xi = �iIX

I . The lattice sites subdivide into A
and B triangular sublattices, and we label the lattice coordinate position of these as ~xA and ~xB respectively.

The lattice sites lie a distance a from their nearest neighbours. The translation vectors between sites may be given
in terms of unit vectors,
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3

⌘
then the lattice sites are at lattice coordinates,

~xA,B = m~v1 + n~v2 ⌥
a

2
~̀
3 (2)

generated by (m,n) 2 Z2, with the sign above giving the A and B triangular sublattices, see figure 1.
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FIG. 1. Left: the honeycomb lattice, with red A sites and blue B sites, related by translations by a~̀1,2,3. The lattice symmetry
is generated by translations ~v1,2. Right: The standard hexagonal fundamental domain of the Brillouin zone and massless Dirac
points at K and K

0 for the undistorted lattice model.

Some important relations we will use later are,
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n = �ij�kl + �ik�jl + �il�jk (3)

where Kijk is a natural invariant traceless symmetric tensor for the lattice, with K112 = 1 and K222 = �1. In the
nearest-neighbour tight binding approximation, the ⇡ electrons are described by the Hamiltonian,

Hundeformed = T
X

n,~xA

⇣
a†~xA

b~xA+a~̀n
+ h.c.

⌘
(4)

where T gives the tunneling amplitude between pz orbitals on adjacent lattice sites, and a†~xA
, b†~xB

are fermionic creation
operators on the respective sublattices A and B. The dual lattice generators ~b1,2, are defined by ~bi ·~vj = 2⇡�ij and one
finds the spectrum of this model has two inequivalent Dirac points, labelled K and K 0, which are illustrated together
with the hexagonal fundamental domain of the Brillouin zone in figure 1.

Now a natural generalization of this is to allow the tunneling amplitudes associated to each link of the lattice to
vary. Denoting the tunneling amplitude between the A-site at ~xA and the B-site at ~xA+a`n as Tn,A, which we assume
to again be real, then yields the Hamiltonian,

Hdeformed =
X

n,~xA

Tn,A

⇣
a†~xA

b~xA+a~̀n
+ h.c.

⌘
. (5)
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and at this point these expressions for the strain tensor �ij are exact to all orders in ✏.
The physical distance between lattice sites at ~xA and ~xA+a~̀n under the distortion is then computed by integrating

the length of the line (25) so,

Ln,A = a

Z 1

0
d�

q
g(ind)ij (~xA + a�~̀n)`in`

j
n . (34)

The bonds of the pristine lattice have length a. Since the metric is slowly varying, we may Taylor expand the integrand
above in a, perform the integrals, and then working to O(a2) at order O(✏), and to O(a) at order O(✏2), the fractional
difference in bond length due to the deformation is,

Ln,A � a
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where we have defined the location of the mid point of the bond, ~xn,A = ~xA + a
2
~̀
n, and we emphasize that here there

is no sum over the repeated index n, and that �ij ⇠ O(✏). Thus using that the components slowly vary, together with
the relations (6) and (8), we then find the bond model (27) determines the hopping functions as, 5
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Note that while we have kept track of corrections subleading in a, these necessarily involve precise details of the
deformation on lattice scales, and from an effective field theory point of view should be thought of as corrections from
irrelevant operators. Conversely this implies that when one is matching subleading corrections, as we are interested
in doing here, then they are necessary.

We pause to note that in [44] some quadratic corrections to the effective theory where considered. The effective
theory was given to linear order in the hopping functions, and then these were related to strain working to quadratic
order in the strain tensor as above. However we emphasize that it is inconsistent to do this – one must also include
the quadratic corrections in the hopping functions as we do here if one wishes to work to quadratic order in the
deformation or else one is clearly missing important contributions. 6

Given that vi(~x) and h(~x) are independent of ✏ and a, a perturbative expansion yields the coefficients defined
in (12). We may now give the expression for the (purely magnetic) gauge field A = Ai(~x)dxi, and electrometric
ds2electro = gij(~x)dxidxj , as determined from equations (19) and (21) in terms of the strain tensor as,
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(37)
where we have defined the covector �i given in lattice coordinates as �i = Kijk�jk. Quadratic corrections in ✏ for
homogeneous strain were studied in [15], and restricting to such deformations, our gauge field and metric above are
precisely consistent with their results (when expressed in lattice coordinates). A potentially confusing issue is that the
lattice geometry induced by the embedding, ⌃ind, is generally not the same as the spatial electronic geometry ⌃electro.
One might naively have expected these would coincide, but this is not the case. As we shall see, interestingly even
when ⌃ind is flat, with vanishing height function and only in-plane displacement, the electronic geometry generally is
curved at O(✏2).

