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Holographic Entanglement Entropy renormalization through extrinsic counterterms

Entanglement Entropy in the AdS/CFT context

Holographic Entanglement Entropy

EE is defined as the von Neumann Entropy of reduced density
matrix for subsystem A:

SEE = −tr (ρ̂A ln ρ̂A) .

In AdS/CFT, for Einstein-AdS bulk gravity, EE can be computed
using area prescription of Ryu-Takayanagi [hep-th/0603001]:

SEE =
Vol(Σ)

4G
.

Σ is minimal surface in AdS bulk. ∂Σ at spacetime boundary B is
required to be conformally cobordant to entangling surface ∂A at
conformal boundary C .
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Entanglement Entropy in the AdS/CFT context

Ryu-Takayanagi Construction

Σ

ρ = 0 B

A
C

∂A

∂Σ

(A)AdS2n

CFT2n−1
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Entanglement Entropy in the AdS/CFT context

Replica Trick

Computation of SEE reduced to evaluating Euclidean on-shell action

IE for gravity dual on conically singular manifold M̂
(α)
D with angular

deficit of 2π(1− α).

M̂
(α)
D is the bulk gravity dual of the CFT replica orbifold defined in

the replica-trick construction (Cardy and Calabrese [0905.4013]). It
is sourced by codimension-2 cosmic brane with tension

T (α) = (1−α)
4G , coupled through NG action for Einstein gravity.

(Dong [1601.06788]; Lewkowycz and Maldacena [1304.4926]).
Brane becomes RT surface in tensionless limit.

EE given by

SEE = −∂αIE
(
M̂

(α)
D

)∣∣∣
α=1

.
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Entanglement Entropy in the AdS/CFT context

Euclidean Einstein-Hilbert Action and Ryu-Takayanagi

Consider Euclidean EH action evaluated in orbifold M̂
(α)
D ,

IEHE =
1

16πG

 ∫
M̂

(α)
D

dDx
√
G
(
R(α) − 2Λ

) .

Using that
R(α) = R + 4π (1− α) δΣ

(Fursaev, Patrushev and Solodukhin [1306.4000]), SEE is then given
by area prescription of RT.

EH action is divergent → SEE is divergent. Use renormalized action
to obtain universal part of HEE.
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Renormalization of Einstein-AdS gravity action

Renormalization through extrinsic counterterms

Scheme (Olea [hep-th/0504233]; [hep-th/0610230]) considers
counterterms depending explicitly on both intrinsic Rijkl and
extrinsic curvatures Kij of the boundary (FG foliation).

Iren = IEH + cd

∫
∂M

Bd (h,K ,R) .

Boundary term is fixed. Different form for even and odd-dimensional
bulks. For odd d, Bd is Chern form of Euler theorem.∫

Md+1

Ed+1 = (4π)
(d+1)

2

(
(d + 1)

2

)
!χ (Md+1) +

∫
∂Md+1

Bd .

Unique value of coupling constant cd provides well defined
(Asymptotically Dirichlet) variational principle and finite action,
consistent with correct thermodynamics. Agreement with standard
holographic renormalization discussed in Miskovic and Olea
[0902.2082]; Miskovic, Tsoukalas and Olea [1404.5993].
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Renormalization of Einstein-AdS gravity action

General formulation of Extrinsic counterterms

Bd (h,K ,R) = ddx
√
−h (d + 1)

1∫
0

dtδ
[i1...id ]
[j1...jd ]K

j1
i1

(
1

2
Rj2j3

i2i3
− t2K j2

i2
K j3
i3

)

. . .×
(

1

2
Rjd−1jd

id−1id
− t2K

jd−1

id−1
K jd
id

)
, (d = odd)

= ddx
√
−hd

1∫
0

dt

t∫
0

dsδ
[i1...id ]
[j1...jd ]K

j1
i1
δj2i2

(
1

2
Rj3j4

i3i4
− t2K j3

i3
K j4
i4

+
s2

`2
δj3i3 δ

j4
i4

)
. . .

