Analog gravity and the effective theory of graphene

Based on arXiv:2112.09144, 2305.08897

Toby Wiseman (Imperial College)

With Matt Roberts (APCTP, Pohang)

Plan
 Goal: understand graphene-like materials when deformed

- Graphene lattice model and Dirac equation
- Deforming graphene - early claims of curved space Dirac theory
- What goes wrong with naive effective theory
- How a consistent effective theory works
- An effective theory for 'real’ graphene?

Graphene

Lattice model and Dirac description

- Typical to model graphene as a nearest neighbour tight-binding model that accounts for the σ-bonds between carbon atoms.
- Hexagonal lattice of spins with two triangular sub-lattices (A \& B);

Lattice spacing is a
$\vec{l}_{1}=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right), \quad \vec{l}_{2}=\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right), \quad \vec{l}_{3}=-\vec{l}_{1}-\vec{l}_{2}=(0,-1)$

- Tight-binding Hamiltonian;

$$
H_{\text {undeformed }}=T \sum_{n, \vec{x}_{A}}\left(a_{\vec{x}_{A}}^{\dagger} b_{\vec{x}_{A}+a \vec{\ell}_{n}}+\text { h.c. }\right)
$$

Graphene

Lattice model and Dirac description

$$
H_{\text {undeformed }}=T \sum_{n, \vec{x}_{A}}\left(a_{\vec{x}_{A}}^{\dagger} b_{\vec{x}_{A}+a \vec{\ell}_{n}}+\text { h.c. }\right)
$$

- We are interested in the band structure given by the one particle states;

$$
|\Psi(t)\rangle=\left(\sum_{\vec{x}_{A}} A_{\vec{x}_{A}}(t) a_{\vec{x}_{A}}^{\dagger}+\sum_{\vec{x}_{B}} B_{\vec{x}_{B}}(t) b_{\vec{x}_{B}}^{\dagger}\right)|0\rangle
$$

- Write in terms of smooth wavefunctions, $\psi_{1,2}$, and rapidly varying wave vector K ;

$$
A_{\vec{x}_{A}}(t)=\psi_{1}\left(t, \vec{x}_{A}\right) e^{-\frac{i \pi}{4}} e^{+i \vec{K} \cdot \vec{x}_{A}}, \quad B_{\vec{x}_{B}}(t)=\psi_{2}\left(t, \vec{x}_{B}\right) e^{+\frac{i \pi}{4}} e^{+i \vec{K} \cdot \vec{x}_{B}}
$$

- Then Schrödinger eq;

$$
0=i \hbar \partial_{t}\binom{\psi_{1}}{-\psi_{2}}-i T \sum_{n}\left(\begin{array}{cc}
0 & +e^{+i a \vec{K} \cdot \vec{l}_{n}} \\
-e^{-i a \vec{K} \cdot \vec{l}_{n}} & 0
\end{array}\right) a \vec{\ell}_{n} \cdot \vec{\partial}\binom{\psi_{1}}{\psi_{2}}+O\left(a^{2}\right)
$$

- And the `Dirac points' K, K' defined by;

$$
\begin{aligned}
\vec{K} & =\frac{1}{a}\left(-\frac{4 \pi}{3 \sqrt{3}}, 0\right) \\
\vec{K}^{\prime} & =-\vec{K}
\end{aligned}
$$

Graphene

Lattice model and Dirac description

Graphene
 Lattice model and Dirac description

- This is simply the $2+1$ Dirac equation;

$$
\begin{gathered}
0=e_{A}^{\mu} \gamma^{A} \partial_{\mu} \Psi+O(a), \quad \Psi=\binom{\psi_{1}}{\psi_{2}} \\
e_{A}^{\mu}=\left(\begin{array}{ccc}
\frac{1}{c_{e f f}} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\gamma^{A}=\left(\gamma^{0}, \gamma^{I}\right)=\left(-i \sigma^{3}, \sigma^{1}, \sigma^{2}\right) \\
c_{e f f}=\frac{3 a T}{2 \hbar} \sim 1 / 100 \text { speed of light }
\end{gathered}
$$

Deformed Graphene Deformed lattice model

- Graphene is a flexible material - can sustain strains of $\sim 25 \%$;

- What happens to the Dirac equation?
- A natural conjecture is it becomes the curved space Dirac equation - an interesting case of `analog gravity’

Deformed Graphene Deformed lattice model

- Keeping the nearest neighbour model then for `weak' bending, ie. on scales much larger than lattice scale;

