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Resource theory

o Useful
e Hard to gain, easy to lose

® The more, the better



Resource theory

e Useful (communication, teleportation, wormholes...)
® Hard to gain, easy to lose (LOCC — separable states)

e The more, the better (telep.: n ebits + 2n cbits = n qubits)



Resource theory

A mathematical framework aiming at rigorously, quantitatively
characterizing the above resource features.

® Building blocks, abstract formulations [Coecke/Fritz/Spekkens, IC *16]:

®* Free objects (quantum states/density operators): objects that
carry no resource

® Free morphisms (quantum operations/cptp maps): manipulations
that are considered easy

® (Central problem: quantification of resource

® Axiomatic: basic criteria, e.g. vanish on free objects, monotonicity
under free morphisms

® (Operational: physical meanings of the resource measure
® Performance/usefulness in specific tasks/scenarios

® Value in direct trading between resource entities (more universal
and fundamental)

In this talk, we focus on the state theory.
Recently: quantum channels, GPTs [ZWL/Winter, 1904.04201...]



Resource theory

This scheme has been used to understand and characterize many
important quantum features and their power in many scenarios...

Theory Free states Free operations Applications

Q. communication,

Entanglement Separable states LOCC, non-entangling ops... . . .
g P gling ob information scrambling...
Thermal non- . Thermal ops, .
L Gibbs state . : > Work extraction...
equilibrium Gibbs-preserving ops...
Coherence Incoherent (diagonal) 10, DIO, MIO... Q. transport, metrology...
states
Madic state Stabilizer states Stabilizer ops, Q. computation,
d (stabilizer polytope) stabilizer-preserving ops... classical simulation costs...
Symmetric states . Q. reference frames,
Asymmetry Symmetry-preserving ops...

(wrt some symm. group) metrology...

Discord-type
correlation

r-commuting ops,

. . DQC1, heat transfer...
commutativity-preserving ops...

Classical-quantum states

Non-

. Gaussian states Gaussian ops... . (optical) computation...
Gaussianity P Q (op ) P



This talk

A general, unified quantitative theory of one-shot resource trading.

A .

Not specific to any particular resource or afny particular taské

i :
Only one or finite instances of resource are in play :

-

Conversion from/to some “currency” states

...And also, some explicit applications to the magic state theory, which
plays key roles in many key developments on quantum computation.



General resource theory

Unified machineries/

understandings \

Different resource theories could share lots of common structures...

— Let’s invent all-purpose resource theory juicers!



Resource trading
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One-shot

You only get one shot

Do not miss your chance to blow
This opportunity comes

' Once in a lifetime yo

| *’

Y

— Eminem “Lose Yourself”

*Credit to a talk by
Nicole Yunger Halpern

e Realistic scenario: i) Only finite instances of resource are available; ii) Certain
extent of error/inaccuracy is allowed.

e Contrast: “asymptotic”, i.e. infinite i.i.d. instances (a conventional setting of
information theory—think about e.g. entropies, channel capacities; in
resource theory: asymptotic reversibility [Brandao/Gour, PRL ’15]).



Resource destroying (RD) map

Original theory: [ZWL/Hu/Lloyd, PRL *17]

F : the set of free states.

Definition (Resource destroying map)

A (a map from states to states) is an RD map if it has the
following properties:
1. Resource destroying: Vp & F,A(p) € F

2. Non-resource fixing: Vo € F,\(o) =0

Remark: The basic definition is highly flexible. RD maps do not
even need to be linear.



Resource destroying (RD) map

The following type of RD map is particularly important:

Definition (Exact RD map)

Exact RD map A satisfies: D(p||\(p)) = néi%D(pHJ),Vp.

l.e. “picks out” the closest free state*.

Examples: Seplhesiin \
® Coherence: Full dephasing — L
e Asymmetry: Uniform twirling : .—lE,
® Non-Gaussianity: Outputs Gaussian with the : [

same mean displacement and covariance matrix



Resource destroying (RD) map

RD map theory induces unified definitions of different types of free
operations. Here we consider the following two:

Definition (Resource non-generating operations)

Ing i={E|AoEoA=E0 )N}

® Maximum set of free operations: any other operation would
create resource and thus trivialize the theory.

