Exploring supersymmetric wormholes in $\mathcal{N}=2$ SYK with chords

Cynthia Yan
Stanford Institute for Theoretical Physics

"Exploring supersymmetric wormholes in $\mathcal{N}=2$ SYK with chords" 2308.16283
w/ Jan Boruch \& Henry W. Lin

Motivation

why $\mathcal{N}=2$ SUSY SYK?

Motivation

why $\mathcal{N}=2$ SUSY SYK?

- want to understand BH in regime where Quantum Gravity is important

Motivation

why $\mathcal{N}=2$ SUSY SYK?

- want to understand BH in regime where Quantum Gravity is important
- this is at very low temperature, i.e. ground state sector

Motivation

why $\mathcal{N}=2$ SUSY SYK?

- want to understand BH in regime where Quantum Gravity is important
- this is at very low temperature, i.e. ground state sector
- SUSY SYK has a lot of zero-energy ground states

Motivation

- $\mathcal{N}=2$ SUSY SYK in double-scaling limit using chord diagrams [BerkoozBruknerNarovlanskyRaz]'20

Motivation

- $\mathcal{N}=2$ SUSY SYK in double-scaling limit using chord diagrams [BerkoozBruknerNarovlanskyRaz]'20
- Goal: go beyond super-Schwarzian

Motivation

- $\mathcal{N}=2$ SUSY SYK in double-scaling limit using chord diagrams [BerkoozBruknerNarovlanskyRaz]'20
- Goal: go beyond super-Schwarzian

Motivation

- $\mathcal{N}=2$ SUSY SYK in double-scaling limit using chord diagrams [BerkoozBruknerNarovlanskyRaz]'20
- Goal: go beyond super-Schwarzian
- count ground state from bulk, understand quantum corrections (super-JT [StanfordWitten]'20)

Motivation

- $\mathcal{N}=2$ SUSY SYK in double-scaling limit using chord diagrams [BerkoozBruknerNarovlanskyRaz]'20
- Goal: go beyond super-Schwarzian
- count ground state from bulk, understand quantum corrections (super-JT [StanfordWitten]'20)
- length of wormhole quantum corrections (super-JT [LinMaldacenaRozenbergShan]'22)

Majorana SYK v.s. $\mathcal{N}=2$ SUSY SYK

Majorana SYK
$\mathcal{N}=2$ SUSY SYK

- N Majorana fermions ψ_{i}

$$
\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}
$$

Majorana SYK v.s. $\mathcal{N}=2$ SUSY SYK

Majorana SYK

- N Majorana fermions ψ_{i}

$$
\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}
$$

- product of p fermions (p even)

$$
\Psi_{I}=\psi_{i_{1}} \cdots \psi_{i_{p}}
$$

Majorana SYK

- N Majorana fermions ψ_{i}

$$
\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}
$$

- product of p fermions (p even)

$$
\Psi_{I}=\psi_{i_{1}} \cdots \psi_{i_{p}}
$$

- Hamiltonian

$$
H=i^{p / 2} \sum_{l} C_{l} \Psi_{l}
$$

Majorana SYK v.s. $\mathcal{N}=2$ SUSY SYK

Majorana SYK

- N Majorana fermions ψ_{i}

$$
\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}
$$

- product of p fermions (p even)

$$
\Psi_{I}=\psi_{i_{1}} \cdots \psi_{i_{p}}
$$

- Hamiltonian

$$
H=i^{p / 2} \sum_{l} C_{l} \Psi_{l}
$$

$\mathcal{N}=2$ SUSY SYK

- N complex fermions ψ_{i}

$$
\left\{\psi_{i}, \bar{\psi}_{j}\right\}=\delta_{i j} \quad\left\{\psi_{i}, \psi_{j}\right\}=0
$$