- Take units so that variations of $t_{n}(\vec{x})$ are on scales of $O(1)$, and the lattice scale $a \ll 1$
- Then we treat the deformation perturbatively;

$$
t_{n}(\vec{x})=1+\epsilon \delta_{1} t_{n}(\vec{x})+\epsilon^{2} \delta_{2} t_{n}(\vec{x})+\ldots
$$

Deformed Graphene
 Deformed lattice model

- Important caveat: very unclear this is good model for 'out of plane' deformations of graphene

- Hence we could focus of 'in-plane’ deformations

Deformed Graphene
 Previous claims

- It was known that the first effect of strain, or deformation, was to produce a magnetic gauge field (called a 'pseudo' or 'strain' magnetic field);
[eg. Vozmediano, Katsnelson, Guinea, Phys Reports '10]

$$
0=e_{A}^{\mu} \gamma^{A} \partial_{\mu} \Psi
$$

$$
D_{\mu} \Psi=\partial_{\mu} \Psi \mp i A_{\mu} \Psi
$$

$$
a e_{A}^{\mu} \gamma^{A} D_{\mu} \Psi
$$

$$
A_{\mu}=\left(0, A^{i}\right) \quad A_{i}=\frac{\epsilon}{3 a}\binom{\delta t_{1}+\delta t_{2}-2 \delta t_{3}}{-\sqrt{3}\left(\delta t_{1}-\delta t_{2}\right)}
$$

- Note - scales inversely with lattice spacing....

Deformed Graphene Previous claims

- Then it was claimed that the full effect of deformation caused curved spacetime (to leading low energy order)
[de Juan, Sturla, Vozmediano, Phys. Rev. Lett. '12]
$0=a e^{\mu}{ }_{A} \gamma^{A} D_{\mu} \Psi$

- The frame is perturbed;

$$
e_{I}^{i}=\delta_{I}^{i}+\epsilon \delta e_{I}^{i}+\ldots \quad \quad \delta e^{i}{ }_{I}=\left(\begin{array}{cc}
\frac{2}{3} \delta t_{1}+\frac{2}{3} \delta t_{2}-\frac{1}{3} \delta t_{3} & \frac{1}{\sqrt{3}} \delta t_{1}-\frac{1}{\sqrt{3}} \delta t_{2} \\
\frac{1}{\sqrt{3}} \delta t_{1}-\frac{1}{\sqrt{3}} \delta t_{2} & \delta t_{3}
\end{array}\right)
$$

- This is an analog gravity model - and very interesting

A subtlety

- First we consider undeformed theory to higher order;

$$
\begin{aligned}
& |\Psi(t)\rangle=\left(\sum_{\vec{x}_{A}} A_{\vec{x}_{A}}(t) a_{\vec{x}_{A}}^{\dagger}+\sum_{\vec{x}_{B}} B_{\vec{x}_{B}}(t) b_{\vec{x}_{B}}^{\dagger}\right)|0\rangle \\
& \quad A_{\vec{x}_{A}}(t)=\psi_{1}\left(t, \vec{x}_{A}\right) e^{-\frac{i \pi}{4}} e^{+i \vec{K} \cdot \vec{x}_{A}}, \quad B_{\vec{x}_{B}}(t)=\psi_{2}\left(t, \vec{x}_{B}\right) e^{+\frac{i \pi}{4}} e^{+i \vec{K} \cdot \vec{x}_{B}}
\end{aligned}
$$

- This yields a low energy expansion;

$$
0=e_{A}^{\mu} \gamma^{A} \partial_{\mu} \Psi+i a \eta_{A B} \gamma^{A} e_{\sigma}^{B} C^{\sigma \mu \nu} \partial_{\mu} \partial_{\nu} \Psi+a^{2} \eta_{A B} \gamma^{A} e_{\sigma}^{B} D^{\sigma \mu \nu \rho} \partial_{\mu} \partial_{\nu} \partial_{\rho} \Psi+O\left(a^{3}\right)
$$

- Controlled by lattice invariants;

$$
C^{i j k}=-\frac{1}{3} \epsilon_{k l} \sum_{n} \ell_{n}^{i} \ell_{n}^{j} \ell_{n}^{l}: \quad D^{i j k l}=\frac{1}{9} \sum_{n} \ell_{n}^{i} \ell_{n}^{j} \ell_{n}^{k} \ell_{n}^{l}=\frac{1}{24}\left(\delta^{i k} \delta^{j l}+\delta^{i l} \delta^{j k}+\delta^{i j} \delta^{k l}\right)
$$