Suppose we are interested in the tight-binding model with hopping functions induced from an embedding. The
procedure to use the effective theory is:

5
In [16] perturbation theory was carried out to second order when considering the effective geometry in the continuum limit, but it failed

to keep track of the higher derivative terms which we demonstrate are of the same order.
6

In ‘equations’ we might say, if the physics F we are interested in is a function of a variable �t, with an expansion F (�t) = a1�t+a2�t
2+. . .,

and �t is expressed in terms of another variable � perturbatively as �t(�) = b1� + b2�
2 + . . . then to express F in terms of � correctly

to quadratic order, F (�) = a1b1� + (a1b2 + a2(b1)2)�2 + . . . we must include the a2 quadratic term in the expression for F (�t) above.

If we only work with the linear truncation F
lin(�t) = a1�t, then F

lin(�) = a1�t(�) = a0 + a1b1� + a1b2�
2 + . . . and we clearly get the

quadratic term we are interested in wrong unless |a2(b1)2| ⌧ |a1b2|. In our case here, we see explicitly from equations (19) and (21)

that the coefficients a1,2 are simply O(1), as are the coefficients b1,2 from (36). Thus neglecting the quadratic behaviour of the lattice

model in the hopping functions relative to that induced in the relation of strain cannot be justified – for example the coefficients for the

quadratic terms in the strain in the gauge field in (37) go from
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8 if we ignore the quadratic terms

in (21).
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FIG. 7. A similar plot to the previous two, now for the second derivative ~
T !

num00(0). The full approximation is the solid curve,
with the two and three covariant derivative terms giving this leading behaviour. Again it is interesting that the approximation
is rather good even when the quantity is deformed far from its undistorted value.

VII. GENERAL EFFECTIVE THEORY

So far our discussion has been centered on deriving the low energy effective theory from the (nearest neighbour)
microscopic tight binding model. However this lattice model cannot capture the full detail of monolayer graphene. It
is then natural to wonder what would be the appropriate effective theory of actual monolayer graphene in the presence
of an in-plane strain, where, at least for reasonably small deformations we might expect Dirac points to persist.

The main lessons we have learned from the tight binding lattice model are that its low energy effective theory,
given above in (14), (19) and (21), is gauge and frame covariant, that the power counting is modified from the usual
structure of a relativistic effective theory, due to the large gauge field, and that it is entirely determined by the frame
and gauge field, with the remaining necessary higher covariant derivative terms being controlled by lattice invariants
with the geometric connection being the torsion free one. Then using a bond model where hopping functions are
determined purely by bond lengths under a deformed embedding, we have written the gauge field and metric purely
in terms of the strain tensor in (37).

It is then natural to postulate that the effective theory of a Dirac point for monolayer graphene, deformed by
in-plane inhomogeneous strain, has the same features and again can be written in terms of the strain tensor �ij .
We conjecture that this effective description takes the same form as for that of the tight-binding model, since it is
determined by the lattice structure, but the numerical coefficients will differ from those in the case of the nearest-
neighbour lattice model. Thus we expect the theory describing deformations up to linear order O(✏), and to leading
order in the lattice scale O(a), to simply be the flat space Dirac equation with large magnetic gauge field, which in
lattice coordinates is,

0 = aeµA�
ADµ +O(✏2, ✏a) , Ai(~x) = � �

2a
✏ijK

ijk�jk(~x) +O(
✏2

a
, ✏) (171)

so that eµA is a flat frame, giving the flat electrometric ds2effective = �c2effdt
2 + �ijdxidxj , and Dµ is the covariant

derivative of equation (15). Here the constants ceff and � must be measured from the monolayer graphene system; the
speed ceff may be measured from the undeformed Dirac cone, and � from some particular deformation, for example a
homogeneous strain. The scale a represents the lattice scale, but its actual value can be rescaled by appropriate scaling
of the purely numerical constant �, as well as the wavefunction  . Naturalness then implies that choosing a again to
be the lattice bond length, the numerical constant � should be of order O(1). Once these constants are determined,
then the theory should describe the leading order low energy behaviour at leading order in the deformation, O(✏),
for any inhomogeneous strain field. As mentioned earlier, we expect in-plane inhomogeneous strain have low energy
Dirac points, but for out-of-plane bending this is less clear due to the interaction of � orbitals.

