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Mirror operators as probes of black hole interior

Black hole information / firewall paradox: do black holes have
smooth horizons? (AMPS 1207.3123)

Papadodimas-Raju: do there exist CFT operators that satisfy
certain constraints? (1211.6767, 1310.6334, 1310.6335)

〈ψ|On(t, x)Õm(t′, x′)|ψ〉 = Z−1β tr
[
e−βHOm(t, x)On(t′ + iβ/2, x′)

]

Explicit construction of operators behind the horizon
−→ state-dependent mirror operators:

Õn|ψ〉 = e−βH/2O†n|ψ〉 , ÕnOm|ψ〉 = OmÕn|ψ〉 .

TL;DR: state dependence is a natural & inevitable feature of
representing information behind horizons.



Traversable wormholes via double trace deformation

Consider thermofield double state dual to
eternal AdS black hole:

|TFD〉 =
1√
Zβ

∑

i

e−βEi/2|i〉L|i〉R

Gao, Jafferis, Wall (1608.05687) perturb
the TFD by a relevant double-trace
deformation:

δS =

∫
ddxhOLOR

Decreases the energy of the TFD =⇒
negative-energy shockwave in the bulk.



A more physical picture

Future horizons shrink, overlap
allows null observer to cross.

Preserves causality: observer is never
“inside” the black hole; passage
through wormhole is instantaneous.

Left and right algebras are no longer
independent due to bulk overlap.

Relation between these two sets of
operators is a modular inclusion.



Modular inclusions −→ state-dependent interiors

Modular inclusion of right (left) exterior
algebras:

NR ⊂MR , M′R ⊂ N ′R .

Interior state:

|ψ〉 = D|Ω〉 , D ∈ DR ≡MR−NR .

How to represent |ψ〉 in exterior NR?

Find N ∈ NR such that N |Ω〉 = D|Ω〉

State-dependent! N 6= D

Information behind horizon does not admit local representation in either
CFT −→ no state-independent operators!



Tomita-Takesaki in a nutshell

Given a von Neumann algebra A, TT theory provides canonical
construction of commutant A′.

Consider Hilbert space H with cyclic & separating vacuum state Ω.

cyclic States spanned by O ∈ A are dense in H.
separating O|Ω〉 = 0 if and only if O = 0.

Starting point: antilinear map S : H → H, SO|Ω〉 = O†|Ω〉.

Note that S is a state dependent operator!

Admits a unique polar decomposition S = J∆1/2

J modular conjugation, J2 = 1, J−1 = J
∆ modular operator, ∆ = S†S = e−K .
K modular hamiltonian K ≡ − log(S†S).

Invariance of the vacuum: S|Ω〉 = J |Ω〉 = ∆|Ω〉 = |Ω〉.



(ok, two nutshells...)

Fundamental result of TT theory comprised of two facts:

1 Modular operator ∆ defines a 1-parameter family of modular
automorphisms

∆itA∆−it = A , ∀t ∈ R

=⇒ A is invariant under modular flow.

E.g., subregion-subregion duality, Sblk(ρ|σ) = Sbdy(ρ|σ)
(1512.06431).

2 Modular conjugation induces isomorphism between A and A′

JAJ = A′

=⇒ ∀O ∈ A, ∃O′ = JOJ such that [O,O′] = 0.

Map between left and right Rindler wedges, or across black
hole horizon!



Mirror operators from TT theory (1708.06328)

Let O ∈ A be a unitary operator; state |φ〉 = O|Ω〉 is
indistinguishable from vacuum for observers O′ ∈ A′:

〈φ|O′|φ〉 = 〈Ω|O†O′O|Ω〉 = 〈Ω|O′|Ω〉

But state |ψ〉 = ∆1/2O|Ω〉 indistinguishable from vacuum for
observers in A!

|ψ〉 = J2∆1/2O|Ω〉 = JSO|Ω〉 = JO†|Ω〉 = JO†J |Ω〉 = O′|Ω〉

where O′ ≡ JO†J ∈ A′.

State |ψ〉 is localized in A′, but operator ∆1/2O is not!

O′ 6= ∆1/2O but O′|Ω〉 = ∆1/2O|Ω〉

−→ Excitations behind horizon represented as state-dependent
mirror operators.



Reeh-Schlieder =⇒ state dependence

Inability to encode information behind horizon in terms of
state-independent operators localized to exterior is a natural
consequence of the Reeh-Schlieder theorem.

State-dependence reflects interplay between locality and unitarity.

Witten’s example (1803.04993): suppose |φ〉 represents excitation
in DR ⊂MR. Define D ∈ DR such that

〈φ|D|φ〉 = 1 and 〈Ω|D|Ω〉 = 0

Reeh-Schlieder (Ω cyclic) =⇒ can reproduce |φ〉 arbitrarily well
using operators localized entirely outside DR:

∃N ∈ NR s.t. 〈φ|D|φ〉 ≈ 〈Ω|N †DN |Ω〉 = 〈Ω|N †ND|Ω〉

N unitary =⇒ contradiction!