A subtlety

- Now we identify a gauge and frame symmetry as a freedom in making the wavefunction identification;

$$
|\Psi(t)\rangle=\left(\sum_{\vec{x}_{A}} A_{\vec{x}_{A}}(t) a_{\vec{x}_{A}}^{\dagger}+\sum_{\vec{x}_{B}} B_{\vec{x}_{B}}(t) b_{\vec{x}_{B}}^{\dagger}\right)|0\rangle
$$

$$
A_{\vec{x}_{A}}(t)=\psi_{1,2}\left(t, \vec{x}_{A}\right) e^{\frac{i}{2}\left(-\frac{\pi}{2} \pm \phi\left(\vec{x}_{A}\right)\right)} e^{ \pm i\left(\vec{K} \cdot \vec{x}_{A}-\lambda\left(\vec{x}_{A}\right)\right)}, \quad B_{\vec{x}_{B}}(t)=\psi_{2,1}\left(t, \vec{x}_{B}\right) e^{-\frac{i}{2}\left(-\frac{\pi}{2} \pm \phi\left(\vec{x}_{B}\right)\right)} e^{ \pm i\left(\vec{K} \cdot \vec{x}_{B}-\lambda\left(\vec{x}_{B}\right)\right)}
$$

Spatial frame rotation Spatial gauge transformation

- This yields a low energy theory with local symmetry;

$$
\begin{gathered}
0=e_{A}^{\mu} \gamma^{A} D_{\mu} \Psi \pm i a \eta_{A B} \gamma^{A} e_{\sigma}^{B} C^{\sigma \mu \nu} D_{\mu} D_{\nu} \Psi+a^{2} \eta_{A B} \gamma^{A} e_{\sigma}^{B} D^{\sigma \mu \nu \rho} D_{\mu} D_{\nu} D_{\rho} \Psi+O\left(a^{3}\right) \\
D_{i} \Psi=\partial_{i} \Psi \mp i A_{i} \Psi+\frac{i}{2} \omega_{i} \sigma^{3} \Psi \\
e^{A}{ }_{\mu}=\left(\begin{array}{ccc}
c_{e f f} & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & +\sin \phi & \cos \phi
\end{array}\right), \quad A_{i}=\partial_{i} \lambda \quad \omega_{i}=\partial_{i} \phi
\end{gathered}
$$

A subtlety

- Remember that the gauge field scaled inversely with the lattice spacing;

$$
A \sim \frac{\epsilon}{a} \tilde{A} \quad \tilde{A} \sim O(1)
$$

- But this mixes up the naive derivative expansion;

$$
0=e_{A}^{\mu} \gamma^{A} D_{\mu} \Psi \pm i a \eta_{A B} \gamma^{A} e_{\sigma}^{B} C^{\sigma \mu \nu} D_{\mu} D_{\nu} \Psi+a^{2} \eta_{A B} \gamma^{A} e_{\sigma}^{B} D^{\sigma \mu \nu \rho} D_{\mu} D_{\nu} D_{\rho} \Psi+O\left(a^{3}\right)
$$

A subtlety

Consistent structure

- We find that a consistent structure requires consistent truncation in both ϵ and a expansions;

$$
0=e_{A}^{\mu} \gamma^{A} D_{\mu} \Psi \pm i a \eta_{A B} \gamma^{A} e_{\sigma}^{B} C^{\sigma \mu \nu} D_{\mu} D_{\nu} \Psi+a^{2} \eta_{A B} \gamma^{A} e_{\sigma}^{B} D^{\sigma \mu \nu \rho} D_{\mu} D_{\nu} D_{\rho} \Psi+O\left(a^{3}\right)
$$

Covariant derivatives included	Gauge field contributions	Metric contributions
Dirac term only	$\frac{\epsilon}{a}$	Trivial flat metric
Dirac + two derivative	$\frac{\epsilon}{a}, \epsilon \frac{\epsilon^{2}}{a}$	ϵ
Dirac, two and three derivatives	$\frac{\epsilon}{a}, \epsilon, \epsilon a, \frac{\epsilon^{2}}{a}, \epsilon^{2}$	$\epsilon, \epsilon a, \epsilon^{2}$

- Hence first metric corrections require including two derivative term...

Effective theory
 Some details...

