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PHYSICAL REVIEW A VOLUME 32, NUMBER 4 OCTOBER 1985

Quantum nondemolition measurement of the photon number via the optical Kerr effect

N. Imoto
NTT Musashino Electrical Communication Laboratories, Nippon Telegraph and Telephone Corporation, Midori-cho 3-9-11,
Musashino-shi, Tokyo 180, Japan

H. A. Haus
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Y. Yamamoto
NTT Musashino Electrical Communication Laboratories, Nippon Telegraph and Telephone Corporation, Midori-cho 3-9-11,
: Musashino-shi, Tokyo 180, Japan
(Received 30 April 1985)

This paper proposes a quantum nondemolition measurement scheme for the photon number.
The signal and probe optical waves interact via the optical Kerr effect.. The optical phase of the
probe wave is selected as the readout observable for the measurement of the photon number of the
signal wave. The measurement accuracy An and the imposed phase noise A¢ of the signal wave
satisfy Heisenberg’s uncertainty principle with an equality sign, ((An)?){(A¢)?) = +.
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FIG. 1. Configuration for the QND measurement of the sig-
nal photon number. Transmissions of mirrors M1 and M2 are
unity for signal frequency. Signal wave passes through the opti-
cal Kerr medium without changing its photon number. Phase
of the probe wave is modulated by the signal photon number.
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FIG. 1. Configuration for the QND measurement of the sig-
nal photon number. Transmissions of mirrors M1 and M2 are
unity for signal frequency. Signal wave passes through the opti-
cal Kerr medium without changing its photon number. Phase
of the probe wave is modulated by the signal photon number.



IV. SELF-PHASE-MODULATION EFFECT

Equations (8)—(10) are idealized in the sense that they
do not include the self-modulation of the phase caused by
the signal and probe waves. In order to treat the Kerr
medium more realistically, we must consider the full
Hamiltonian. We shall then show that it is possible to ar-
rive at a QND measurement arrangement which is
describable in terms of the ideal Hamiltonians (8)—(10).

The perturbation energy due to the third-order non-
linear effect is

- [fEdPNL}dV
=3+ [ [ [ SXQEEEEav . (26)

Here, X°) is defined not only for the optical Kerr effect
but also for every process in which four photons are emit-
ted or absorbed. In contrast, it should be noted that X'*
in (6) is phenomenologically defined for the optical Kerr
effect, especially for the phase modulation of the probe
wave by the signal wave.



V. MEASUREMENT ACCURACY
AND THE IMPOSED PHASE NOISE

In general quantum measurements, the product of the
measurement accuracy and the additional uncertainty im-
posed on the conjugate observable is expected to satisfy
the inequality of Heisenberg’s uncertainty principle.
However, whether the equality sign is achievable or not in
a QND measurement has not yet been investigated. We
will show that the proposed QND measurement scheme
provides the minimum uncertainty product of measure-
ment accuracy for photon number and imposed phase
noise. .

Consider the case without the self-phase-modulation ef-
fect for both the signal and probe waves. The output
phase of the signal is, in analogy with (22),

¢.; =¢S +\/an ? ' | ‘ (36)



APPENDIX

In this appendix the output of the proposed
interferometer—balanced-mixer detector is derived. The
observed photon number is defined as the output current
divided by a normalized factor which changes the current
into the photon number. Equations (23)—(25) are derived
by the obtained formula for the observed photon-number
operator.

Figure 3 shows the present scheme in which the annihi-
lation operator for eacl) part of the interferometer is speci-
fied. The probe laser | utput a is divided by beam splitter

tical Kerr medium
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FIG. 3. Detailed description of the annihilation operators in
the interferometer—balanced-mixer detector. Probe wave and
reference wave are denoted as @, and a,, respectively. Zero-
point fluctuation, b, is mixed at beam splitter 1.
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Abstract

Quantum mechanics has been established on the basis of the Hamiltonian formula which describes the time
evolution of the system. In any textbook, the quantization procedure starts from the box-quantization, in which
spatial modes of a cavity are first defined, and then the time evolution of the modes is described. The Hamiltonian

H has a role of “time evolution generator,” which governs the time evolution of an operator a as
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(L : Lagrangian density)
Minimum action principle

Present theory

6 /ZI L(z)dz =0

where L(z) E//A/OT Ldtdzdy
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|} (Legendre transform)
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II= 5 oL (conjugate observable)

(03 /0z)

= {®(t,z,y,2), I(¢, 2, ¢, 2)}
= 6(t' — t)6(z' — z)6(y' — v)

Usual theory
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where A is the cross-sectional area of the beam. This expression will be used
in later sections. -
The spatial evolution of a,(z) is given by equation of evolution

A Lo 5
ﬁaw(z) = 'z:'ﬁ[aw(z):-[z(z)] ) (3)

where I, is the spatial evolution generator for the z axis, which is defined as
I, = ffda:dy f(;r dt T,,, where T, is the (z,z) component of the Maxwell

energy-momentum tensor. I, is then expressed by the field components as
. T P g0 ; R o o
0 .