® |nvariant under the variation of RD map.



Resource destroying (RD) map

Definition (Commuting operations)
tg%\,comm = {5’)\05:50)\}

Examples: DIO (coherence), twirling-covariant (asymmetry),
commuting (discord)...

Parent States

Non-activating ops

. .
non-activating

Free

States _
non-generating

o




Divergences between . states

Let’s first define some “distance” measures between quantum
states (density operators) p and o.

Definition (Uhimann fidelity)

fp.0)i= (T \/ﬁpﬁ>2 - llvavals

Measuring “similarity” of the two states.

Just overlapA2 for pure states:  f(|v) (1], |o)(0|) = [(¢]|d)|?
“Purified distance”: P(p,0) := \/1 — f(p,0)




Divergences between . states

Definition (Max-relative entropy)

Dax(pllo) :=logmin{\ : p < Ao}

Ao —p s
positive semidefinite

Well-defined when supp(p) C supp(o)

Definition (Min-relative entropy)

Din(p|lo) := —log Tr {110}

II is the projector onto the support

Well-defined when supp(p) Nsupp(o) # ()
Equivalent to —log f(p,o) when p is pure



Divergences between . states

Spectrum of quantum Renyi divergences:

D, : Non-sandwiched qg. Renyi-a div.
D, : Sandwiched g. Renyi-a div.

Q. relative entropy

D=D; =D,




Smoothing

Invoke ‘“smoothing” technique to “stabilize” the measures
(smoothed variants will account for error tolerance).
ldea: optimize over the “e-vicinity”.

Define the e-ball in the state space as B(p) :={p": f(p',p) > 1— €}

Definition (Smooth max/min-relative entropy)

fnax(min) (,OHO') = min(max) Dmax(min)(plua)

p' €B<(p)

Also consider the “operator-smoothing” of min-relative entropy:

Definition (Hypothesis testing relative entropy)

D5 = — log Tr{ P
7 (pllo) OSPSI%%[)}E_G( og Tr{Po})



Resource monotones

Resource measures based on the above divergences
(ldea: minimize distance to free states)

Definition (Divergence-based resource measures)

Qmax(min) (/0) = g%ljr_l Dmax(min) (IOHO-) f(p) = {tnéa]}:( f(pa O-)
Monotone under any free operation, due to the “data processing”

iInequalities of the above distance measures.
0(E(p),E(0)) < d(p,0)

Useful smooth versions, by plugging in smooth divergences:
Definition (Smooth ~)
@6

max

(p) == glei]r_;DfnaX(f)IIU), Dy (p) = g%igD%(pHa)



Resource monotones

Another important type of monotone (~noise needed to turn the
resource state into a free one)

Definition (Free robustness/log-robustness)

_____
—— ~

~

| S
R = ' > (0:ido e F,
(p) min{s > 0 430 € 7 T T 1o

LR(p) := log(1+ R(p)).

o e F},

Here if any o is allowed (so-called “generalized robustness’), then the
corresponding LR is equivalent to the D_max monotone. Equality on pure
states implies existence of root states (bipartite vs. multipartite entanglement)

Definition (Smooth ~)

LR (p):= min LR(p")
p'€B<(p)

Finite free robustness implies: F is non-affine, no linear RD map



Resource monotones

e Some other general operational meanings are known for the
D_max monotone: catalytic erasure [Anshu/Hsieh/Jain, PRL 18]
(smooth), subchannel discrimination [Takagi/Regula/Bu/ZWL/
Adesso, PRL ’19] (exact).

e |ittle general knowledge about the other measures so far.

e *The D_min monotone exhibits peculiar features: (even the
state-smoothed version) could be zero for non-free states (i.e.
does not satisfy the “faithfulness” condition)... (Implications for
distillation)



Resource monotones

RD-map-induced measures:

Definition (A-induced measures)
Qmax(min),k(p) = Dmax(min) (pH)‘(p))
Monotone under all commuting operations [ZWL/Hu/Lloyd, PRL *17].

Smooth versions similarly defined:

Definition (Smooth A-induced measures)

max A (P) = Diax (plIN(P)), D a(p) := Dy (pl|A(p)),

Note: No optimization over free states; Easy to compute for nice A.



