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Motivations

Why do we need fermion-to-qubit mappings?
@ Duality between fermionic and bosonic systems
e Quantum simulation of fermionic Hamiltonians

e Exactly solvable models (transversal-field Ising model, Kitaev’s
honeycomb model)

e Quantum error corrections (Majorana error-correcting codes [1],
related to CSS codes)
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Jordan-Wigner transformation
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Figure: In the 2d square lattice, a choice of ordering is required. The vertical
hopping operator of fermions becomes non-local after Jordan-Wigner
transformation.
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Mechanism of local fermion-to-qubit mappings
Solution: introduce entanglement to restore the locality in 2d.
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Figure: Double the number of qubits and impose gauge constraints to enable
local readout of non-local fermion parity (Z string operator).
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Figure: Procedure of local readout of fermion parity
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Many Fermion-to-qubit mappings

TABLE I.  Comparison between fermion-to-qubit mappings on the 2d square lattice.

Qubit-fermion Fermion parity Hopping Stabilizer

ratio » weight weight weight
Verstraete-Cirac mapping [3]* 2 1 34 6
BKSF encoding [11]° 2 4 2-6 6
Kitaev’s honeycomb model [4] 2 2 2-5 6
Exact bosonization [2] 2 4 26 6
MLSC [7] 2 3 34 4-10
Compact fermion-to-qubit mapping [9] 1.5 1 3 8
Supercompact fermion-to-qubit mapping 1.25 12 2-6 12

Different mappings have different overheads and logical operators. Are
they related to each other?
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Main results

e Equivalence (local unitary+ancilla) between all 2d local
fermion-to-qubit mappings' (Bravyi-Kitaev superfast simulation,
Verstraete-Cirac mapping, 2d exact bosonization, Majorana loop
stabilizer codes, and compact fermion-to-qubit mapping).

e New fermion encoding with 1.25 qubits per fermionic modes

o General construction of 2d local fermion-to-qubit mapping

'Haah proves that Zy Pauli stabilizer codes must be copies of toric codes. Hence
all fermion-to-qubit mappings in 2d are based on the emergent fermions in toric
codes.
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Fermion-to-qubit mappings as stabilizer codes

o Physical Hilbert space: qubit array

e Logical Hilbert space: fermionic modes

e Stabilizer constraints: moving a fermion along a closed loop o
identity

o Logical operators: Pauli strings that satisfy even fermionic algebra

Each fermion-to-qubit mapping is a dictionary that maps any product
of an even number of fermionic operators to Pauli string operators.
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Review of 2d exact bosonization
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Figure: Bosonization and fermionization, each blue vertex consists a qubit,
and each red vertex consists two Majorana modes v,’.

N Soptomber 10, 2028 921



Emergent fermions on Zs toric code
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Review of 2d exact bosonization

Logical space: 1 (vacuum), € (fermion)

Stabilizer (gauge constraint) on vertex v:

_Z_
lez f %
Gy= —x-v-xz-' =1 (3)

f

Enlarged Hilbert space: 2 qubits (edges) per fermionic mode
(face).

Codespace: fermionic subspace of a toric code.
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Logical operators of 2d exact bosonization
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Figure: Dictionary of even Majorana and qubit interactions
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Equivalence between 2d fermion-to-qubit mappings

Equivalence » O(1)-depth quantum circuit + ancilla

Case 1. The same Hilbert space. Two mappings have different gauge
constraints G; and Go. If there exists a finite-depth local unitary
circuit U such that

UGLUT = G, (4)

then they are equivalent.

o Two mappings are equivalent <> one can convert the codespaces
from one to the other by a finite-depth Clifford circuit.

To define the equivalence between mappings in different Hilbert spaces,
Circuit + ancilla are needed (formally: generalized local unitary by
Chen, Gu, and Wen, 2010) [2, 3])
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Generalized local unitary (gLU)

Case 2. Different Hilbert space. Some qubits can be disentangled
(decoupled) by a Clifford circuit.

U | = ®

Figure: Disentanglement by gLLU

We argue 2d local fermion-to-qubit mappings can be obtained by this
way.
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gL U disentanglement

Consider a 3-qubit repetition code with check operators
G ={Z1Z5, 7575} and codewords

0) =1000), [1)r =][111). (5)
We may disentangle the third qubit by applying CNOT5_,3 such that

(CNOT3.3) G (CNOTo,3)! = {2125, Z3}. (6)
Then, we have disentangled the third qubit.
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gL U disentanglement
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Figure: Disentanglement procedure, we disentangle O(N) qubits

We can keep disentangling qubits, and obtain mappings requires
different overheads.

N Soptomber 10, 2028 1621



General construction and equivalence relation

After applying follow Clifford circuit, we will obtain a fermion-to-qubit
mapping with r=1.5
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Figure: Clifford circuit to construct mapping with r = 1.5
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General construction and equivalence relation
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It is compact fermion-to-qubit mapping [4].
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Relation to Jordan Wigner transformation

If we remove all the stabilizers, then the mapping reduce to
Jordan-Wigner transformation.
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Figure: Linear-depth circuit to convert exact bosonization to 1d
Jordan-Wigner
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Outlooks

e Stabilizer weight is high, can we reduce it by the idea of Floquet
codes?

@ Due to the non-trivial QCA in three dimension, there may exist
different families of fermion-to-qubit mappings in 3d.

o Interplay between symmetries of fermions and their bosonic
counterparts.
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