This leading theory is a flat space theory, and as we have discussed, in order to consistently include curvature we
must work to higher order in covariant derivatives. The structure of these again will be determined by the underlying
lattice symmetry, and so should take the same form as for the tight-binding model, but with different numerical
coefficients. An important point is that for realistic graphene, even for a pristene monolayer, when going beyond
linear dispersion near the Dirac points the conductance and valence bands are not symmetric around the Fermi
energy, in contrast to the behaviour of the simple lattice tight binding model [? ? ]. Thus our effective theory should
refer to a specific band, and the coefficients of the higher order corrections will be specific to this band. Here we will
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consider the effective theory of the valance band. Then from our discussions above, we expect the effective theory
governing a Dirac point, working to order O(✏2) and leading order in a in the metric deformation, is,

0 = aeµA�
ADµ ± c2ia
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AeB�D
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(172)

with the magnetic gauge field and electrometric in lattice coordinates being,

Ai(~x) = � �

2a
✏ij
⇣
Kjkl (�kl(~x) + ⇠1�km(~x)�ml(~x) + ⇠2�k(~x)�l(~x))

+a2
�
↵1@j@k�k(~x) + ↵2@k@k�j(~x) + ↵3K

klm@k@l�jm(~x)
�
+O(✏3, ✏2a, ✏a2)

⌘

gij(~x) = �ij + �
⇣
�1�ij(~x) + �2�ik(~x)�kj(~x) + �3�ij (�kk(~x))

2 + �4�ij(~x)�kk(~x) + �5�i(~x)�j(~x)
⌘
+O(✏3, ✏2a, ✏a2)

(173)

where again �i = Kijk�jk, and these expressions are consistent to the O(✏2) in the electrometric. We emphasize
again that in order to work consistently to O(✏2) in the metric perturbation, we must include the two higher covariant
derivatives in the effective theory and also the subleading O(a2) corrections at O(✏) in the gauge field (noting that
O(a) corrections to both the metric and gauge field vanish). Here �, ceff are as for the leading theory, and now
c2,3, ⇠1,2, ↵1,2,3 and �1,...,5 are more numerical constants that should be fixed by matching to the valence band of the
monolayer graphene theory. Again it is natural to choose the scale a to be the lattice bond length, but its precise
value can be adjusted by rescaling these numerical constants. We reiterate that the effective theory for the conduction
band will take the same form, but we should expect the numerical constants will have different values.

For the nearest neighbour tight-binding model with our bond-model (27) we see that they take the values,
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4
(174)

and further have ⌧ = � + 1 for an exponential bond model. One may then adjust the constants c2 and c3 by fitting
the band structure to the undeformed model. Then ⇠1,2, ↵1,2,3 and �1,...,5 would be fixed by comparing to specific
deformations.

Specifically we may determine ⇠1,2 and �1,...,5 from homogeneous, anisotropic strains as we now demonstrate.
Suppose we perform a strain induced by,

X = x+ ✏(v1x+ v3y) , Y = y + ✏v2y (175)

for constants v1,2,3, which corresponds to the constant strain tensor (in lattice coordinates),
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The terms with coefficients given by the ↵1,2,3 in the gauge field all drop out as they involve derivative of this constant
strain tensor. Thus we will be insensitive to these constants. However as we now show, we will be able to fix the
other constants.

We may then solve the continuum theory in a similar manner to that in Section VI. We write a similar ansatz for
the wavefunction as in (155), taking,

 (t, ~x) = e�i!te+i(kxx+kyy)

 
 1

 2

!
(177)

for constant components  1,2. For the undeformed theory the Dirac point is simply at ki = 0 – when uniform strain
is turned on we define the location of the Dirac point, where ! = 0, to be at ki = kDi . Since the strain is constant,
the magnetic gauge field is constant, and hence pure gauge, and directly corresponds to a shifting of the Dirac point,
so that kDi = Ai. Thus we consider the momentum shift from the Dirac point by writing,

ki = kDi +�ki (178)

35

consider the effective theory of the valance band. Then from our discussions above, we expect the effective theory
governing a Dirac point, working to order O(✏2) and leading order in a in the metric deformation, is,