Resource currencies

A family of reference states that serve as a “standard currency”

{Qéd € D(Hq)}, deDCZ,

|

t . Valid dimensions
One for each dimension

E.g. for multi-qubit theories
D={2"},n=1,2,3..

Usually want to consider pure states, ormation cost

“uniform” and “standard” in some sense = p BTN
d

E.g. Bell pairs (ebits) as units 1 W2

Uniform superposition/most coherent states Distillation yield



Modification coefficients

Definition (Modification coefficients)

my(¢a) = —logf(¢a)/logd,
Mmax(min) (Pd) = Dmax(min)(Pa)/logd,
mrr(¢d) = LR(¢q)/logd.
Similarly for the A-induced measures.

“Normalized” parameters that encode “distance” to F

Let’s look at some important resource currencies:

| | | _ | 00) + [11)\ %"
® Bipartite entanglement: Bell pairs (ebit units) ( 2 )

R A
Or more generally v Z 17)7) (M = Mupin = Minay = MLR = 1/2,Vd
1 d T Golden state"
e Coherence: — Z d) S F = Mmin = Mmax:= 1.Vd; collapse theorem
vd e T ———— e’ (in @ minute)
® *Magic: T-states 7T®! M = Mmin = Mmax = 0.23.Vd

0
. .
N .
-------

. .

......

et “Cllfford magi'é-’-’-" States
m_LR is dependent on t



A few useful properties

Now we formulate a few simple properties of theories that will serve
as sufficient (in many cases not necessary) conditions for different
results:

e Condition (CH): F is formed by a convex hull of pure (free) states.

*Very generic. Holds for basically all known convex theories except q.
thermodynamics, where F is only the thermal/Gibbs state.

e Condition (CT) (for a chosen pure currency): Constant overlap with
all free states.

*This one is rather strong. Holds for coherence, thermodynamics (trivially),

some superposition theories (see paper); not for entanglement, magic states
etc.

e Condition (FFR): All states have finite free robustness.

*Free robustness measures have drawn considerable interest recently. We
show that this implies: i) F is a non-affine set; ii) RD map cannot be linear.



/00 of Resource theories

Ent: Entanglement

Coh: Coherence

Mag: Magic states

Asym: Asymmetry

Therm: Thermodynamics
Dis: Discord

NG: Non-Gaussianity

SupB: Superposition (App. B)
SupG: Superposition (App. G)

A user guide for our all-purpose juicer (v1.0)



Collapse of modification coefficients

We prove an important and highly generic result about “max-
resource” states:

Theorem (Collapse theorems)

Assume (CH). For any d, there exists a pure state Ci)d s.t.
M (Pa) = Mmin(Pa) = Mmax(Pa) = ga

and achieve the maximum of each simultaneously. "

- “Golden coefficient”
Further consider exact RD map \:

A

mfas\(q)d) — mmin,S\(q)d) — mmax,s\(q)d) Igd

Equivalently, all the corresponding monotones (including Renyi)
attain the same maximum value at this pure state.



Collapse of modification coefficients

Remarks:
e The above results are highly nontrivial, considering that

® The divergences and corresponding monotones generally behave
very differently, so the collapse phenomenon is very special;

e The divergences do not induce the same ordering (counterexample
provided), so i) the max values are simultaneously attained; ii)
exact RD map induces the closest free state for all measures, are
both very special.

—Bad things just don’t happen for and !

® For (CH) theories, the result guarantees a complete family of pure
max-resource states! As currency: most sensible conceptually;
collapse theorems lead to tight bounds.

e Even (CH) is not necessary! Results also hold for g. thermodynamics.



Formation cost

“Minimum size” of reference state needed ormation cost

to approximate the state, by an operation
from a certain set of free operations (with d

a certain type of constraint).