- We expand in orders of ϵ and a;

$$
t_{n}(\vec{x})=1+\epsilon \delta_{1} t_{n}(\vec{x})+\epsilon^{2} \delta_{2} t_{n}(\vec{x})+\ldots
$$

- Write Schrödinger system;

$$
\delta_{k} t_{n}(\vec{x})=\delta_{k, 0} t_{n}(\vec{x})+a \delta_{k, 1} t_{n}(\vec{x})+a^{2} \delta_{k, 2} t_{n}(\vec{x})+\ldots
$$

$$
\begin{aligned}
& \frac{i \hbar}{T} \partial_{t} A_{\vec{x}_{A}}-\sum_{n} t_{n}\left(\vec{x}_{A}+\frac{a \vec{\ell}_{n}}{2}\right) B_{\vec{x}_{A}+a \vec{\ell}_{n}}=0 \\
& \frac{i \hbar}{T} \partial_{t} B_{\vec{x}_{B}}-\sum_{n} t_{n}\left(\vec{x}_{B}-\frac{a \vec{\ell}_{n}}{2}\right) A_{\vec{x}_{B}-a \vec{\ell}_{n}}=0
\end{aligned}
$$

- Write wavefunctions including frame and gauge;

$$
\begin{aligned}
& A_{\vec{x}_{A}}(t)=\psi_{1,2}\left(t, \vec{x}_{A}\right) f(\vec{x}) e^{\frac{i}{2}\left(-\frac{\pi}{2} \pm \phi\left(\vec{x}_{A}\right)\right)} e^{ \pm \frac{i \Phi\left(\vec{x}_{A}\right)}{a}} \\
& B_{\vec{x}_{B}}(t)=\psi_{2,1}\left(t, \vec{x}_{B}\right) f(\vec{x}) e^{-\frac{i}{2}\left(-\frac{\pi}{2} \pm \phi\left(\vec{x}_{B}\right)\right)} e^{ \pm \frac{i \Phi\left(\vec{x}_{B}\right)}{a}}
\end{aligned}
$$

Effective theory Some details...

- What is $f(\vec{x})$?
- There is a natural choice;

$$
\sqrt{\left|g_{i j}\right|} \bar{\Psi} \gamma^{t} \bar{\Psi}=|A|^{2}+|B|^{2} \quad \longrightarrow \quad f=\left(\operatorname{det} g_{i j}\right)^{1 / 4}
$$

- Then the number density of Dirac field is the same as for the microscopic electron density
- However we leave it for the equations to determine for now.

Effective theory

Some details

$$
A_{\vec{x}_{A}}(t)=\psi_{1,2}\left(t, \vec{x}_{A}\right) f(\vec{x}) e^{\frac{i}{2}\left(-\frac{\pi}{2} \pm \phi\left(\vec{x}_{A}\right)\right)} e^{ \pm \frac{i \Phi\left(\vec{x}_{A}\right)}{a}}
$$

- Expand as;

$$
\begin{array}{r}
\Phi(\vec{x})=-\frac{4 \pi}{3 \sqrt{3}} x+\sum_{n=1}^{\infty} \epsilon^{n} \delta_{n} \Phi(\vec{x}), \quad \phi(\vec{x})=\sum_{n=1}^{\infty} \epsilon^{n} \delta_{n} \phi(\vec{x}), \quad f(\vec{x})=1+\sum_{n=1}^{\infty} \epsilon^{n} \delta_{n} f(\vec{x}) \\
\delta_{n} \Phi=\sum_{m=0}^{\infty} a^{m} \delta_{n, m} \Phi \text { and similarly for } \delta_{n} \phi, \delta_{n} f
\end{array}
$$

- For $\epsilon=0$ then; $\quad \frac{1}{a} \Phi(\vec{x})=\vec{K} \cdot \vec{x}$
- Order of limits - we require;

$$
e^{\frac{i \Phi(\vec{x})}{a}} \simeq e^{i \vec{K} \cdot \vec{x}}\left(1+\frac{i \epsilon}{a} \delta_{1} \Phi+\frac{i \epsilon^{2}}{a} \delta_{2} \Phi-\frac{\epsilon^{2}}{2 a^{2}}\left(\delta_{1} \Phi\right)^{2}+O\left(\epsilon^{3}\right)\right)
$$

- May think of expanding in a and $\lambda=\frac{\epsilon}{a}$
$e^{\frac{i \Phi(\vec{a})}{a}} \simeq e^{i \vec{K} \cdot \vec{x}}\left(1+i \lambda\left(\delta_{1,0} \Phi+a \delta_{1,1} \Phi+a^{2} \delta_{1,2} \Phi+O\left(a^{3}\right)\right)-\lambda^{2}\left(\frac{1}{2}\left(\delta_{1,0} \Phi\right)^{2}+a \delta_{1,0} \Phi \delta_{1,1} \Phi-2 i a \delta_{2,0} \Phi+O\left(a^{2}\right)\right)+O\left(\lambda^{3}\right)\right)$

