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Introduction

Defects = Non-local objects in QFTs

• Defined by

- boundary conditions around them

- coupled to low-dimentional system

• Many examples:

1-dim : Line operators (Wilson-’t

Hooft loops)

2-dim : Surface operators

Codim-1 : Domain walls and

boundaries

Codim-2 : Entangling surface for

entanglement entropy
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Why Defects?

We can probe the part of theory which is inaccesible without

defects

- allow us to characterize the phase of theory

• wilson loop in gauge theory

• higher-form symmetry

In fixed point (CFT), constrain bulk CFT data in defect-CFT by

conformal bootstrap [Liendo-Rastelli-van Rees 12]
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Conformal defects

Especially, we consider particular class of defects:

Conformal defects (codimension-m)

defects preserving SO(d−m+ 1, 1)︸ ︷︷ ︸
conformal sym. on defect

× SO(m)︸ ︷︷ ︸
rotational sym. around defect

• conformal defects allow defect local operators Ô(x)

• additional dynamical information appears

- coupling to defects, defect local operators,...
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OPE for conformal defects

There are two types of OPE in Defect-CFT

• Bulk-to-defect OPE : [Cardy 84, McAvity-Osborn 95]
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• Defect OPE : [Berenstein-Corrado-Fischler-Maldacena 98, Gadde

16]
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Several questions about DCFT

1. To what extent are we able to determine the structure of

the defect OPE by conformal symmetry?

- Decomposition by the irreducible representations

D(m) =
∑

n∈ primaries

B(m)[On]

2. Can we probe the bulk AdS information by conformal

defects on the boundary?
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3. Is there any extention of CFT?

- Spinning defects 6



Overview of our results

1. Give the integral representation of the defect OPE blocks

B(m)[On] =

∫
ddx 〈On(x)〉D(m)Õn(x)

Õ : shadow operator with ∆̃ = d−∆ for O with ∆

2. Reconstruct the AdS scalar field from the blocks

• φ̂ = B(m)[O] :

The Radon transform of the AdS

scalar field φ when O scalar

• Reproduce the (Euclidean) HKLL

formula :

φ(Y ) = φ(φ̂) =

∫
ddxK(Y |x)O(x)
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Overview of our results

3. Study the kinematics and impliment of spinning defect in

CFT:

(1) calculating several correlators of bulk and defect local

operators

(2) exploring the OPE of spinning conformal defect

(3) considering the correlators of two spinning conformal

defects

- deduced to thoese of scalar defects by recursion relation.
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Defect OPE blocks



Defect OPE blocks

We expect the defect OPE of the form

D(m)(Pα) =〈D(m)(Pα)〉

[∑
n

c
(m)
On

R∆n On(C) + (descendants)

]
(R : radius, C : center vector, Pα : vector to fix the defect)

• The descendant terms are fixed by the primary On and the

conformal symmetry,

D(m)(Pα) =
∑
n

B(m)[Pα,On]

• The defect OPE block is in the irreducible rep. of On:

〈B(m)[Pα,On]On(X)〉 = 〈D(m)(Pα)On(X)〉 . 9
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Projectors and shadows

• Want to characterize the defect OPE blocks by their irreps

• Spectral decomposition by the irreps of the conformal

group:

1 =
∑
n

|On|

• |On|: Projector onto the conformal multiplet of the primary
On [Ferrara-Grillo-Parisi-Gatto 72,· · · , Simmons-Duffin 12]

For a scalar operator,

|O∆| =
1

N∆

∫
DdX |O∆(X)〉 〈Õd−∆(X)|

Õd−∆: the shadow operator of O∆

Similary, the projector for spin l operator is investigated
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Integral representation of defect OPE blocks

• Expand the defect by the projectors:

〈D(m)(Pα) · · · 〉 =
∑
∆

〈D(m)(Pα)|O∆| · · · 〉+ (other irrep.)

=
∑
∆

1

N∆

∫
DdX 〈D(m)(Pα)O∆(X)〉 〈Õd−∆(X) · · · 〉

+ (other irrep.)

• Can read off the block contribution:

The integral rep. of the defect OPE block

B(m)[Pα,O∆] =
1

N∆

∫
DdX Õd−∆(X) 〈D(m)(Pα)O∆(X)〉
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Constraint equations

There are two types of equations the defect OPE block satisfies

The conformal Casimir equation(
L2(Pα) + C∆,l

)
B(m)[Pα,O∆,l] = 0

• L2(Pα) ≡ 1
2LAB(Pα)L

AB(Pα) : quadratic Casimir operator

• C∆,l = ∆(∆− d) + l(l + d− 2) : the eigenvalue

“Trivial” equations for scalar primaries O∆

CABCD(Pα)B(m)[Pα,O∆] = 0

• CABCD(Pα) ≡ 1
2LA[B(Pα)LCD](Pα):

d(d2−1)(d+2)
24 quadratic

operators
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Moduli space of conformal defects

