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Motivations

Why do we need fermion-to-qubit mappings?

Duality between fermionic and bosonic systems

Quantum simulation of fermionic Hamiltonians

Exactly solvable models (transversal-field Ising model, Kitaev’s
honeycomb model)

Quantum error corrections (Majorana error-correcting codes [1],
related to CSS codes)
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Jordan-Wigner transformation

c†i → (∏
j<i

Zj)⊗ σ+i , ci → (∏
j<i

Zj)⊗ σ−i (1)

fermionic modes : number of qubits = 1 ∶ 1.

c†ick = σ
+
i ( ∏

i<j<k

Zj)σ
−
k (2)

Figure: In the 2d square lattice, a choice of ordering is required. The vertical
hopping operator of fermions becomes non-local after Jordan-Wigner
transformation.
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Mechanism of local fermion-to-qubit mappings
Solution: introduce entanglement to restore the locality in 2d.

Figure: Double the number of qubits and impose gauge constraints to enable
local readout of non-local fermion parity (Z string operator).

Figure: Procedure of local readout of fermion parity
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Many Fermion-to-qubit mappings

Different mappings have different overheads and logical operators. Are
they related to each other?
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Main results

Equivalence (local unitary+ancilla) between all 2d local
fermion-to-qubit mappings1 (Bravyi-Kitaev superfast simulation,
Verstraete-Cirac mapping, 2d exact bosonization, Majorana loop
stabilizer codes, and compact fermion-to-qubit mapping).

New fermion encoding with 1.25 qubits per fermionic modes

General construction of 2d local fermion-to-qubit mapping

1Haah proves that Z2 Pauli stabilizer codes must be copies of toric codes. Hence
all fermion-to-qubit mappings in 2d are based on the emergent fermions in toric
codes.
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Fermion-to-qubit mappings as stabilizer codes

Physical Hilbert space: qubit array

Logical Hilbert space: fermionic modes

Stabilizer constraints: moving a fermion along a closed loop ∝
identity

Logical operators: Pauli strings that satisfy even fermionic algebra

Each fermion-to-qubit mapping is a dictionary that maps any product
of an even number of fermionic operators to Pauli string operators.
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Review of 2d exact bosonization

spin system fermion system

fermionization

bosonization

Figure: Bosonization and fermionization, each blue vertex consists a qubit,
and each red vertex consists two Majorana modes γ, γ′.
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Emergent fermions on Z2 toric code
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Review of 2d exact bosonization

Logical space: 1 (vacuum), ϵ (fermion)

Stabilizer (gauge constraint) on vertex v:

Gv =

Z

f Z

X v

XZ

XZ

X

= 1. (3)

Enlarged Hilbert space: 2 qubits (edges) per fermionic mode
(face).

Codespace: fermionic subspace of a toric code.
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Logical operators of 2d exact bosonization
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Figure: Dictionary of even Majorana and qubit interactions
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Equivalence between 2d fermion-to-qubit mappings

Equivalence ≈ O(1)-depth quantum circuit + ancilla

Case 1. The same Hilbert space. Two mappings have different gauge
constraints G1 and G2. If there exists a finite-depth local unitary
circuit U such that

UG1U
†
= G2, (4)

then they are equivalent.

Two mappings are equivalent ⇔ one can convert the codespaces
from one to the other by a finite-depth Clifford circuit.

To define the equivalence between mappings in different Hilbert spaces,
Circuit + ancilla are needed (formally: generalized local unitary by
Chen, Gu, and Wen, 2010) [2, 3])
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Generalized local unitary (gLU)

Case 2. Different Hilbert space. Some qubits can be disentangled
(decoupled) by a Clifford circuit.

Figure: Disentanglement by gLU

We argue 2d local fermion-to-qubit mappings can be obtained by this
way.
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gLU disentanglement

Consider a 3-qubit repetition code with check operators
G = {Z1Z2, Z2Z3} and codewords

∣0⟩L = ∣000⟩ , ∣1⟩L = ∣111⟩ . (5)

We may disentangle the third qubit by applying CNOT2→3 such that

(CNOT2→3) G (CNOT2→3)
†
= {Z1Z2, Z3}. (6)

Then, we have disentangled the third qubit.
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gLU disentanglement

Figure: Disentanglement procedure, we disentangle O(N) qubits

We can keep disentangling qubits, and obtain mappings requires
different overheads.
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General construction and equivalence relation

After applying follow Clifford circuit, we will obtain a fermion-to-qubit
mapping with r = 1.5

YY

Y Y

YY

Y Y

even odd

odd even

even odd

odd even

even odd

odd even

even odd

odd even

even odd

odd even

even odd

odd even

CNOT

Y
CY

CZ

Figure: Clifford circuit to construct mapping with r = 1.5
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General construction and equivalence relation

Godd =

Z

Z

X

XZ odd

XZ

X

// (−1) ×
Y odd

, (7)

Geven =

Z

Z

X

XZeven

XZ

X

// (−1) ×
X

Z

Y even

X

X X

Y

Z. (8)

It is compact fermion-to-qubit mapping [4].
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Relation to Jordan Wigner transformation

If we remove all the stabilizers, then the mapping reduce to
Jordan-Wigner transformation.

Figure: Linear-depth circuit to convert exact bosonization to 1d
Jordan-Wigner
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Outlooks

Stabilizer weight is high, can we reduce it by the idea of Floquet
codes?

Due to the non-trivial QCA in three dimension, there may exist
different families of fermion-to-qubit mappings in 3d.

Interplay between symmetries of fermions and their bosonic
counterparts.
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