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m EE is defined as the von Neumann Entropy of reduced density
matrix for subsystem A:

See = —tr (ﬁA In ﬁA) .

m In AdS/CFT, for Einstein-AdS bulk gravity, EE can be computed
using area prescription of Ryu-Takayanagi [hep-th/0603001]:

m Y is minimal surface in AdS bulk. 0% at spacetime boundary B is
required to be conformally cobordant to entangling surface A at
conformal boundary C.
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(A)AdSs,
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T(a) = (14_G°‘), coupled through NG action for Einstein gravity.
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Brane becomes RT surface in tensionless limit.

with angular

m EE given by
See = ~0ale (M)

a=1
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m Consider Euclidean EH action evaluated in orbifold I\Zgl),

1
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IE C / dPxvG (R 2/\)

)
m Using that
R@) = R+ 4r(1—a)ds

(Fursaev, Patrushev and Solodukhin [1306.4000]), Sgg is then given
by area prescription of RT.
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L Entanglement Entropy in the AdS/CFT context

Euclidean Einstein-Hilbert Action and Ryu-Takayanagi

m Consider Euclidean EH action evaluated in orbifold I\Zgl),

1
EH _ D (o) _
IE C / dPxvG (R 2/\)

S

m Using that
R@) = R+ 4r(1—a)ds
(Fursaev, Patrushev and Solodukhin [1306.4000]), Sgg is then given
by area prescription of RT.
m EH action is divergent — Sgg is divergent. Use renormalized action
to obtain universal part of HEE.
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Renormalization through extrinsic counterterms

m Scheme (Olea [hep-th/0504233]; [hep-th/0610230]) considers
counterterms depending explicitly on both intrinsic R;jy and
extrinsic curvatures Kj; of the boundary (FG foliation).

Iren:IEH+Cd/ Bd(haK7R)
oM
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bulks. For odd d, By is Chern form of Euler theorem.

[ =60 (U5 e+ [ e

Ma 11 OMy1



Holographic Entanglement Entropy renormalization through extrinsic counterterms

L Renormalization of Einstein-AdS gravity action

Renormalization through extrinsic counterterms

m Scheme (Olea [hep-th/0504233]; [hep-th/0610230]) considers
counterterms depending explicitly on both intrinsic R;jy and
extrinsic curvatures Kj; of the boundary (FG foliation).

Iren:IEH+Cd/ Bd(haK7R)
oM

m Boundary term is fixed. Different form for even and odd-dimensional
bulks. For odd d, By is Chern form of Euler theorem.

[ =60 (U5 e+ [ e

Ma 11 OMy1

m Unique value of coupling constant ¢y provides well defined
(Asymptotically Dirichlet) variational principle and finite action,
consistent with correct thermodynamics. Agreement with standard
holographic renormalization discussed in Miskovic and Olea
[0902.2082]; Miskovic, Tsoukalas and Olea [1404.5993].
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L Renormalization of Einstein-AdS gravity action

General formulation of Extrinsic counterterms

<+oJd] fafy

1
By (h,K,R) = dxv/—h(d + 1) / desl 1K Jl( RIS tzK,!jK{;)
0

( RIS 2K led), (d = odd)

Id— 1’d Id—1 Id
t
= d¥xv/~hd / / dsdl ol ich o ( REE — 2K K]
0 0
J3 S Jd—1J Ji J J J.
52 6133641?) e ( 'R,: ilj - K’dd 11Kd 02 6/5 11615> ’

(d = even)
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L Renormalization of Einstein-AdS gravity action

Extrinsic counterterms reproduce correct thermodynamics

m For Schwarzschild-AdS in 4D:
Vol (Xk2) im 73
16mG  r—oo | £2

_ 1 VO/(Zk 2) . 71'[’3
1eH _ L : LA
BIE" =M+ —erg Nm ||~ Toen

1
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1B =M -
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m For Schwarzschild-AdS in 4D:
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1B __ - _ )
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_ 1 VO/(Zk 2) . -7TI’3-
16H 1 : ™
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m For Schwarzschild-AdS in 5D:

_ 1 VO/(Zk3) . _2I’4_
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Extrinsic counterterms reproduce correct thermodynamics

m For Schwarzschild-AdS in 4D:

_ 1 Vol (£x2) . [#r?®]
1B __ - _ )
Ple =M= e |7
_ 1 VO/(Zk 2) . -7TI’3-
16H 1 : _
Blem =M+ g Mm@ |~ Tew

m For Schwarzschild-AdS in 5D:

_ 1 Vol (Zk 3) . _2I’4_
1 B4 P _ 2
prle=3M 167G r"J';o_£2_+E°
_ 2 Vol (Zk3) . [2r*]
1/EH _ = ’ _
BT IgT = 3l\/H— 167G rll[lgo Nz TSgH

m For Schwarzschild-AdS in any dimension:

BUpEn = B7HER + B7HE = M+ () — TS
Ey only for d even
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Going to codimension-2

Euler density and extrinsic surface terms for cones

m The Euler density in even 2n-dimensional conically singular
manifolds obeys

[ =] &dsam@-a) [ &ny+0(1-af)
mge Man x

(Fursaev and Solodukhin [hep-th/9501127]; Fursaev, Patrushev and
Solodukhin [1306.4000])



Holographic Entanglement Entropy renormalization through extrinsic counterterms

Going to codimension-2

Euler density and extrinsic surface terms for cones

m The Euler density in even 2n-dimensional conically singular
manifolds obeys

[ =] &dsam@-a) [ &ny+0(1-af)
mge Man x

(Fursaev and Solodukhin [hep-th/9501127]; Fursaev, Patrushev and
Solodukhin [1306.4000])
m By the Euler theorem, the n-th Chern form obeys

/ B, = / B +4rn(1— a)/ Bon_3+0 ((1 - a)2> .
om) My, ox
(Anastasiou, 1.J.A. and Olea [1803.04990])



Holographic Entanglement Entropy renormalization through extrinsic counterterms

Going to codimension-2

Euler density and extrinsic surface terms for cones

m The Euler density in even 2n-dimensional conically singular
manifolds obeys

[ =] &dsam@-a) [ &ny+0(1-af)
mge Man x

(Fursaev and Solodukhin [hep-th/9501127]; Fursaev, Patrushev and
Solodukhin [1306.4000])

m By the Euler theorem, the n-th Chern form obeys

/ . Bl | :/ B{") | +4mn (1 —a)/ Bon_3+0 ((1 —a)2>.
oM Mz, )

(Anastasiou, 1.J.A. and Olea [1803.04990])
m For odd (2n+1)-dimensional manifolds the splitting of the By,
surface term is given by

/ Bg;):/ B§;>+47m(1—a)/ Bara+O (1 a)?).
ame), OMan 1 ox



Holographic Entanglement Entropy renormalization through extrinsic counterterms

Going to codimension-2

Euler density and extrinsic surface terms for cones

m The Euler density in even 2n-dimensional conically singular
manifolds obeys

[ =] &dsam@-a) [ &ny+0(1-af)
mge Man x

(Fursaev and Solodukhin [hep-th/9501127]; Fursaev, Patrushev and
Solodukhin [1306.4000])
m By the Euler theorem, the n-th Chern form obeys

/ . Bl | :/ B{") | +4mn (1 —a)/ Bon_3+0 ((1 —a)2>.
oM Mz, )

(Anastasiou, 1.J.A. and Olea [1803.04990])
m For odd (2n+1)-dimensional manifolds the splitting of the By,
surface term is given by

/ Bg;):/ B§;>+47m(1—a)/ Bara+O (1 a)?).
ame), OMan 1 ox

m Then, the Euclidean action on the replica orbifold can be evaluated.



