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When Gutzwiller meets DMRG

Martin C. Gutzwiller

(1925-2014) 

 A pioneer in correlated electrons

 Wrote down and studied a model, which is now 

called (single-band) Hubbard model.

 “The most promising method for the Hubbard 

model was devised by M. Gutzwiller.” 

- P. W. Anderson in 1987

 One of creators of quantum chaos theory

Steven R. White

 Density Matrix Renormalization Group 

(DMRG) was invented by Steven White 

in 1992.

 Most accurate computational method for 

many-particle quantum systems in 1D.



Two dimensions: difficulty vs. versatility

The unique 2D

† 𝒅 = 𝟒 − 𝝐, 𝝐 = 𝟐: absence of long-

ranged orders, strong fluctuations;

† 𝒅 > 𝟏: absence of powerful tools, 

growing quantum entanglement
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Any paradigm for correlated electrons in 2D?

Paradigms in physics

 philosophy + method

 reductionism, emergence principle

 Hamiltonian / Lagrangian

 effective theory

 …

Classic paradigms in 

condensed matter physics

 Landau: symmetry breaking, order 

parameter

 BCS: Cooper pair, BCS wave function 

(macroscopic quantum phenomenon)

 Laughlin: wave function, quasi-particle 

carrying a fractional charge

Situation: so far not a universal one

Paradigm

A model of something, or a very clear 

and typical example of something. 

(Cambridge Business English Dictionary @ Cambridge 

University Press)



Dimensionality crossover: 𝟏𝑫 → 𝟐𝑫

Efforts to dimensionality expansion: 

from 1D to 2D

 Bosonization → various 2D versions of 

Bosonization

 CFT → CFT in higher dimensions, 

conformal bootstrap, …

 DMRG → tensor networks, PEPS, 

PESS (simplex),  …

A facilitated issue: Is there any paradigm from 1D to 2D? 

 Epistemology: learn something unknown from known.

 1D is well understood owing to powerful tools: Bosonization, CFT, DMRG, …

Dimensionality expansion is much 

more difficult than its reduction

 A huge gap between 1D and 2D: 

dramatically increasing 

entanglement, …

 A typical example for : “1→2” is 

much more significant than “0→1”.



Outline

 Dimensionality crossover from 1D to 2D: any paradigm?

 Methodology: Gutzwiller guided (boosted) DMRG

 Method benchmark: Kitaev honeycomb model 

 Example: AFM Heisenberg model on the Kagome lattice



Methodology

 DMRG guided (boosted) by Gutzwiller projected wave functions

 Convert a Gutzwiller projected state to a matrix product state (MPS)

 DMRG initialized with such a converted state

 More advantages of the Gutzwiller-MPS conversion

 Compare Gutzwiller projected state with a DMRG-optimzed MPS directly 

 Compute entanglement features for Gutzwiller projected states

 “The most promising method for the Hubbard 

model was devised by M. Gutzwiller.” 

- P. W. Anderson in 1987

 Most accurate computational method for 

many-particle quantum systems in 1D.



How to convert: from projected Fermi sea to MPS

Ying-Hai Wu, Lei Wang, Hong-Hao Tu, PRL 124, 246401 (2020), arXiv:1910.11011 

single-particle operators

matrix product operator (MPO)

𝟏 𝟎
𝒂 𝟏

𝟏 𝟎
𝒃 𝟏

=
𝟏 𝟎

𝒂 + 𝒃 𝟏

matrix product identity

MPO evolved MPS



Gutzwiller projection on an MPS

Gutzwiller projection

Ying-Hai Wu, Lei Wang, Hong-Hao Tu, PRL 124, 246401 (2020), arXiv:1910.11011

Hui-Ke Jin, Hong-Hao Tu, YZ, PRB 101, 16135 (2020), arXiv:2001.04611



How to convert: paired fermions — various methods

① MPO-MPS by pairing function

② MPO-MPS by filling up Bogoliubov quasi-holes: much more efficiently

Hui-Ke Jin, Hong-Hao Tu, YZ, PRB 101, 16135 (2020), arXiv:2001.04611

Ying-Hai Wu, Lei Wang, Hong-Hao Tu, PRL 124, 246401 (2020), arXiv:1910.11011 



How to convert: paired fermions — various methods

① MPO-MPS by pairing function

② MPO-MPS by filling up Bogoliubov holes

③ Paffian method:

① stable against the gap closing

② does not rely on the choice of maximally localized Wannier orbitals

Hui-Ke Jin, Rong-Yang Sun, YZ, Hong-Hao Tu, PRB 105, L081101 (2022), arXiv:2111.09101
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Benchmark in 2D: Kitaev honeycomb model