~ -
~ -
-~
-~
~ -
~ -
~ -

-
-
------
--
-

Distillation yield

Definition (One-shot e-formation cost under %)

o,z (p < {¢d}) =logmin{d € D: 3 € F,E(da) € B(p)}



Formation cost

Lower bound (fundamental limit/optimality). Unified form:

Theorem (Optimality)

Let dp = min{d € D : R(¢gq) > R(p)}

Re(p)
m(¢do)

o.7(p < {9a}) >

Consequences of monotonicity (for divergences, due to data
processing inequalities) under free operations



Formation cost

Upper bound (achievability)

Theorem (Achievability)

Consider pure currency {®,4}

Let dy = min{d € D: —logf(®y4) > R(p)} Any smaller d.
6 2R (p) ) mevad
ch(p —{Py4}) < mf(q)dg)Q + log @
* ¥ =2NG; R =Dnmax (CT)
o 7 =9ng, R=LR Convex F, (FFR)
® ¥ =.F)\Comms R =maxx (CT)

Proofs by constructing a free cptp map achieving the desired
approximation.

» Bounds on formation cost in terms of modified smooth max-
relative entropy monotone and free log-robustness monotone



Formation cost

By using the collapse theorems, we can get the following almost
matching/tight bounds (in such case the general-form free maps
can almost achieve the lower bounds):

Corollary (Collapsed bounds)

Consider {(i)d}, assume (CH), (CT)
Let dyp = min{d € D: gylogd > R (p)}
g SOl (ba) < 700 o
* 7 =7NnGg, R =Dmax
e 7= ﬁ~7COmm, R=D s FOr A

d
E.g. coherence: MIO/DIO, g=1, %ZW
d =



More on max-resource

Definition (Root state)

Can be mapped to any state of the same dimension by a free map.

The strongest notion of max-resource: max value for any monotone

In general, sufficient but not necessary condition for golden state.
Unclear when the root state can exist.

Our formation map implies the following partial result:

Free robustness
Corollary

Golden state = root state if either is true: Generalized robustness

1) (CT) i) (FFR) and mmax = mpr for all pure states

E.g. bipartite entanglement. In contrast, multipartite: no root
state, so the free and generalized robustnesses are inequivalent



Distillation yield

A reverse direction: “Maximum size” of Formation cost
target reference state that can be 4 BT
approximately obtained, by an operation d ] p
from a certain set of free operations (with | B, ..oz

a certain type of constraint). Distillation yield

Definition (One-shot e-distillation yield under .%#)

D,7(p = {¢a}) = logmax{d e D : 3€ € F,E(p) € B(da)}-

Also considered a stronger variant where error-tolerance is on the
Input state



Distillation yield

Consider resource non-generating operations first
Theorem (Optimality)

Consider pure currency {®4}
Let dop=max{deD: —logf(Py) <D%Y(p)}

D% (p)
mf(q)do)

D Fne (P = {Pa}) <

Theorem (Achievability)
Assume (FFR). Let dyp = max{d € D : LR(¢q) < D% (p)}

D¢, (p) bl Any larger d.
Q5 2 (p— {pq}) > —H —log -2 | Say, do+1 if all d
e mLR(gbdg) do are valid

For general convex theories we have another more complicated lower
bound given by a distillation map based on the “isotropic state” technique



Distillation yield

Commuting operations.

Theorem (Optimality)

Consider pure currency {®;} and RD channel (linear cptp map) A

Let dp = max{d € D: fo(By) > 2 PralP) _2,/e}

—log(2=PualP) — 2, /¢)
m g A (P, )

D.Zx comm (P = 1Pa}) <

For now we only find general achievability bounds for a special
notion of commuting operations based on the ‘“isotropic” method
in this formalism.

» Bounds on distillation yield (error on the target) in terms of
modified hypothesis testing relative entropy



Distillation yield

A few more remarks:

e |nput-error-tolerance model: A larger collection of bounds based
on similar techniques can be obtained; The state-smoothing of
min-relative entropy monotones (more stringent) emerge.

® More results using the maximal overlap formalism [Bu/ZWL/
Regula/Takagi, in preparation], e.g. characterizations of
distillation for non-(FFR) theories.

e By using the collapse theorems and a few asymptotic
equipartition properties (e.g. Stein’s lemma for hypothesis
testing), we can obtain new asymptotic (infinite i.i.d. limit)
reversibility results for non-maximal free operations.



