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Introduction

In recent time tools from QI has played important role
to advance our understand about the mechanism of AdS/CFT

Boundary CFT

For eg: Entanglement entropy

Ryu-Takayanagi prescription:

(Ryu -Takayanagi,
Phys.Rev.Lett.96:181602,2006)

This duality becomes more stimulating in the context of Black hole
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Two interesting objects probing the interior of black hole

Complexity = Volume Complexity = Action
\_______/ (Brown, Roberts, Swingle, Susskind & Zhao)
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| - (Carmi, Chapman, Lehner,Myers,
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etal...)
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(picture courtesy Jefferson-Myers, 1707.08570 [hep-th])

Grows with time and keep growing even after the thermalization time

“Complexity” is dual to these two objects ?
Can we compute it field theory ?



Computational Complexity

Generically: How difficult is to implement a task ?
Important applications in QI and Quantum Many body physics

(Vidal ’03, °04, F. Verstraete and l.Cirac '06,09
N. Schuch, I. Cirac, and F. Verstraete '08,

D. Aharonov, l. Arad, Z. Landau, and U.

Vazirani ’11)

Here we will use the notion of “Circuit complexity”

how difficult is to prepare a particular state ?
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“minimize the number of operations”

will depend on the choice of the reference state



Free QFT computation: Jefferson Myers ‘17 using Nielsen approach

(for other approaches refer to Chapman, Heller, Marrochio, PastawskKi
(arXiv:1707.08582)[Phys. Rev. Lett. 120,121602(2018)],
Caputa, Kundu, Miyaji, Takyanagi,Watanabe arXiv: 1706.07056 [JHEP11(2017)097])

But to make contact with holography we need to understand
this interacting QFT.

Jordan-Lee-Preskill (2012): Non-perturbative computation of n-particle

scattering for gb4 theory by a quantum computer provides an exponential
advantage over perturbative method which uses Feynman Diagrams.

Then question naturally arises how a quantum computer would compute
other interesting quantities that are calculated by conventional means

Motivated by all these we ask what other important aspects of QFTs
can be capture of “Complexity”

RG flow is one important aspects: what we can we say about it
In terms complexity ?



Circuit complexity for Interacting QFT
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We solve the ground state perturbatively, linear order in )\ < 1

and compute circuit complexity (minimal circuit depth) for it.



Circuit complexity using Nielsen approach:

(Nielsen quant-ph/0502070,
Nielsen, Dowling, Gu, Doherty,quant-ph/0603161
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Yok State
Optimal Circuit: We need to find optimal y?(s) (Nielsen quant-ph/0502070,
. C e . . . Nielsen, Dowling, Gu, Doherty,
achieved by minimizing some kind of action quant-ph/0603161
14 = 3 . M.~A. Niel d M.~R. Dowling,
Cost function” r(y ) forthese y! () quant-ph0701008, T

Jefferson-Myers, 1707.08570 [hep-th],
HacklI-Myers, 1803.10638 [hep-th],

We choose: FO.U) =2 pilY'(s) e
I

D1 penalty factor: we fix it such that we recover
free theory result for )\ p— O (Jefferson-Myers, 1707.08570 [hep-th])
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. I — i i — AB, A.Shekar, A. Sinha,
To elaborate: Let us first focus on N=2 oscillator case in d=1+1 A 2ot e

arXiv: 1808.03105[hep-th]
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Now we will have:
Als=1)=U(s=1).A(s =0).U(s = 1)*
Ul(s) = %exp(i /08 dsY?!(s) Oi(s)),
We take them to

be GL(R)
generators

For this case of two oscillator: N=2,d=2 U (S) is a GL(5,R) unitary

Given the block structures of A(s) we parametrize U(s) it in the following way,

exp (y1(s) — p1(s)) 0 0
U(s) = ( A1)sxs 0 A = 0 exp (y1(s) + p1(s)) 0
( ) ( 0 (A3)2x2 )’ 1 0 o 0 o exp (y2(s)) )’

L yg(S) (cos (13(s)) cosh (p3(s)) — sin (03(s)) sinh (p3(s)
A2 — € ( (cosh (p3(s))sin (13(s)) + cos (03(s)) sinh (p3(s)