 Exactly solvable model of great interest

 Gapless states are not well solved by usual DMRG

 Parton wave function is known

 Different topological sectors

Model Hamiltonian

A. Kitaev, Ann. Phys. 321, 2 (2006)



Kitaev honeycomb model: from Gutzwiller to MPS

Accumulated truncation error:

Relative energy deviation:

𝐽𝑦 = 𝐽𝑧 = 1;  𝐿𝑥 = 10, 𝐿𝑦 = 4, Φ𝑦 = −1

Hui-Ke Jin, Hong-Hao Tu, YZ, arXiv:2009.04129,  PRB Lett (2021)



Kitaev honeycomb model: Gutzwiller guided DMRG

 Small initial bond dimension: ෩𝐷 = 200; 

 Final bond dimension after DMRG sweeps: 

𝐷 = 8000 random , 6500 (Gutzwiller); 

 The eigenvalue (Φ𝑦 = ±1) is preserved;

 The random-MPS initialized DMRG always 

converges to an MPS in Φ𝑦 = −1 sector, a 

local minimum. 

[𝐸𝑔 Φ𝑦 = −1 − 𝐸𝑔 Φ𝑦 = 1 ≈ 0.084]

Cylinder geometry: 𝐿𝑥 = 𝐿𝑦 = 6, 𝐽3 = 0

Hui-Ke Jin, Hong-Hao Tu, YZ, arXiv:2009.04129,  PRB Lett (2021)
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Quantum Spin Liquid: terminology

Quantum

➢ vs. “thermal”: vanishing 

entropy density

➢ highly quantum entangled 

ground states

Spin

➢ charge degrees of freedom 

are freezing, Mott insulator 

➢ low energy physics depicted 

by spin degrees of freedom

RVB =∑

Liquid

➢ vs. “solids”: ordered spins, 

glassy spins, VBS, etc

➢ fluctuating vs. static/ordering 

/freezing



Definition

† Quantum spin liquid is defined as a Mott insulator which does not

order magnetically even down to zero temperature due to quantum 

fluctuations. 

Mott insulator

① Pristine Mott insulator: odd number electrons/spins per unit cell.

② Can not be adiabatically connected to a trivial band insulator.

③ Mottness is more than being an insulator.



 Spinons: S=1/2, charge neutral, mobile objects

 “Fractionalization”

 Gauge field: to accomplish physical spin degrees of freedom

 These spinons are generally accompanied by gauge fields, U(1) or Z2.

Emergent particles and fields 

 𝑺 =
𝟏

𝟐
, 𝑺𝒛 = ±

𝟏

𝟐

 one magnon (∆𝑺 = 𝟏) → two spinons



Some most updated views

 Long-ranged entanglement of spins

 Topological order

 Gapped spin liquid states must have topological order.   [M. B. Hastings (2004)]

 (Continuous or discrete) symmetry fractionalization

 From symmetry protected topological order (SPT) to symmetry enriched 

topological order (SET).



A recommend review



Routes to quantum spin liquid

† Enhance quantum spin fluctuations

geometric frustration

charge fluctuations

multi-spin exchanges
competing interactions

degenerate orbitals

spin-orbital or pseudospin

small spin quanta

∆𝑺 ∝
𝟏

𝟐𝑺 + 𝟏



ka go me, ka go me

かごめかごめ
かごの中の鸟は
いついつ出やる
夜明けのばんに
鹤と亀が滑った
後ろの正面谁？

笼子缝，笼子缝
笼子中的鸟儿
无时无刻都想要跑来
就在那黎明前的夜晚
鹤与龟滑倒了
背后面对你的是谁？

ka go me ka go me

ka go no na ka no to ri wa

yi tsu yi tsu de ya ru

yo a ke no ba n ni

tsu ru to ka me ga su be tta

wu shi ro no shoumen da re

Quantum fluid of spins on a 

basket weave lattice?



AFM Heisenberg model on Kagome lattice

Materials: herbertsmithite and its relatives

a review by M.R. Norman (2016)

An incomplete list of numeric papers

 Exact diagonalization: up to 48 sites 

Leung and Elser (93); Lecheminant et al. (97); Mila (98); 

Waldtmann et al. (98); Sindzingre and Lhuillier (09); Lauchli

et al. (11); Nakano and Sakai (11); Lauchli et al. (19); etc.

 DMRG/iDMRG

Wietek and Lauchli (20); Jiang et al. (08); Yan et al. (11); 

Depenbrock et al. (12); Jiang et al. (12); Nishimoto et al. 

(13); He et al. (17); etc.