Majorana SYK v.s. $\mathcal{N}=2$ SUSY SYK

Majorana SYK

- N Majorana fermions ψ_{i}

$$
\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}
$$

- product of p fermions (p even)

$$
\Psi_{I}=\psi_{i_{1}} \cdots \psi_{i_{p}}
$$

- Hamiltonian

$$
H=i^{p / 2} \sum_{l} C_{l} \Psi_{l}
$$

$\mathcal{N}=2$ SUSY SYK

- N complex fermions ψ_{i}

$$
\left\{\psi_{i}, \bar{\psi}_{j}\right\}=\delta_{i j} \quad\left\{\psi_{i}, \psi_{j}\right\}=0
$$

- product of p fermions (p odd)

$$
\Psi_{I}=\psi_{i_{1}} \cdots \psi_{i_{p}}
$$

Majorana SYK v.s. $\mathcal{N}=2$ SUSY SYK

Majorana SYK

- N Majorana fermions ψ_{i}

$$
\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}
$$

- product of p fermions (p even)

$$
\Psi_{I}=\psi_{i_{1}} \cdots \psi_{i_{p}}
$$

- Hamiltonian

$$
H=i^{p / 2} \sum_{l} C_{l} \Psi_{l}
$$

$\mathcal{N}=2$ SUSY SYK

- N complex fermions ψ_{i}

$$
\left\{\psi_{i}, \bar{\psi}_{j}\right\}=\delta_{i j} \quad\left\{\psi_{i}, \psi_{j}\right\}=0
$$

- product of p fermions (p odd)

$$
\Psi_{I}=\psi_{i_{1}} \cdots \psi_{i_{p}}
$$

- supercharges

$$
Q=\sum_{l} C_{l} \Psi_{l} \quad \bar{Q}=\sum_{l} C_{l}^{*} \bar{\Psi}_{l}
$$

Majorana SYK

- N Majorana fermions ψ_{i}

$$
\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}
$$

- product of p fermions (p even)

$$
\Psi_{I}=\psi_{i_{1}} \cdots \psi_{i_{p}}
$$

- Hamiltonian

$$
H=i^{p / 2} \sum_{l} C_{l} \Psi_{l}
$$

$\mathcal{N}=2$ SUSY SYK

- Hamiltonian

$$
H=\frac{1}{2}(Q \bar{Q}+\bar{Q} Q)
$$

Majorana SYK v.s. $\mathcal{N}=2$ SUSY SYK

Majorana SYK

- N Majorana fermions ψ_{i}

$$
\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}
$$

- product of p fermions (p even)

$$
\Psi_{I}=\psi_{i_{1}} \cdots \psi_{i_{p}}
$$

- Hamiltonian

$$
H=i^{p / 2} \sum_{l} C_{l} \Psi_{l}
$$

$\mathcal{N}=2$ SUSY SYK

- Hamiltonian

$$
H=\frac{1}{2}(Q \bar{Q}+\bar{Q} Q)
$$

- U(1) R charge

$$
\gamma=\frac{1}{2 p} \sum_{i=1}^{N}\left(\bar{\psi}_{i} \psi_{i}-\psi_{i} \bar{\psi}_{i}\right)
$$

Majorana SYK v.s. $\mathcal{N}=2$ SUSY SYK

Majorana SYK
$\mathcal{N}=2$ SUSY SYK

- Hamiltonian

$$
H=i^{p / 2} \sum_{l} C_{l} \Psi_{l}
$$

Majorana SYK v.s. $\mathcal{N}=2$ SUSY SYK

Majorana SYK

$\mathcal{N}=2$ SUSY SYK

- Hamiltonian

$$
H=i^{p / 2} \sum_{l} C_{l} \Psi_{l}
$$

- average over couplings

$$
\left\langle C_{l}\right\rangle=0 \quad\left\langle C_{l} C_{l^{\prime}}\right\rangle=2\binom{N}{p}^{-1} \mathcal{J}^{2} \delta_{l, l^{\prime}}
$$

Majorana SYK v.s. $\mathcal{N}=2$ SUSY SYK

Majorana SYK

- Hamiltonian

$$
H=i^{p / 2} \sum_{l} C_{l} \Psi_{l}
$$

- average over couplings

$$
\left\langle C_{l}\right\rangle=0 \quad\left\langle C_{l} C_{l \prime}\right\rangle=2\binom{N}{p}^{-1} \mathcal{J}^{2} \delta_{l, \prime^{\prime}}
$$