For a plane wave beam, the integral for (z, y) plane should be restricted within
the cross-sectional area of the beam. When there is only dispersion but no
perturbation, the unperturbed spatial evolution generator, Iy is of the form

. L ol 1
fo= - Xw: hk., (al,aw i 5) , (5)
which leads to the trivial propagation solution:

G (2) = e*+*q,(0) . (6)

When there is an interaction, the slowly varying annihilation operator A, (z)
is defined by
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FIG. 1. Schematic view of a directional coupler
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Lint is expressed using the perturbation polarization P as

T o
- :/// <EZP,— %E-P) dtdzdy .
0

z,y) /i( 2) g 2 =TL/
/ / : \\

(10)

(11)

Since Pis a function of the field, fin is expressed by A, (2)’s and A (z)’s, us-
ing the quantized expression of the field. Equation of evolution (10) thus gives
a set of coupled-mode equations for relevant A, (z)’s and A} (z)’s. The above
formula is consistently used in solving specific problems described hereafter.



(a) (b)

FIG. 5. Stationary pulse propagation in a non-dispersive medium. (a) Spatial
evolution of a temporal pulse mode. (b) Time evolution of a spatial pulse mode.
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Anomalous commutation relation and modified spontaneous emission
inside a microcavity

Masahito Ueda and Nobuyuki Imoto

NTT Basic Research Laboratories, Morinosato- Wakamiya, Atsugi-shi, Kanagawa 2438-01, Japan
(Received 7 February 1994)

Usual quantum-optical operator relations for a beam splitter are shown to lead to an anomalous
commutation relation inside a microcavity. The physical origin of this anomaly is identified as
self-interference of the mode whose coherence length is longer than the round-trip length of the
cavity. Altered sponteneous emission of an excited atom is found to be a direct manifestation of
this anomalous commutation relation. The anomalous Heisenberg uncertainty relations, which are
derived from the commutation relation according to the Schwartz inequality, cannot be.detected
by probing the internal field with a beam splitter. The anomalous commutation relation, however,
can be related to the change in the effective reflectivity of the beam splitter. The similarity and
difference between an excited atom and a probe beam splitter are discussed.

PACS number(s): 03.65.Bz, 42.50.Dv, 42.50.Lc
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The commutation relation can be = 1 inside a cavity
Ueda & Imoto PRAS50, 89(1994)
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Consider the following situation:

It is a famous story that Wheeler said “Why are
electrons indistinguishable? That's because they
are single electron incarnate.”
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How can you observe this phenomena?
Usually, you just wait this (particle/anti-particle generation
+ recombination) spontaneously happens in the vacuum.
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Usually, you just wait this (particle/anti-particle generation
+ recombination) happens from vacuum.

But | want to ask: isn’t there any possibility of
engineering this happen?
anti-

particle particle particle

future

[ = NOW

past



If you have mirrors in time domain, however, you may
engineer this happen.

If a mirror in time
domain available...

i \ anti- particle
particlie particle

future

[ = NOW

past

If a mirror in time
domain available...



If this kind of thing could be reproduced controllably,
then, time-domain resonators also could be built.
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Quantum teleportation can do it!
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Quantum teleportation can do it!
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Quantum teleportation can do it!

fD

Classical
Co A .
Bell measurement — Flr%l tuning

anti- particle

particle

particle
future

[ = NOW

past

Entangled pair
generation




Quantum teleportation can do it!
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generation
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A mirror 1n
time domain

AA)

A mirror 1n
time domain

How to realize the “closed-loop time
domain cavity’ is the future problem.



Thank you for. your attention!




Appendix: Field commutators are always normal even in cavities.

As discussed in slide @), we derived that the commutator [a(w), at(w’)] becomes

anomalous, which is because the w modes are incompatible with the resonator modes
[PRAB0,89 (1994)]. (This anomaly is related to the Purcell effect.)

In this appendix, we show that the field commutators are normal even inside the
resonator. This was published in PRL77, 1739 (1996). (See below).

VOLUME 77, NUMBER 9 PHYSICAL REVIEW LETTERS 26 AUGUST 1996

Field Commutation Relations in Optical Cavities

Stephen M. Barnett

NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan
and Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 ONG, Scotland*

Claire R. Gilson
Department of Mathematics, University of Glasgow, University Gardens, Glasgow G12 8QW, Scotland

Bruno Huttner’ and Nobuyuki Imoto

NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan
(Received 15 September 1995)

We introduce a simple quantum theory of the lossy beam splitter. When applied to describe a Fabry-
Pérot cavity this leads to apparently anomalous commutation relations for the intracavity operators.
We show that these unfamiliar properties are nevertheless consistent with the fundamental canonical
commutator for the vector potential and electric field operators. This result is derived as a consequence
of causality as applied to the properties of mirror reflection coefficients. [S0031-9007(96)00953-2]

PACS numbers: 42.50.Dv, 03.65.Ca, 42.50.L.c



