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Introduction

e 2d CFTs play multiple roles in Physics:

e Critical statistical systems

e String world-sheet theory

e Boundary theory dual to bulk gravity
e Topological quantum computing

e Their spectrum has the following structure:
primaries ¢;, dimensions (h;, h;)
secondaries W_,, _p ¢;, dimensions (h; + n, hi + )

where W_,, _5 stands for arbitrary products of negative
modes of the spin-1, spin-2, spin-3 --- chiral fields that
generate the symmetry algebra.

e Defining ¢ = ¢?™7, the partition function:

Z(r,7) = trgko zigom

counts the number of primaries and secondaries.



e For consistency, the partition function must be modular
invariant:
Z(ym7) = 4(1,7)

where:

ar +b a b
= L(2,Z
TE ( d)GS(,)

The modern modular bootstrap programme [Hellerman 2009,
Friedan-Keller 2013 etc] proposes to constrain possible 2d CF'T
by just imposing the above condition. These works focus
on CFT’s with a semi-classical AdS dual (large ¢, sparse
spectrum).

The modular bootstrap in fact originated much earlier in
[Mathur-Mukhi-Sen, 1988] where the goal was to classify and
construct CFT’s with a small number of critical exponents
(primary fields).



e Modern-day physics motivations for such theories:

o Interesting for statistical physics: very few primary
deformations, and if (h;, h;) > 1 then theory tends to be
more stable (perfect metals, [Plamadeala-Mulligan-Nayak
2014]).

e Useful for string compactifications because potentially have
smaller number of moduli (e.g. Gepner models).

e Relevant for topological quantum computing (e.g.
[Freedman-Kitaev-Larsen-Wang 2003, Tener-Wang 2017]). The
relation involves non-Abelian anyons, fractional quantum
Hall systems and unitary modular tensor categories.

e Still might be relevant for a quantum/stringy version of
AdS3/CFTs.

e They are also extremely interesting to mathematicians.



In this talk I will deal with Rational CF'T having one
critical exponent h. They can have one or more non-trivial
primary fields ¢ with the same conformal dimension.

Using the MMS approach to modular bootstrap, one can
classify and construct (not just constrain) theories.

Recently, in [arXiv:1810.09472] we have classified all possible
characters for such theories, for the first time.

Thereafter, in [arXiv:1812:05109] we showed that large
numbers of such characters actually do correspond to
CFT’s.

We explicitly constructed several completely new CFT’s
with a single critical exponent.
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RCFT basics

Theories with a finite number of primaries are called
Rational Conformal Field Theories (RCFT):

p—1
Z2(r,7) =Y ()P

i=0

Xi(7) is the character for a given primary ¢;:
Xi(q) = tr; g~ =
where tr; is over all holomorphic descendants W_,, ¢;.
The characters take the form:
Xi(a) = ¢ 3" (af + atq +ade® + )

where the a!, are non-negative integer degeneracies.

Characters are holomorphic in the interior of moduli space
but can diverge on the boundary 7 — ¢00.



For the partition function to be modular-invariant, the
characters must be vector-valued modular functions:

p—1
Xi (v7) = My()x;(7), v € SL(2,Z)
j=0

with MM = 1.

From the work of [Belavin-Polyakov-Zamolodchikov (1984)] and
generalisations, we know many examples of such RCFT’s
including their characters and correlation functions. They
possess null vectors and fall into minimal series.

In this approach we have to first define the chiral algebra.
Also, in each minimal series the number of critical
exponents quickly grows, so the theories may be less
physically interesting.

As alternate approach is to classify CFT by their number
of characters (=number of exponents +1). This has
already yielded many novel insights.
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To classify RCFT by their characters, one must first fix a
number > 1 of characters.

Then, there are two problems to be solved:

e Problem (I): Find all possible characters with modular
invariance and positive integrality of the g-series
(“admissible”).

e Problem (II): Find which of these really corresponds to a
CFT.

If we want to be fashionable we could say that those
characters satisfying (I) could lie in the swampland unless
they are shown to satisfy (II)! (Analogy not to be taken too
seriously.)

I will now describe how each of these problems is addressed,
first very briefly for one character (= meromorphic CFT)
and then for two characters (= one critical exponent).



e In the one-character case, the partition function has the
form:

Z(r,7) = (1)
For this to be modular-invariant, x(7) has to be modular
invariant upto a phase.

e It is a well-known mathematical fact that this is only
possible if y is a function of the Klein j-invariant:

3(q) = ¢~ + 744 + 196884¢ + 21493760¢> + - - -



Requiring non-negative integer coefficients puts strong
restrictions: we must have specific fractional powers of j
times a polynomial. This implies ¢ = 8n for some integer n.