$\mathcal{N}=2$ SUSY SYK

- supercharges

$$
Q=\sum_{l} C_{l} \Psi_{l} \quad \bar{Q}=\sum_{l} C_{l}^{*} \bar{\Psi}_{l}
$$

Majorana SYK v.s. $\mathcal{N}=2$ SUSY SYK

Majorana SYK

- Hamiltonian

$$
H=i^{p / 2} \sum_{l} C_{l} \Psi_{l}
$$

- average over couplings

$$
\left\langle C_{l}\right\rangle=0 \quad\left\langle C_{l} C_{l \prime}\right\rangle=2\binom{N}{p}^{-1} \mathcal{J}^{2} \delta_{l, \prime^{\prime}}
$$

$\mathcal{N}=2$ SUSY SYK

- supercharges

$$
Q=\sum_{l} C_{l} \Psi_{l} \quad \bar{Q}=\sum_{l} C_{l}^{*} \bar{\Psi}_{l}
$$

- average over couplings

$$
\left\langle C_{l}\right\rangle=0 \quad\left\langle C_{l} C_{I^{\prime}}^{*}\right\rangle=\binom{N}{p}^{-1} 2^{p} \mathcal{J}^{2} \delta_{l, l^{\prime}}
$$

double-scaling limit

$$
N \rightarrow \infty \quad p \rightarrow \infty \quad \lambda=\frac{2 p^{2}}{N} \quad \text { fixed }
$$

double-scaling limit

$$
N \rightarrow \infty \quad p \rightarrow \infty \quad \lambda=\frac{2 p^{2}}{N} \quad \text { fixed }
$$

define

$$
q=e^{-\lambda}
$$

Chord diagrams

Majorana SYK
moment $m_{k}=\operatorname{tr}\left(H^{k}\right)$
$\begin{array}{cccccc}\operatorname{tr}(\Psi & \Psi & \Psi & \Psi & \Psi & \Psi)\end{array}$

$$
\mathcal{N}=2 \text { SUSY SYK }
$$

$$
m_{k}=2^{-k}\left(\operatorname{tr}\left((Q \bar{Q})^{k}\right)+\operatorname{tr}\left((\bar{Q} Q)^{k}\right)\right)
$$

Chord diagrams

Majorana SYK
moment $m_{k}=\operatorname{tr}\left(H^{k}\right)$

$$
\mathcal{N}=2 \text { SUSY SYK }
$$

$$
m_{k}=2^{-k}\left(\operatorname{tr}\left((Q \bar{Q})^{k}\right)+\operatorname{tr}\left((\bar{Q} Q)^{k}\right)\right)
$$

Chord diagrams

Majorana SYK
moment $m_{k}=\operatorname{tr}\left(H^{k}\right)$

$$
\mathcal{N}=2 \text { SUSY SYK }
$$

$$
m_{k}=2^{-k}\left(\operatorname{tr}\left((Q \bar{Q})^{k}\right)+\operatorname{tr}\left((\bar{Q} Q)^{k}\right)\right)
$$

Hilbert space

Majorana SYK

$\mathcal{N}=2$ SUSY SYK

Hilbert space

Majorana SYK
$\mathcal{N}=2$ SUSY SYK

$|3\rangle$

$|O X O X\rangle=|2, O X\rangle$

Hilbert space

Majorana SYK

$$
\mathcal{N}=2 \text { SUSY SYK }
$$

$|n\rangle$

$$
\begin{aligned}
& |n, X O\rangle=|\overbrace{X O X O \cdots X O}^{n \text { pairs of } X O}\rangle \\
& |n, O X\rangle=|\overbrace{O X O X \cdots O X}^{n \text { pairs of } O X}\rangle \\
& |n, X X\rangle=\mid \overbrace{X O X O \cdots X O X}^{n \text { nairs of } X O}
\end{aligned}
$$