 Tensor network

Mei et al. (17); Liao et al. (17); Jahromi et al. (20); Evenbly 

and Vidal (10); etc.

 VMC

Ran et al. (07); Iqbal et al. (13,14,15); etc.

Issue: to gap or not to gap



AFM Heisenberg model on Kagome lattice

Model Hamiltonian

Rong-Yang Sun, Hui-Ke Jin, Hong-Hao Tu, YZ, arXiv: 2203.07321

Effective Hamiltonian: mean-field ansatz

[𝚽𝟑, 𝚽𝟔]
A few example ansatzes:

 DSL: 𝟎, 𝝅 (two Driac cones)

 CSL: Τ𝝅 𝟐 , 𝟎 (Chern # 𝐶 = 2)

 SFS:  [𝟎, 𝟎] (spinon FS)



DMRG calculations initialized with various parton ansatzes

𝑫 = 𝟓𝟎𝟎𝟎

 𝑬𝑮𝑺: is from the converged 

random-DMRG calculation 

with 𝐷 = 8000;

 All the DMRG calculations 

converge to ground states 

with “the same good energy”. The performance is not as good as expected.

Rong-Yang Sun, Hui-Ke Jin, Hong-Hao Tu, YZ, arXiv: 2203.07321

[𝚽𝟑, 𝚽𝟔]



Alternative strategy: “Attack from right”

Model Hamiltonian

Rong-Yang Sun, Hui-Ke Jin, Hong-Hao Tu, YZ, arXiv: 2203.07321

① Start with a relative large 𝐽′ that hosts 

stable CSL ground states;

② Then reduce 𝐽′ adiabatically and 

monitor the evolution of ground states.



Chiral spin liquid

 Topological order

⇔ gapped QSL

 Symmetry breaking: 

time reversal, parity

scalar spin chirality



Possible chiral spin liquid on the Kagome lattice



A QUICK PREVIEW OF RESULTS

Model Hamiltonian

Rong-Yang Sun, Hui-Ke Jin, Hong-Hao Tu, YZ, arXiv: 2203.07321

Phase diagram
𝝂 = 𝟏/𝟐 Laughlin state



Identify the topological order: 𝝂 = 𝟏/𝟐 Laughlin state

𝚽 = 𝟎

𝚽 = 𝝅/𝟐

Effective Hamiltonian

4 exact boundary zero modes:

Anyon eigen-basis (MES)

Entanglement spectra (ES): 𝑺𝑼(𝟐)𝟏 WZW

◼ Identity sector

𝟏, 𝟑, 𝟒, 𝟕,⋯

◼ Semion sector

𝟐, 𝟐, 𝟔, 𝟖,⋯

𝑱′ = 𝟎. 𝟒

Li, Haldane (08); Qi, Katsura, Ludwig (12)

Rong-Yang Sun, Hui-Ke Jin, Hong-Hao Tu, YZ, arXiv: 2203.07321



AFM Heisenberg model on Kagome lattice

Energy, fidelity, & spin chirality

Kramers degeneracy

real MPS

Boosted Random

Rong-Yang Sun, Hui-Ke Jin, Hong-Hao Tu, YZ, arXiv: 2203.07321



AFM Heisenberg model on Kagome lattice

Semion sector

 Target semion sector directly

by initialing DMRG with ۧ|𝚿𝟐

 Characteristic ES counting

 Eigenstate of KAFM Hamiltonian

Rong-Yang Sun, Hui-Ke Jin, Hong-Hao Tu, YZ, arXiv: 2203.07321



More on spin chirality and its correlation

 Evaluation of spin chirality:

① 𝜒 = 𝜒0𝜒𝑟𝑚𝑎𝑥

1/2
;

② Real MPS: re-diagonalization;

③ Complex MPS.

 (a) 𝑱′ = 𝟎. 𝟐:

① Larger circumference 𝐿𝑦 will 

enhance 𝜒;

② Larger 𝐷 will enhance 𝜒;

③ Larger aspect ratio 𝐿𝑦/𝐿𝑥
will enhance 𝜒;

 (b) & (c) 𝑱′ = 𝟎:

① Larger 𝐿𝑦 → larger 𝜒;

② Larger 𝐷 → larger 𝜒.



Ordered states

Rong-Yang Sun, Hui-Ke Jin, Hong-Hao Tu, YZ, arXiv: 2203.07321



Take-home messages

 A promising method: Gutzwiller + DMRG

 The performance of DMRG in 2D can be dramatically improved

 Challenging AFM Heisenberg model on the Kagome lattice

 Chiral spin liquid: 𝝂 = 𝟏/𝟐 Laughlin state 

 Two topological sectors + Kramers’ degeneracy in each topological sector