Spacetime from quantum entanglement

Product of CFTs: |Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉 dual to two disconnected
spacetimes.

Entangled state: |TFD〉 '∑
i e
−βEi/2|i〉L|i〉R superposition of

disconnected pairs.

iE iE

iE =Σe−β

Figure 1: Gravity interpretations for the entangled state |ψ(β)⟩ in a quantum system
defined by a pair of noninteracting CFTs on Sd times time. The diagram on the right
is the Penrose diagram for the maximally extended AdS-Schwarzschild black hole.

sents the ith energy eigenstate for a single CFT on Sd, let us define the state

|ψ(β)⟩ =
∑

i

e
−βEi

2 |Ei⟩ ⊗ |Ei⟩ (1)

This state is a sum of product states |Ei⟩ ⊗ |Ei⟩. Since we just argued that each of
these product states should be interpreted on the gravity side as a spacetime with
two disconnected components, the literal interpretation of the state |ψ(β)⟩ is that it
is a quantum superposition of disconnected spacetimes. However, it has been argued
[4, 5, 6] that precisely this state |ψ(β)⟩ corresponds to the (connected) eternal AdS
black hole spacetime, whose Penrose diagram is sketched in figure 1.

The motivation for this statement is as follows. This is a spacetime with two equiv-
alent asymptotically AdS regions, suggesting that the dual description should involve
two copies of the CFT. An observer in either asymptotic region sees the Schwarzschild
AdS black hole spacetime, which is understood [7] to correspond to the thermal state
of a conformal field theory. On the other hand, starting from the state (1), and tracing
over the degrees of freedom of one of the CFTs, we find that the density matrix for the
remaining CFT is exactly the thermal density matrix:

Tr2(|ψ⟩⟨ψ|) =
∑

i

e−βEi|Ei⟩⟨Ei| = ρT .

Furthermore, the presence of horizons in the black hole spacetime which forbid com-
munication between the two asymptotic regions may be naturally associated with the
absence of interactions between the two CFTs. Thus, the state |ψ(β)⟩ has properties
which are completely consistent with its interpretation as the eternal AdS black hole.

If this identification is correct, we have a remarkable conclusion: the state |ψ(β)⟩
which clearly represents a quantum superposition of disconnected spacetimes may also
be identified with a classically connected spacetime. In this example, classical con-
nectivity arises by entangling the degrees of freedom in the two components. In the
next section, we will try to test the idea that emergent spacetimes in gauge-theory /
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Classical connectivity arises by entangling the dofs in the two
components. – van Raamsdonk (1005.3035)



Disentangling the TFD

A B

A B

Figure 4: Effect on geometry of decreasing entanglement between holographic degrees
of freedom corresponding to A and B: area separating corresponding spatial regions
decreases while distance between points increases. The boundary geometry remains
fixed (despite appearances in the diagram).

larger
β

Figure 5: Spatial section of eternal black hole for two different temperatures (corre-
sponding to a horizontal line through the middle of the Penrose diagram of figure 1).
For low temperature (large β), where entanglement between the two CFTs is smaller,
the asymptotic regions are further apart and separated by a surface of smaller area.

Combining (3) and (2), we see that as the entanglement between degrees of freedom
in region A and region B (and therefore the mutual information I(C, D)) drops to
zero, the length of the shortest bulk path between the points xC and xD must go
to infinity (figure 3). Together with the result of the previous subsection, we obtain
the following picture. As the entanglement between two sets of degrees of freedom in
a nonperturbative description of quantum gravity drops to zero, the proper distance
between the corresponding spacetime regions goes to infinity, while the area of the
minimal surface separating the regions decreases to zero. Roughly speaking, the two
regions of spacetime pull apart and pinch off from each other, as shown in figure 4. As
seen in figure 5, these quantitative features can be seen explicitly in the example of
the eternal AdS black hole, where we can decrease the entanglement between the two
CFTs by increasing the inverse temperature parameter β.

Conclusions

We have seen that we can connect up spacetimes by entangling degrees of freedom and
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I(A,B) = S(A) + S(B)− S(A ∪B)

I(A,B) ≥ (〈OAOB〉−〈OA〉〈OB〉)2
2|OA|2|OB |2

〈OA(x)OB(x)〉 ∼ e−mL

Length of wormhole
?←→ amount of entanglement



Modular theory −→ It from Qubit?

. . . ⊂ N−3 ⊂ N−2 ⊂ N−1 ⊂ N0

N0 ⊂ N1 ⊂ N2 ⊂ N3 ⊂ . . .



Future connections (1811.08900)

Why Ryu-Takayanagi: deeper relationship between
entanglement and spacetime geometry?

It-from-Qubit, ER=EPR: spacetime emergence consistent
with boundary Hilbert space factorization?

Black hole complementarity: global Hilbert space, but with
state-dependent interior.

Ontological foundation for QEC in holography: bulk algebra
cannot hold at level of operators in CFT (1411.7041).

Precursors: preservation of unitarity à la Reeh-Schlieder
underlies holographic non-locality?

Complexity: probing beyond horizons, holographic shadows?

Can we make these ideas more precise?!