Effective theory
 An aside on ripples
 [Meyer et al ; Fasolino, Los, Katsnelson]

- For ripples; height $\sim 0.5 \mathrm{~nm}$, wavelength $\sim 5 \mathrm{~nm}$ as compared to $a \sim 0.25 \mathrm{~nm}$.
- In our units, corresponds to; $a \sim 0.05, \epsilon \sim 0.01$ so $\lambda \sim 0.2$

Effective theory

Some details...

$$
0=\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a^{p} \lambda^{q} \mathcal{O}_{p, q}(\vec{x})\binom{\psi_{1}(\vec{x})}{\psi_{2}(\vec{x})}
$$

- Schrodinger system;

$$
A_{\mu}=\left(0, A^{i}\right), \quad A_{i}=\sum_{n=1}^{\infty} \epsilon^{n} \delta_{n} A_{i}, \quad \delta_{n} A_{i}=\frac{1}{a} \sum_{m=0}^{\infty} a^{m} \delta_{n, m} A_{i}
$$

$$
e_{A}^{\mu}=\left(\begin{array}{cc}
\frac{1}{c_{e f f}} & 0 \\
0 & e^{i}{ }_{I}
\end{array}\right), \quad e^{i}{ }_{I}=\delta_{I}^{i}+\sum_{n=1}^{\infty} \epsilon^{n} \delta_{n} e^{i}{ }_{I}, \quad \delta_{n} e^{i}{ }_{I}=\sum_{m=0}^{\infty} a^{m} \delta_{n, m} e^{i}{ }_{I}
$$

- Consider a term; $\quad a^{M} Q^{\mu_{1} \ldots \mu_{M}} D_{\mu_{1}} \cdots D_{\mu_{M}} \Psi$
- Contributes to equations; $\mathcal{O}_{p, q}$ for $p \geq M$

Effective theory

Some details

- Unlike usual effective theory

$$
a^{M} Q^{\mu_{1} \ldots \mu_{M}} D_{\mu_{1}} \cdots D_{\mu_{M}} \Psi=a^{M} T_{M, 0}+\sum_{p=0}^{\infty} \sum_{q=1}^{\infty} a^{p} \lambda^{q} T_{p, q}
$$

	a^{0}	a^{1}	...	a^{M-1}	a^{M}	a^{M+1}	a^{M+2}	\ldots
ϵ^{0}	0	0	\ldots	0	$T_{M, 0}$	0	0	
ϵ^{1}	0	0	..	$T_{M, 1}$	$T_{M+1,1}$	$T_{M+2,1}$	$T_{M+3,1}$	
\vdots	:		.			\vdots	\vdots	
ϵ^{M-1}	0	$T_{M, M-1}$	\ldots	$T_{2 M-2, M-}$	$T_{2 M-1, M-1}$	$T_{2 M, M-1}$	$T_{2 M+1, M-1}$	
ϵ^{M}	$T_{M, M}$	$T_{M+1, M}$	\ldots	$T_{2 M-1, M}$	$T_{2 M, M}$	$T_{2 M+1, M}$	$T_{2 M+2, M}$	
ϵ^{M+1}	$T_{M+1, M+1}$	$T_{M+2, M+1}$		$T_{2 M, M+1}$	$T_{2 M+1, M+1}$	$T_{2 M+2, M+1}$	$T_{2 M+3, M+1}$	
!	:			:	;	!		

Effective theory Some details...

- Leading order $\mathcal{O}_{p, q}$ for $p \leq 1$
- Recover flat Dirac equation with large gauge field

Effective theory Some details

- Subleading order $\mathcal{O}_{p, q}$ for $p \leq 2$

$$
\sqrt{|g|} C^{i j k}(\vec{x})=-\frac{1}{3} \epsilon_{k l} \sum_{n} \ell_{n}^{i} \ell_{n}^{j} \ell_{n}^{l}
$$

$$
\sqrt{|g|} D^{i j k l}(\vec{x})=\frac{1}{9} \sum_{n} \ell_{n}^{i} \ell_{n}^{j} \ell_{n}^{k} \ell_{n}^{l}
$$