0 = aeµA�
ADµ ± c2ia

2 ⌘AB�
AeB�Dµ (C

�µ⌫D⌫ ) + c3a
3 ⌘AB�

AeB�D
�µ⌫⇢DµD⌫D⇢ +O(✏4, ✏3a, ✏2a2, ✏a3, a4)

(172)

with the magnetic gauge field and electrometric in lattice coordinates being,

Ai(~x) = � �

2a
✏ij
⇣
Kjkl (�kl(~x) + ⇠1�km(~x)�ml(~x) + ⇠2�k(~x)�l(~x))

+a2
�
↵1@j@k�k(~x) + ↵2@k@k�j(~x) + ↵3K

klm@k@l�jm(~x)
�
+O(✏3, ✏2a, ✏a2)

⌘

gij(~x) = �ij + �
⇣
�1�ij(~x) + �2�ik(~x)�kj(~x) + �3�ij (�kk(~x))

2 + �4�ij(~x)�kk(~x) + �5�i(~x)�j(~x)
⌘
+O(✏3, ✏2a, ✏a2)

(173)

where again �i = Kijk�jk, and these expressions are consistent to the O(✏2) in the electrometric. We emphasize
again that in order to work consistently to O(✏2) in the metric perturbation, we must include the two higher covariant
derivatives in the effective theory and also the subleading O(a2) corrections at O(✏) in the gauge field (noting that
O(a) corrections to both the metric and gauge field vanish). Here �, ceff are as for the leading theory, and now
c2,3, ⇠1,2, ↵1,2,3 and �1,...,5 are more numerical constants that should be fixed by matching to the valence band of the
monolayer graphene theory. Again it is natural to choose the scale a to be the lattice bond length, but its precise
value can be adjusted by rescaling these numerical constants. We reiterate that the effective theory for the conduction
band will take the same form, but we should expect the numerical constants will have different values.

For the nearest neighbour tight-binding model with our bond-model (27) we see that they take the values,

c2 = 1 , c3 = 1

⇠1 =
(� � ⌧)

2
, ⇠2 = � (3� + ⌧)

8
, ↵1 =

3

4
, ↵2 = �1

4
, ↵3 = � 7

12

�1 = 2 , �2 = 4� , �3 =
(� + ⌧)

4
, �4 = �(� + ⌧) , �5 = � (� + ⌧)

4
(174)

and further have ⌧ = � + 1 for an exponential bond model. One may then adjust the constants c2 and c3 by fitting
the band structure to the undeformed model. Then ⇠1,2, ↵1,2,3 and �1,...,5 would be fixed by comparing to specific
deformations.

Specifically we may determine ⇠1,2 and �1,...,5 from homogeneous, anisotropic strains as we now demonstrate.
Suppose we perform a strain induced by,

X = x+ ✏(v1x+ v3y) , Y = y + ✏v2y (175)

for constants v1,2,3, which corresponds to the constant strain tensor (in lattice coordinates),

�ij =

 
✏v1 +

✏2

2 v
2
1 ✏v3 +

✏2

2 v1v3
✏v3 +

✏2

2 v1v3 ✏v2 +
✏2

2 (v
2
2 + v23)

!
. (176)

The terms with coefficients given by the ↵1,2,3 in the gauge field all drop out as they involve derivative of this constant
strain tensor. Thus we will be insensitive to these constants. However as we now show, we will be able to fix the
other constants.

We may then solve the continuum theory in a similar manner to that in Section VI. We write a similar ansatz for
the wavefunction as in (155), taking,

 (t, ~x) = e�i!te+i(kxx+kyy)

 
 1

 2

!
(177)

for constant components  1,2. For the undeformed theory the Dirac point is simply at ki = 0 – when uniform strain
is turned on we define the location of the Dirac point, where ! = 0, to be at ki = kDi . Since the strain is constant,
the magnetic gauge field is constant, and hence pure gauge, and directly corresponds to a shifting of the Dirac point,
so that kDi = Ai. Thus we consider the momentum shift from the Dirac point by writing,

ki = kDi +�ki (178)



• The effective theory for the graphene Dirac cones has a subtle 
structure 


• This is due to the local gauge symmetry and large magnetic field


• There is a curved space theory describing the deformed tight-
binding model BUT it must include higher derivatives (which 
explicitly break Lorentz invariance)

Summary