Holographic Entanglement Entropy renormalization through extrinsic counterterms

Going to codimension-2

Euclidean action on replica orbifold

m In particular, we find that

g (M| = i (M0 5 + 7(1;;‘) Vohen [E].



Holographic Entanglement Entropy renormalization through extrinsic counterterms

Going to codimension-2

Euclidean action on replica orbifold

m In particular, we find that
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m Vol,e, [X] is the renormalized area of the cosmic brane with tension
T (the RT surface for T — 0). (Anastasiou, |.J.A., Arias and Olea
[1806.10708])
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Going to codimension-2

Euclidean action on replica orbifold

m In particular, we find that
g (M| = i (M0 5 + A=) e 5]
E D = I 4G ren

m Vol,e, [X] is the renormalized area of the cosmic brane with tension
T (the RT surface for T — 0). (Anastasiou, |.J.A., Arias and Olea
[1806.10708])

m Then, SF is given by

 Volen(%)

Sren S Iren (A’/‘Iga)) = e

m Renormalized EE is equal to universal part and is obtained from RT
formula but considering renormalized area of extremal surface.
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Going to codimension-2

Topological form of renormalized HEE for odd-dimensional
CFTs

m Using Euler theorem, for d=2n-1, renormalized HEE can be written
as
ren _ 2n—2 2(n—2)
SEE 8G2n— /d \/>€ P2_2[]:]
Cons (47)" " (n — 1)!X[Z]) :
[ab]

Fi =R+
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Going to codimension-2

Topological form of renormalized HEE for odd-dimensional
CFTs

m Using Euler theorem, for d=2n-1, renormalized HEE can be written
as

SE’:E — 8G 2n_ /d2n 2 \/>€2 n— Z)P2 _2 []:]

Can-2 (47)" (n = 1)x [T]),

[ab]
d
F=R&+ -5
m For D = 4, the renormalized HEE is given by
ren 2 b1 b aia s
SEeE = 16G d2 f [[,311,322]] ]:bibzz - %x [Z]

in agreement with Alexakis and Mazzeo's formula [math/0504161]
for renormalized area of extremal surfaces.
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CFTs

m EE is separated into a geometric part ([ Paq—2 [F]) and a purely
topological part (x [Z]).
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Topological form of renormalized HEE for odd-dimensional
CFTs

m EE is separated into a geometric part ([ Paq—2 [F]) and a purely
topological part (x [X]).

m Geometric part is zero when extremal surface has constant curvature.

m Topological part is robust against continuous deformations of the
entangling surface.

m For ball-shaped entangling regions, renormalized EE agrees with

computation of universal part by Kawano, Nakaguchi and Nishioka
[1410.5973]. Related to the F-quantity in 3D.
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Going to codimension-2

Renormalized HEE for even-dimensional CFTs

m For even-d CFTs, the renormalized EE is logarithmically divergent
and it corresponds to the universal part.

m |t contains the information about the conformal anomaly of the CFT.

m In particular, for ball-shaped entangling regions, we have
Seg =2(-1)"log(c) A
Ao €(2n—1)ﬂ.(n—1)’
8G(n—1)!

in agreement with Myers and Sinha [1006.1263].
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Interpretation of Results

m Renormalized EE equal to the universal part of EE. Related to
parameters of CFT, e.g., a*-charge (odd-d CFT) or A-anomaly
coefficient (even-d CFT).
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L Interpretation of results

Interpretation of Results

m Renormalized EE equal to the universal part of EE. Related to
parameters of CFT, e.g., a*-charge (odd-d CFT) or A-anomaly
coefficient (even-d CFT).

m 2% and the A-anomaly coefficient are conjectured to be C-function
candidates (e.g., Myers and Sinha [1006.1263]).

m For odd-d CFTs, renormalized EE can be written as sum of
topological invariant and polynomial in contractions of F.

m Renormalized EE is renormalized area of codimension-2 RT surface.
Renormalized Einstein-AdS action is renormalized volume of bulk.
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