- Curved space Dirac equation and higher covariant derivative term

$$
\begin{gathered}
0=a e_{A}^{\mu} \gamma^{A} D_{\mu} \Psi \pm i a^{2} \eta_{A B} \gamma^{A} e_{\sigma}^{B} C^{\sigma \mu \nu} D_{\mu} D_{\nu} \Psi+O\left(\epsilon^{3}, \epsilon^{2} a, \epsilon a^{2}, a^{3}\right) \\
e^{i}{ }_{I}=\delta_{I}^{i}+\epsilon\left(\delta_{1,0} e^{i}{ }_{I}+O(a)\right)+O\left(\epsilon^{2}\right), \quad f=1+\epsilon\left(\delta_{1,0} f+O(a)\right)+O\left(\epsilon^{2}\right) \\
A_{i}=\frac{\epsilon}{a}\left(\delta_{1,0} A_{i}+a \delta_{1,1} A_{i}+O\left(a^{2}\right)\right)+\frac{\epsilon^{2}}{a}\left(\delta_{2,0} A_{i}+O(a)\right)+O\left(\frac{\epsilon^{3}}{a}\right) .
\end{gathered}
$$

- Key point; effect of curved frame at same order as higher derivative
- Interesting point; consistency require the usual torsion free connection and requires the canonical scaling of $f(\vec{x})$

$$
\sqrt{\left|g_{i j}\right|}\left|\bar{\Psi} \gamma^{t} \bar{\Psi}=|A|^{2}+|B|^{2} \quad f=\left(\operatorname{det} g_{i j}\right)^{1 / 4}\right.
$$

Effective theory
 Some details...

- Subsubleading order $\mathcal{O}_{p, q}$ for $p \leq 3$
- Curved space Dirac equation and higher covariant derivative term

$$
\begin{aligned}
0 & =a e_{A}^{\mu} \gamma^{A} D_{\mu} \Psi \pm i a^{2} \eta_{A B} \gamma^{A} e_{\sigma}^{B} D_{\mu}\left(C^{\sigma \mu \nu} D_{\nu} \Psi\right)+a^{3} \eta_{A B} \gamma^{A} e^{B}{ }_{\sigma} D^{\sigma \mu \nu \rho} D_{\mu} D_{\nu} D_{\rho} \Psi+O\left(\epsilon^{4}, \epsilon^{3} a, \epsilon^{2} a^{2}, \epsilon a^{3}, a^{4}\right) \\
e^{i} & =\delta_{I}^{i}+\epsilon\left(\delta_{1,0} e^{i}+a \delta_{1,1} e^{i}{ }_{I}+O\left(a^{2}\right)\right)+\epsilon^{2}\left(\delta_{2,0} e^{i}{ }_{I}+O(a)\right)+O\left(\epsilon^{3}\right) \\
A_{i} & =\frac{\epsilon}{a}\left(\delta_{1,0} A_{i}+a \delta_{1,1} A_{i}+a^{2} \delta_{1,2} A_{i}+O\left(a^{3}\right)\right)+\frac{\epsilon^{2}}{a}\left(\delta_{2,0} A_{i}+a \delta_{2,1} A_{i}+O\left(a^{2}\right)\right)+\frac{\epsilon^{3}}{a}\left(\delta_{3,0} A_{i}+O(a)\right)+O\left(\frac{\epsilon^{4}}{a}\right)
\end{aligned}
$$

- Now includes quadratic corrections in curvature; again connection is torsion free.
- This order is required to see corrections to the dispersion relation.

Effective theory

Result

- To this order we find and 'electrometric';

$$
f=\left(\operatorname{det} g_{i j}\right)^{1 / 4}+O\left(\epsilon^{3}, \epsilon^{2} a, \epsilon a^{2}\right)
$$

$$
g_{i j}=\frac{3}{\Delta^{2}} \sum_{n}\left(\delta_{i j}-\frac{4}{3} \ell_{n}^{i} \ell_{n}^{j}\right) t_{n}^{2}+O\left(\epsilon^{3}, \epsilon^{2} a, \epsilon a^{2}\right)
$$

$$
\Delta^{2}=\left(\sum_{n} t_{n}^{2}\right)^{2}-2\left(\sum_{m} t_{m}^{4}\right)
$$