No-go theorems for distillation

[Fang/ZWL, in preparation]

Distilling “good” /pure resource states from ‘“bad”/noisy ones is a
very useful type of protocol in Ql:  Entanglement/Bell pair
distillation for g. communication; Magic state distillation for fault-
tolerant g. computation...

Here we provide a set of very general no-go theorems, which
indicate that the possibility of improving distillation is subject to
strong limitations. The results are obtained through properties of
min and hypothesis testing relative entropies, which were
connected to distillation just now.



No-go theorems for distillation

We say a resource state has free component if it takes the form
p=po+(1—pw for some free state o, p > O.

Very generic. Every mixed state has free component as long as there
exists some full-rank free state (e.g. the maximally mixed state).

Theorem (Deterministic distillation)

It is impossible to transform any resource state with free
component to any pure target state with any deterministic map
with arbitrarily small error.

We find a threshold error related to the minimum eigenvalue of
the resource state and its overlap with the target state, s.t. any
error below this threshold is not achievable.



No-go theorems for distillation

We further establish no-go for the more general probabilistic
distillation setting, which is also important in practice.

.. o _ E.g. depolarizing
Theorem (Probabilistic distillation)  noise

It is impossible to distill any full-rank resource state to any target

state such that mnyin>0 with zero-error, even probabilistically.
Pretty much always hold

There is a trade-off between accuracy and success probability.

E.g. Conventional magic state distillation protocols (to turn noisy magic
states into useful ones such as T-states, fundamental to fault-tolerant
schemes, Clifford-magic models etc.): encode noisy states in error
correcting code, syndrome measurement, decode upon certain outcomes.

Then our results says it’s impossible to devise any procedure that
produces perfect T-gates; also to achieve high accuracy one needs to use
large codes or iterate for many times (which exponentially reduces
success probability)



Main take-home messages

e The optimal rates of approximate resource formation tasks
can generally be characterized by smooth max-relative
entropy monotones and the smooth free log-robustness,
while those for distillation can generally be characterized
by hypothesis testing relative entropy monotones. (Unified
operational interpretations of these resource measures)

® Give up on your dream for ideal resource distillation/
purification: (in pretty much any case you might care
about,) highly accurate distillation is impossible, and
perfect distillation is impossible even probabilistically.

® (Golden states (a notion of max-resource) are super nice
resource currencies.



Magic state quantum computation

Clifford group: Preserves Pauli group {U . UPUT € P,,VP & Pn}

Generated by {H, CNOT, S}
Phase shift ( (1) ? )

Stabilizer states: Generated by Clifford group
on trivial states

Magic states: Outside the convex hull
(stabilizer polytope)

Stabilizer states and circuits are ‘“useless” for q. computation: can be
efficiently simulated classically [Gottesman-Knill Theorem] (Parity-L)

Magic states promote it to quantum universality (BQP)!



Magic state quantum computation

Commonly considered magic state: T-state and tensor products

TY = T|+) = %am T ey
)= (1+ 75 )

Important resource for fault-tolerant g. computation scheme [Bravyi/
Kitaev, PRA ’05...1]:

Magic state distillation to prepare T-states — State injection gadget
to implement T-gates [4))

0) (] [r] -+ [sx] Tlv)

O
Bl

= Clifford circuits (fault-tolerant) + T-states




Magic state quantum computation

Therefore, T is a precious resource for quantum computation.

The number of T-gates/states (T-count) is an important figure of
merit

Example: Of great interest recently—Complexity/cost of classical
simulation in terms of T-count t

e Upper bound: Can do better than brute-force... Classical
simulation algorithms s.t. the performance is determined by
certain magic measures: Stabilizer rank (~20-48t pure states)
[Bravyi/Gosset, PRL ’16]; Free robustness (~20.74t all states)
[Howard/Campbell, PRL ’17, Heinrich/Gross, Quantum ’18]

® |ower bound: Cannot be 2°0(), conditioned on some reasonable
conjectures [Morimae/Tamaki, 1901.01637]



Magic state quantum computation

T-state is not (most powerful) state even for single qubit

qubit state:

IG) = cos ¢[0) + ™4 sing|1), cos(2¢) = 1

’G><G’:;(I+X+\2+Z)

A slightly different goal: Reduce the size of resource magic state

for your quantum computation, by using more powerful magic
states

[ZWL/Takagi, in preparation]



Magic state quantum computation

For illustration, some toy results by the one-shot theory:

O Reduce qubit-count by using less G-states to get more T-states
(say, then use the T-gadget). How well can we do it?