(
1

2
Rjd−1jd

id−1id
− t2K

jd−1

id−1
K jd
id

+
s2

`2
δ
jd−1

id−1
δjdid

)
,

(d = even)
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Renormalization of Einstein-AdS gravity action

Extrinsic counterterms reproduce correct thermodynamics

For Schwarzschild-AdS in 4D:

β−1IB3

E =
1

2
M − Vol (Σk,2)

16πG
lim
r→∞

[
πr3

`2

]
β−1IEHE =

1

2
M +

Vol (Σk,2)

16πG
lim
r→∞

[
πr3

`2

]
− TSBH

For Schwarzschild-AdS in 5D:

β−1IB4

E =
1

3
M − Vol (Σk,3)

16πG
lim
r→∞

[
2r4

`2

]
+ E0

β−1IEHE =
2

3
M +

Vol (Σk,3)

16πG
lim
r→∞

[
2r4

`2

]
− TSBH

For Schwarzschild-AdS in any dimension:

β−1I renE = β−1IEHE + β−1IBd

E = M + (E0)− TS

E0 only for d even
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Going to codimension-2

Euler density and extrinsic surface terms for cones

The Euler density in even 2n-dimensional conically singular
manifolds obeys∫

M
(α)
2n

E (α)
2n =

∫
M2n

E (r)
2n + 4πn (1− α)

∫
Σ

E2(n−1) +O
(
(1− α)2

)
(Fursaev and Solodukhin [hep-th/9501127]; Fursaev, Patrushev and
Solodukhin [1306.4000])

By the Euler theorem, the n-th Chern form obeys∫
∂M

(α)
2n

B
(α)
2n−1 =

∫
∂M2n

B
(r)
2n−1+4πn (1− α)

∫
∂Σ

B2n−3+O
(

(1− α)2
)
.

(Anastasiou, I.J.A. and Olea [1803.04990])
For odd (2n+1)-dimensional manifolds the splitting of the B2n

surface term is given by∫
∂M

(α)
2n+1

B
(α)
2n =

∫
∂M2n+1

B
(r)
2n +4πn (1− α)

∫
∂Σ

B2n−2 +O
(

(1− α)2
)
.

Then, the Euclidean action on the replica orbifold can be evaluated.
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Going to codimension-2

Euclidean action on replica orbifold

In particular, we find that

I renE

[
M̂

(α)
D

]
= I renE

[
M̂

(α)
D \ Σ

]
+

(1− α)

4G
Volren [Σ] .

Volren [Σ] is the renormalized area of the cosmic brane with tension
T (the RT surface for T → 0). (Anastasiou, I.J.A., Arias and Olea
[1806.10708])

Then, S ren
EE is given by

S ren
EE = −∂αI renE

(
M̂

(α)
D

)∣∣∣
α=1

=
Volren(Σ)

4G
.

Renormalized EE is equal to universal part and is obtained from RT
formula but considering renormalized area of extremal surface.
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Going to codimension-2

Topological form of renormalized HEE for odd-dimensional
CFTs

Using Euler theorem, for d=2n-1, renormalized HEE can be written
as

S ren
EE = − `2

8G (2n − 3)

∫
Σ

d2n−2y
√
γ`2(n−2)P2n−2 [F ]−

c2n−2 (4π)n−1 (n − 1)!χ [Σ]
)
,

Fab
cd = Rab

cd +
δ

[ab]
[cd ]

`2

For D = 4, the renormalized HEE is given by

S ren
EE =

`2

16G

∫
Σ

d2y
√
γδ

[b1b2]
[a1a2] F

a1a2

b1b2
− π`2

2G
χ [Σ] ,

in agreement with Alexakis and Mazzeo’s formula [math/0504161]
for renormalized area of extremal surfaces.
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Going to codimension-2

Topological form of renormalized HEE for odd-dimensional
CFTs

EE is separated into a geometric part (
∫
P2n−2 [F ]) and a purely

topological part (χ [Σ]).

Geometric part is zero when extremal surface has constant curvature.

Topological part is robust against continuous deformations of the
entangling surface.

For ball-shaped entangling regions, renormalized EE agrees with
computation of universal part by Kawano, Nakaguchi and Nishioka
[1410.5973]. Related to the F-quantity in 3D.
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Renormalized HEE for even-dimensional CFTs

For even-d CFTs, the renormalized EE is logarithmically divergent
and it corresponds to the universal part.

It contains the information about the conformal anomaly of the CFT.

In particular, for ball-shaped entangling regions, we have

S ren
EE = 2 (−1)n log (ε)A

A =
`(2n−1)π(n−1)

8G (n − 1)!
,

in agreement with Myers and Sinha [1006.1263].
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Interpretation of Results

Renormalized EE equal to the universal part of EE. Related to
parameters of CFT, e.g., a∗-charge (odd-d CFT) or A-anomaly
coefficient (even-d CFT).

a∗ and the A-anomaly coefficient are conjectured to be C -function
candidates (e.g., Myers and Sinha [1006.1263]).

For odd-d CFTs, renormalized EE can be written as sum of
topological invariant and polynomial in contractions of F .

Renormalized EE is renormalized area of codimension-2 RT surface.
Renormalized Einstein-AdS action is renormalized volume of bulk.
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