- And the gauge field (up to gauge transformation);

$$
\begin{aligned}
& \begin{aligned}
A_{i}= & \frac{1}{a \Delta^{2}} \epsilon_{i j} \sum_{m}\left[\ell_{m}^{j} \Delta t_{m}\left(2+\sum_{n}\left(3 \delta_{m n} \Delta t_{n}\right)+\sum_{n, p}\left(\left(\frac{1}{3}+2 \delta_{m n}-3 \delta_{n p}\right) \Delta t_{n} \Delta t_{p}\right)\right)\right. \\
& \left.\quad+a^{2}\left(\frac{1}{4} \ell_{m}^{j} \ell_{m}^{k} \ell_{m}^{l}-\frac{3}{8} K^{j k l}+\frac{1}{6} \delta^{j k} \ell_{m}^{l}\right) \partial_{k} \partial_{l} \Delta t_{m}\right]+O\left(\frac{\epsilon^{4}}{a}, \epsilon^{3}, \epsilon^{2} a, \epsilon a^{2}\right)
\end{aligned} \\
& \Delta t_{n}=
\end{aligned}
$$

- Note - if tune so gauge field vanishes then electrometric is exact

Elastic strain

- We may embed lattice as;

$$
\mathbb{R}_{\text {lat }}^{2} \quad \rightarrow \quad \mathbb{R}_{\text {lab }}^{3}
$$

- This gives an induced metric and strain tensor;

$$
\begin{aligned}
& g_{i j}^{(i n d)}=\delta_{i j}+\epsilon\left(\delta_{i k} \frac{\partial v^{k}}{\partial x^{j}}+\delta_{j k} \frac{\partial v^{k}}{\partial x^{i}}+\frac{\partial h}{\partial x^{i}} \frac{\partial h}{\partial x^{j}}\right)+\epsilon^{2} \delta_{k l} \frac{\partial v^{k}}{\partial x^{i}} \frac{\partial v^{l}}{\partial x^{j}} \\
& \sigma_{i j}=\frac{1}{2}\left(g_{i j}^{(i n d)}-\delta_{i j}\right)
\end{aligned}
$$

Elastic strain

- We then choose a simple bond model;

$$
\begin{gathered}
\frac{T_{n, A}}{T}=F\left(\frac{L_{n, A}}{a}-1\right) \\
F(0)=1, \quad F^{\prime}(0)=-\beta, \quad F^{\prime \prime}(0)=(\tau-1) \beta
\end{gathered}
$$

- This assumes only dependence of bond length
- And then we can express the hopping functions in terms of strain;

$$
t_{n}(\vec{x})=1-\beta\left(\ell_{n}^{i} \ell_{n}^{j} \sigma_{i j}(\vec{x})+\frac{a^{2}}{24} \ell_{n}^{i} \ell_{n}^{j}\left(\ell_{n}^{k} \partial_{k}\right)^{2} \sigma_{i j}(\vec{x})\right)+\frac{\beta \tau}{2}\left(\ell_{n}^{i} \ell_{n}^{j} \sigma_{i j}(\vec{x})\right)^{2}+O\left(\epsilon a^{3}, \epsilon^{2} a^{2}, \epsilon^{3}\right)
$$

Elastic strain

- Now we can write the effective theory in terms of strain.
- To leading order; $K^{i j k}=\frac{4}{3} \sum_{n} \ell_{n}^{i} \ell_{n}^{j} \ell_{n}^{k}$
$A_{i}(\vec{x})=-\frac{\beta}{2 a} \epsilon_{i j}\left(K^{j k l} \sigma_{k l}(\vec{x})+O\left(\epsilon^{2}, \epsilon a^{2}\right)\right), \quad g_{i j}(\vec{x})=\delta_{i j}+2 \beta \sigma_{i j}(\vec{x})+O\left(\epsilon^{2}, \epsilon a\right)$
- Now for an in-plane diffeomorphism, $\sigma_{i j}=\epsilon \partial_{\left(i v_{j)}\right.}$
- Then the electrometric is also flat - so no `analog gravity’
- Note - it is not the same as the induced metric though!

$$
g_{i j}^{i n d}(\vec{x})=\delta_{i j}+2 \sigma_{i j}(\vec{x})+\ldots
$$

Elastic strain

- Going beyond leading order;