Hilbert space

Majorana SYK
$\mathcal{N}=2$ SUSY SYK

$$
H_{R}|3\rangle \supset|4\rangle
$$

Hilbert space

Majorana SYK
$\mathcal{N}=2$ SUSY SYK

$$
H_{R}|3\rangle \supset|2\rangle
$$

Hilbert space

Majorana SYK

$H_{R}|3\rangle \supset|2\rangle$
$\mathcal{N}=2$ SUSY SYK

$Q_{R}|O X O X\rangle \supset|O X O X O\rangle$

Hilbert space

Majorana SYK
$\mathcal{N}=2$ SUSY SYK

$H_{R}|3\rangle \supset|2\rangle$

$Q_{R}|O X O X\rangle \supset|O X O\rangle$

Hilbert space

Majorana SYK

$H_{R}|3\rangle \supset|2\rangle$
$\mathcal{N}=2$ SUSY SYK

$\bar{Q}_{R}|O X O X\rangle \supset|X O X\rangle$

Hilbert space

$$
\{|n, X O\rangle,|n, O X\rangle,|n, X X\rangle,|n, O 0\rangle\}
$$

Hilbert space

emergence of fermion in the bulk

$$
\{\underbrace{|n, X O\rangle,|n, O X\rangle}_{\text {bosonic }}, \underbrace{|n, X X\rangle,|n, O O\rangle}_{\text {fermionic }}\}
$$

Hilbert space

emergence of fermion in the bulk

$$
\{\underbrace{|n, X O\rangle,|n, O X\rangle}_{\text {bosonic }}, \underbrace{|n, X X\rangle,|n, O O\rangle}_{\text {fermionic }}\}
$$

Hilbert space

emergence of fermion in the bulk

$$
\{\underbrace{|n, X O\rangle,|n, O X\rangle}_{\text {bosonic }}, \underbrace{|n, X X\rangle,|n, O 0\rangle}_{\text {fermionic }}\}
$$

There are 4 supercharges

$$
Q_{L}, \bar{Q}_{L}, Q_{R}, \bar{Q}_{R}
$$

Finding the ground state

- ground state: $|\Psi, j\rangle$ such that

$$
Q_{R}|\Psi, j\rangle=\bar{Q}_{R}|\Psi, j\rangle=0
$$

Finding the ground state

- ground state: $|\Psi, j\rangle$ such that

$$
Q_{R}|\Psi, j\rangle=\bar{Q}_{R}|\Psi, j\rangle=0
$$

- expand

$$
|\Psi, j\rangle=\sum_{n=0}^{\infty} q^{-n / 4}\left(\alpha_{n}|n, X O\rangle+\beta_{n}|n, O X\rangle\right)
$$

fraction of ground states in sector j

- want to calculate

$$
D(j)=\frac{\# \text { ground states of charge } j}{\# \text { all states of charge } j}=\frac{Z(j, \infty)}{Z(j, 0)}
$$

fraction of ground states in sector j

- want to calculate

$$
D(j)=\frac{\# \text { ground states of charge } j}{\# \text { all states of charge } j}=\frac{Z(j, \infty)}{Z(j, 0)}
$$

- partition function

$$
Z(j, \beta)=\operatorname{tr}_{j}\left(e^{-\beta H}\right)=\langle\Omega, j| e^{-\beta H}|\Omega, j\rangle
$$

fraction of ground states in sector j

- want to calculate

$$
D(j)=\frac{\# \text { ground states of charge } j}{\# \text { all states of charge } j}=\frac{Z(j, \infty)}{Z(j, 0)}
$$

- partition function

$$
Z(j, \beta)=\operatorname{tr}_{j}\left(e^{-\beta H}\right)=\langle\Omega, j| e^{-\beta H}|\Omega, j\rangle
$$

- $\beta \rightarrow 0$

$$
z(j, 0)=\langle\Omega, j \mid \Omega, j\rangle
$$

fraction of ground states in sector j

- want to calculate

$$
D(j)=\frac{\# \text { ground states of charge } j}{\# \text { all states of charge } j}=\frac{Z(j, \infty)}{Z(j, 0)}
$$