• The moduli space has a coset structure:

M(d,m) =
SO(d+ 1, 1)

SO(m)× SO(d+ 1−m, 1)

• The quadratic Casimir operator is the Laplacian on M(d,m)

−L2(Pα) = �M(d,m)

• The defect OPE block is a scalar field on M(d,m)

Klein-Gordon equation on M(d,m)(
�M(d,m) −M2

)
B(m)[Pα,O∆,l] = 0 , M2 = C∆,l
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Reconstruction of AdS scalar fields



Conformal defects and submanifolds in AdS

• Associated to a given defect D(m) is a unique submanifold

γ(m) in AdS s.t. ∂γ(m) = D(m)

• Their moduli spaces are equivalent:

M(d,m) =
Isom(AdSd+1)

Stab(γ(m) ∈ AdSd+1) R

Hd+1
γ(m)

D(m)

Rd

• there is a map called Radon transform between

Euclidean AdS (= Hd+1) and M(d.m)

ξ

x̌

x

ξ̂

AdSd+1 M(d,m)
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Radon transform

From Hd+1 to M(d,m):

φ̂(ξ) =

∫
x∈ξ

dν(x)φ(x)

• ξ : a codim-m submanifold in

Hd+1

• φ(x) : a function on Hd+1

From M(d,m) to Hd+1:

f̌(x) =

∫
ξ∈x̌

dµ(ξ) f(ξ)

• ξ : a codim-m submanifold

through x

• f(ξ) : a function on M(d,m)

Intertwining property

(
�Hd+1 −M2

)
φ = 0 ⇔

(
�M(d,m) −M2

)
φ̂ = 0
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Reconstruct an AdS field from DOPE block

• we can identify defect OPE block as the Radon transform

of an AdS scalar field φ

• Inversion formula for the Radon transform allows us to

reconstruct φ from defect OPE block [Helgason 10]

• Equivalent to the bulk reconstruction formula

φ(Y ) =

∫
DdXK∆(Y |X)O∆(X)

with the Euclidean version of the HKLL kernel

[Hamilton-Kabat-Lifschytz-Lowe 06]

(�Hd+1 −M2)K∆(Y |X) = 0 , M2 = ∆(d−∆)
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Spinning conformal defect



Spinning defects and recursion relation

• Conformal defects can carry spin under SO(m).

• We adapt index-free notation for spinning defects

introducing auxiliary transverse vector Ŵ ,

D(m)
s (Ŵ ) ≡ D(m)

I1···Is Ŵ
I1 · · · Ŵ Is , Ŵ ◦ Ŵ = 0

• In the same way as local operator case,

we find recursion relation for one-point function,

〈D(m)
s O∆(X)〉 = Ds−s0(Ŵ ) 〈D(m)

s0 O∆(X)〉

Ds−s0(Ŵ ): s− s0-th order differential operator acting on Pα

17

Rd−m

D(m)

SO(m)



Application of Recursion relation

• Spinning defect OPE blocks

D(m)
s (Ŵ ) =

∑
n

B(m)
s [On, Ŵ ]

⇒ B(m)
s [O∆,l, Ŵ ] = Ds−s0(Ŵ )B(m)

s0 [O∆,l]

• Two-point function of spinnning defects

〈D(m1)
s1 (Ŵ1)D(m2)

s2 (Ŵ2)〉 =
∑
n

〈B(m1)
s1 [On, Ŵ1]B(m2)

s2 [On, Ŵ2]〉

⇒ 〈D(m1)
s1 (Ŵ1)D(m2)

s2 (Ŵ2)〉|spin-l = Ds1(Ŵ1)Ds2(Ŵ2) 〈D(m1) D(m2)〉|spin-l
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Summary of results

1. Give the integral representation of the defect OPE blocks

B(m)[On] =

∫
ddx 〈On(x)〉D(m)Õn(x)

Õ : shadow operator with ∆̃ = d−∆ for O with ∆

2. Reconstruct the AdS scalar field from the blocks

• φ̂ = B(m)[O] :

The Radon transform of the AdS

scalar field φ when O scalar

• Reproduce the (Euclidean) HKLL

formula :

φ(Y ) = φ(φ̂) =

∫
ddxK(Y |x)O(x)
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Summary of results

3. Study the kinematics and impliment of spinning defect in

CFT:

(1) calculating several correlators of bulk and defect local

operators

(2) exploring the OPE of spinning conformal defect

(3) considering the correlators of two spinning conformal

defects

- deduced to thoese of scalar defects by recursion relation.
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Future direction

Integrable system

The Casimir equation for the defect conformal

block is shown to be equivalent to the Schrödinger

equation of the Calogero-Sutherland model

[Isachenkov-Liendo-Linke-Schomerus 18,...]

- relation with our formalism?

Holographic dual

Can extend the construction to higher spin fields in

AdS?

- No known Radon transform beyond a scalar

field in AdS

- Spinning defects to incorporate spins
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