$$
\sigma_{i}=K^{i j k} \sigma_{j k}
$$

$$
\begin{aligned}
& A_{i}(\vec{x})=-\frac{\beta \epsilon_{i j}}{2 a}\left(K^{j k l}\right.\left(\sigma_{k l}(\vec{x})+\frac{(\beta-\tau)}{2} \sigma_{k m}(\vec{x}) \sigma_{m l}(\vec{x})-\frac{(3 \beta+\tau)}{8} \sigma_{k}(\vec{x}) \sigma_{l}(\vec{x})\right) \\
&\left.+\frac{a^{2}}{12}\left(9 \partial_{j} \partial_{k} \sigma_{k}(\vec{x})-3 \partial_{k} \partial_{k} \sigma_{j}(\vec{x})-7 K^{k l m} \partial_{k} \partial_{l} \sigma_{j m}(\vec{x})\right)+O\left(\epsilon a^{3}, \epsilon^{2} a^{2}, \epsilon^{3}\right)\right) \\
& g_{i j}(\vec{x})=\delta_{i j}+2 \beta \sigma_{i j}(\vec{x})+4 \beta^{2} \sigma_{i k}(\vec{x}) \sigma_{k j}(\vec{x})+\frac{\beta(\beta+\tau)}{4}\left(\delta_{i j}\left(\sigma_{k k}(\vec{x})\right)^{2}-4 \sigma_{i j}(\vec{x}) \sigma_{k k}(\vec{x})-\sigma_{i}(\vec{x}) \sigma_{j}(\vec{x})\right)+O\left(\epsilon a^{2}, \epsilon^{2} a, \epsilon^{3}\right)
\end{aligned}
$$

- Very interestingly we find pure in-plane strain results in a curved electrometric at quadratic order!
- So we can have analog gravity effects

General graphene theory

- Consider the lattice model to leading order. We have;

$$
0=a e_{A}^{\mu} \gamma^{A} D_{\mu} \Psi+O\left(\epsilon^{2}, \epsilon a\right), \quad A_{i}(\vec{x})=-\frac{\beta}{2 a} \epsilon_{i j} K^{i j k} \sigma_{j k}(\vec{x})+O\left(\frac{\epsilon^{2}}{a}, \epsilon\right)
$$

- Simply controlled by symmetries.
- Hence for 'real graphene' and in-plane deformation conjecture the same expressions, but now the constants $c_{e f f}, a, \beta$ should be determined from 'experiment'

General graphene theory

- Natural to then expect that beyond leading order the effective theory of real graphene takes the form controlled by symmetries;

$$
\begin{aligned}
& \begin{array}{l}
0=a e^{\mu}{ }_{A} \gamma^{A} D_{\mu} \Psi \pm c_{2} i a^{2} \eta_{A B} \gamma^{A} e^{B}{ }_{\sigma} D_{\mu}\left(C^{\sigma \mu \nu} D_{\nu} \Psi\right)+c_{3} a^{3} \eta_{A B} \gamma^{A} e^{B} D^{\sigma \mu \nu \rho} D_{\mu} D_{\nu} D_{\rho} \Psi+O\left(\epsilon^{4}, \epsilon^{3} a, \epsilon^{2} a^{2}, \epsilon a^{3}, a^{4}\right) \\
A_{i}(\vec{x})=-\frac{\beta}{2 a} \epsilon_{i j}\left(K^{j k l}\left(\sigma_{k l}(\vec{x})+\xi_{1} \sigma_{k m}(\vec{x}) \sigma_{m l}(\vec{x})+\xi_{2} \sigma_{k}(\vec{x}) \sigma_{l}(\vec{x})\right)\right. \\
\\
\left.\quad+a^{2}\left(\alpha_{1} \partial_{j} \partial_{k} \sigma_{k}(\vec{x})+\alpha_{2} \partial_{k} \partial_{k} \sigma_{j}(\vec{x})+\alpha_{3} K^{k l m} \partial_{k} \partial_{l} \sigma_{j m}(\vec{x})\right)+O\left(\epsilon^{3}, \epsilon^{2} a, \epsilon a^{2}\right)\right) \\
g_{i j}(\vec{x})=\delta_{i j}+\beta\left(\chi_{1} \sigma_{i j}(\vec{x})+\chi_{2} \sigma_{i k}(\vec{x}) \sigma_{k j}(\vec{x})+\chi_{3} \delta_{i j}\left(\sigma_{k k}(\vec{x})\right)^{2}+\chi_{4} \sigma_{i j}(\vec{x}) \sigma_{k k}(\vec{x})+\chi_{5} \sigma_{i}(\vec{x}) \sigma_{j}(\vec{x})\right)+O\left(\epsilon^{3}, \epsilon^{2} a, \epsilon a^{2}\right)
\end{array}
\end{aligned}
$$

- We know the various constants in the lattice model. For real graphene we should derive them from 'experiment'
- Subtlety; presumably require different constants for conduction and valence bands

Summary

- The effective theory for the graphene Dirac cones has a subtle structure
- This is due to the local gauge symmetry and large magnetic field
- There is a curved space theory describing the deformed tightbinding model BUT it must include higher derivatives (which explicitly break Lorentz invariance)