- partition function

$$
Z(j, \beta)=\operatorname{tr}_{j}\left(e^{-\beta H}\right)=\langle\Omega, j| e^{-\beta H}|\Omega, j\rangle
$$

- $\beta \rightarrow 0$

$$
Z(j, 0)=\langle\Omega, j \mid \Omega, j\rangle
$$

- $\beta \rightarrow \infty$

$$
Z(j, \infty)=\frac{\langle\Omega, j \mid \Psi, j\rangle\langle\Psi, j \mid \Omega, j\rangle}{\langle\Psi, j \mid \Psi, j\rangle}
$$

fraction of ground states in sector j

- want to calculate

$$
D(j)=\frac{\# \text { ground states of charge } j}{\# \text { all states of charge } j}=\frac{Z(j, \infty)}{Z(j, 0)}
$$

- partition function

$$
Z(j, \beta)=\operatorname{tr}_{j}\left(e^{-\beta H}\right)=\langle\Omega, j| e^{-\beta H}|\Omega, j\rangle
$$

- double-scaling limit

$$
D(j)=2 \cos (\pi j) e^{-\pi^{2} /(4 \lambda)}+2 \cos (3 \pi j) e^{-9 \pi^{2} /(4 \lambda)}+2 \cos (5 \pi j) e^{-25 \pi^{2} /(4 \lambda)}+\cdots
$$

fraction of ground states in sector j

- want to calculate

$$
D(j)=\frac{\# \text { ground states of charge } j}{\# \text { all states of charge } j}=\frac{Z(j, \infty)}{Z(j, 0)}
$$

- partition function

$$
Z(j, \beta)=\operatorname{tr}_{j}\left(e^{-\beta H}\right)=\langle\Omega, j| e^{-\beta H}|\Omega, j\rangle
$$

- double-scaling limit

$$
D(j)=\underbrace{2 \cos (\pi j) e^{-\pi^{2} /(4 \lambda)}}_{\text {Schwarzian }}+2 \cos (3 \pi j) e^{-9 \pi^{2} /(4 \lambda)}+2 \cos (5 \pi j) e^{-25 \pi^{2} /(4 \lambda)}+\cdots
$$

fraction of ground states in sector j

- want to calculate

$$
D(j)=\frac{\# \text { ground states of charge } j}{\# \text { all states of charge } j}=\frac{Z(j, \infty)}{Z(j, 0)}
$$

- partition function

$$
Z(j, \beta)=\operatorname{tr}_{j}\left(e^{-\beta H}\right)=\langle\Omega, j| e^{-\beta H}|\Omega, j\rangle
$$

- double-scaling limit (same as microscopic calculation)

$$
D(j)=\underbrace{2 \cos (\pi j) e^{-\pi^{2} /(4 \lambda)}}_{\text {Schwarzian }}+\underbrace{2 \cos (3 \pi j) e^{-9 \pi^{2} /(4 \lambda)}+2 \cos (5 \pi j) e^{-25 \pi^{2} /(4 \lambda)}+\cdots}_{\text {non-perturbative corrections }}
$$

physical interpretation of $Z(j, \infty)$

$$
Z(j, \infty)=\frac{\langle\Omega, j \mid \Psi, j\rangle\langle\Psi, j \mid \Omega, j\rangle}{\langle\Psi, j \mid \Psi, j\rangle}=\text { probability of wormhole having zero chords }
$$

physical interpretation of $Z(j, \infty)$

$$
Z(j, \infty)=\frac{\langle\Omega, j \mid \Psi, j\rangle\langle\Psi, j \mid \Omega, j\rangle}{\langle\Psi, j \mid \Psi, j\rangle}=\text { probability of wormhole having zero chords }
$$

This is a bulk quantity

physical interpretation of $Z(j, \infty)$

$$
Z(j, \infty)=\frac{\langle\Omega, j \mid \Psi, j\rangle\langle\Psi, j \mid \Omega, j\rangle}{\langle\Psi, j \mid \Psi, j\rangle}=\text { probability of wormhole having zero chords }
$$

This is a bulk quantity