N

) (cos(63(s))sinh (p3(s)) — cosh (p3(s))sin (73(s))) )
) (cos(73(s)) cosh (p3(s)) + sin (63(s)) sinh (p3(s)))

this is nothing but R3 x SL(2, R)

penalty factor
Metric: ds* = GrydY'dy”, proportional to )\
=2 (dyf + dys + dpi + 5@?@ + dp3

+ cosh(2p3) sinh?(p3)d#2 + cosh(2ps3) cosh? (ps)dra — sinh2(2,03)d03d73])



Geodesic:  Given this we know find the geodesics with
the following boundary conditions

Initial condition: s=0: U(s=0) =1 = {p1(0) = p3(0) = y1(0) = y2(0) = y3(0) = 0}

Final condition : s=1

The simplest solution is a “straight line geodesic”

U1 (S) — U1 ( )S P1 (S) — ,0(1) S, Jefferson-Myers, 1707.08570 [hep-th]

y3(s) = y3(1)s, p3(s) = p(1)s, 5, 4.Shekar, & Sinhe,
7'3(8) O (93(8) — (90,
y2(8) ( )3
1 . . 7
Then. Cos (U) = / FO.0ds , FUOU) =3 pr|y!(s)
0 I

gets minimized on this geodesic and the minimum value
corresponds to the circuit complexity

Next we analyze the results for arbitrary N and arbitrary “d”



AB, A. Shekar, A. Sinha,
Re SUltS JHEP 1810 (2018) 140,

arXiv: 1808.03105[hep-th]
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Continuous Limit; N — oo, 0 — 0, N 0 — finite

Also we will rewrite everything in terms of Renormalized quantities

At 1-loop Renormalization order:

=2: () = (o) — 22 |0y~ 2Crloglma ) — Calmn ) + 5 —(md)?log((mn6)%) + O{(mr )"
Co = 0.28,Cy = 0.08, Cy = 0.02.
d >3 o =)~ 225 [0y - Camnd)? + 15 (mrd @l (mn 7 Dus + Ol o))
C; | d=3 | d=3.99 | d=4 | d=5 l

Co | 0.21 0.15 0.15 | 0.11

extra log term
Cy | 0.06 | 0.03 | 0.03 | 0.015 9

for d=4

also: A = A\p

Finally we will also expand in terms mpzr d and keep only leading terms



Finally we get,
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vanishes for d > 4

v v
fractional For large V
volume this is the leading
dependence contribution at linear of order of Ar

Perturbation theory
breaks down for d > 4

We can understand this break down of perturbation theory intitutively
invoking RG picture, as for d > 4 Gaussian fixed points are stable
compared to the Wilson-Fisher fixed point.



A Flow equation for Complexity

Now armed with all these we derive a flow equation for complexity:

51 change of
V. complexity per unit
degree of freedom

Define: AC = (Cre1 — Cret|r—0)

Scale Transformations: Ar = bR, 6 — b4,
b=1+dbA\p = \g+d\g

Now in large volume “V” keeping only leading order term in small 9

8¢ _s4—a)AC+ 00d)
db
Similar to the flow equation for coupling: ‘2‘_; = (4 — d)Ag + O(\2)

For d <4: Wilson Fisher fixed point is favored in term of complexity
d>4  Gaussian fixed point is favored in term of complexity

This matches nicely with the intuitive idea of RG flow!!!



Outlook

Our methods works for O(N) scalar model and
we can classify the fixed points in terms of complexity

Extend it for other non-trivial interacting theories
for eg:Fermions, Gauge theories?

How to understand fractional subleading volume
dependence from holography ?

Comparison with other methods ?

(for eg: Fubini-Study method by Chapman, Heller, Marrochio, Pastawski (arXiv:1707.08582),
Path Integral method: AB, Caputa, Kundu, Miyaji, Takyanagi arXiv: 1804.01999)

Hamiltonian Complexity
(To appear with A. Sinha and P.Nandi)

Applications to quantum quench

Many more..... Yl