Calculate magic monotones/modification coefficients:

mmax,min(G®n) = log(3 — \/§) ~ 0.34, @maX,min(G@m) ~ 0.34n  Additivity of “Clifford-magic”
states; Collapse due to
Mmax,min(T®™) = log(4 — 2v/2) = 0.23, Dmaxmin(T®") = 0.23n  convex duality [Bravyi et al]

LR(T®™) = 0.272,0.458,0.687, 0.950... Not additive

e Perfect 2G — 3T is impossible (max/max optimality bound)

e 3G — 4T can be achieved by a stabilizer-preserving map with
small error (D_H/LR distillation bound)

[ZWL/Takagi, in preparation]



Magic state quantum computation

O Gate synthesis

E.g. Suppose you want to synthesize a Toffoli or CCZ gate. How
many resource qubits are necessary?

Mmax(CCZ) = log, % ~ 0.277 ion bound
Formatg ounds Q(()j,ffNG (CCZ «+ {G@m}) > 2.44

Mmax(GE™) = log,(3 — V/3) ~ 0.34
= at least 3 for small error

Similarly we can use the one-shot results to get bounds on more
general magic state manipulation (analyze T-count for gates/
computation, noisy computation...). A more complete SDP
formulation and probabilistic theory [in preparation]

[ZWL/Takagi, in preparation]



Toffoli + Hadamard model

e Another classical/quantum dichotomy: Toffoli (CCNOT) gates
handle classical (diagonal) logic, but need quantum coherent
superposition (created by e.g. Hadamard gate) to achieve

quantum computation. H-count! 1

H0) = =107 + 1))

e Also a conditional exponential-time classical simulation theorem
shown in [Morimae/Tamaki, 1901.01637]

e Here a “gadget” that turns resource states into H-gates is
unknown; Existence seems to be in tension with certain
complexity theory beliefs (Tomoyuki), so the state resource
theory is not directly useful; Need the channel theory (a unified
framework see [ZWL/Winter, 1904.04201])

A toy result: m T-gates require at least m/v 2 H-gates



Outlook

Bounds for other sets of free operations, such as non-
generating/commuting operations with selective measurements

More achievability bounds for distillation (some new results under
the overlap formalism [Bu/ZWL/Regula/Takagi, in preparation])

Necessary and sufficient conditions for arbitrary one-to-one
conversion; Complete monotone

Complete the one-shot channel theory ([ZWL/Winter,
1904.04201] mostly concerns the optimality side)
Develop new juicers! (New general theories)

Try your favorite fruit! (Apply the general framework to specific
theories you care about)



Holographic ‘“quantum” complexity?

® The conventional notion of complexity and the widely studied
Nielsen's geometric approach is not fully rigorous (which is an
intrinsic difficulty of the holographic complexity conjectures)...

® But we have rigorous tools to analyze “a certain type of”
complexity, such as the number of “non-classical” /entangling
gates, from resource theory.

e Helpful for more precise understandings of certain aspects of
holographic complexity?



Thanks for your attention!

General framework paper: 1904.05840

An upcoming paper on separation of OTOC and entanglement
in scrambling [Harrow/Kong/ZWL/Mehraban/Shor]



Most magical quantum states

Interesting case
Theorem (Typical stabilizer rank) is not “stable”

Set of n-qubit states with stabilizer rank <2n is of measure zero.

l.e. A typical/random pure state has maximum stabilizer rank 2n

ldea: The non-maximal rank states form lower-dimensional
manifolds in the parameter space, and there’s only a finite number
of such manifolds, which cannot cover the full manifold.

A corollary (Tomoyuki): Cannot improve brute-force simulation by
the stabilizer rank method for almost any noisy/random input

If the conjecture is true, another intriguing no-go consequence:
The most magical state cannot be transformed to almost any
other state by Clifford circuits...

[ZWL/Takagi/Kong, in preparation]