For example:

c=8: x= j% Es (unique)
c=16: y=j3 Eg x Es, Sping,/Zs
c=24: x=4+N free boson, Niemeier lattice
c=32: x=j3 (j + N) free boson, even unimodular 32d lattice

All these examples correspond to ¢ free bosons compactified
on a torus R¢/I"; where I is an even, unimodular lattice —
but there are more general possibilities when ¢ > 24.

In 1988, Peter Goddard labelled such theories as
“meromorphic CFT”.
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We see that from ¢ = 24 onwards, there are undetermined
integer parameters consistent with modular invariance.

However not all values lead to genuine CFT.
For example at ¢ = 24, there are only 24 even unimodular
lattices and a finite number of generalisations involving

orbifolding etc [Schellekens (1992)], bringing the total number
of theories to 71.

The characters of these 71 theories are all of the form
j + N with just 30 distinct values of A/. For all other
values of A there seem to be no consistent CFT.

10 / 41



Thus the status of Problems (I) and (II) for one-character
(meromorphic) CFT is as follows.

Problem (I) was effectively solved by Klein in the 19th
century by discovering the j-invariant.
But to this day, Problem (II) is solved only for ¢ < 24.

At ¢ = 32 there are already around 10'° even unimodular
lattices. By compactifying free bosons on the associated
torus, each of these determines a meromorphic CFT.

But there is very likely a larger number of orbifold and
other generalised theories.



A hypothetical class of one-character theories (“extremal”)
was famously proposed in [Witten (2007)] to be dual to pure
gravity in AdSs.

This led to a controversy (still not settled as far as I know)
about the existence of “extremal” one-character CFT at
large central charge. I will return to one of the arguments
below.

It now seems that Witten’s original motivation (to find
RCFT dual to semi-classical Einstein gravity) may not be
in the right direction.

Still, understanding the space of one-character CFT at
¢ > 24 is a difficult and interesting open problem.
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Two-character CFT

e For two-character theories, we need to classify all pairs:

xo(@) =q¢ 2 (1+a)q+aSq®+---)
xi(q) = q 5" (ag +alq+azq® +---)
that transform into a linear combination of themselves
under modular transformations. Here h is the critical
exponent and a\/) € Z* = Z+ U {0}.
e This was first addressed in [Mathur-Mukhi-Sen (1988)].
e Key insight:

e The partition function is modular invariant, but not
holomorphic.

e The characters are holomorphic, but not modular invariant.

e However they solve a modular linear differential
equation (MLDE) that is both holomorphic and
modular invariant. This is very restrictive.
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Here is a proof. If x¢, x1 are two characters and y is an
arbitrary linear combination of them, then:

X0 X1 X
Dxo Dxi1 Dx|=0, where D = %m% — % Es(71)
D*x0 D*x1 D

Expanding by the last column gives a 2nd order linear
differential equation for x:

Dxo Dxa
D?x0 D?xa

X0 X1
Dxo Dxa

X0 X1

2

D x — D2 D? Dx +
X0 X1

This can be rewritten in monic form:

D?X + ¢o(T)DxX + ¢a(T)x =0

where ¢, ¢4 are meromorphic in 7 (due to possible zeroes
of the first det) and of modular weight 2,4 respectively.

x=0



For two-character theories it can be shown that the number
of zeroes is % where £ = 0,2,4,---. The fractional number
is due to the orbifold nature of the torus moduli space.

For any fixed number of poles %, there is a finitely
generated ring of modular functions.

So without knowing x¢, x1, we can parametrise these
functions in terms of known modular forms (Eisenstein
series) with arbitrary real coefficients.

For example, at £ = 0 the most general MLDE is given by:
(=0 (1) =0
¢4(T) = pEy(7)
— D)+ uEy;x=0 (MMS equation)
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e For higher values of ¢ the MLDE has more and more free
parameters. For example at £ = 2 we have:

E=2: @) :Mlgigg

¢a(T) = poky(r)

E
= D2x+u1§li + paByx =0

e Note that, if we assume an MLDE that is holomorphic
when expressed in monic form, then we are assuming ¢ = 0.
This has caused some confusion in the literature.



e The Riemann-Roch theorem gives an important relation
between the central charge ¢, the conformal dimension A
and the integer ¢ labelling singularities of the equation:

1 —
c b 4

TR 6
e For a unitary theory with positive ¢, A this implies that:

c+2>2

so theories with large ¢ must have a large central charge.
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e For any values of the coefficients p;, solutions of the
differential equation are vector-valued modular functions,
and have an expansion of the form:

Xi() = q 3" (ah + alq + abg® + - --)
where we identify hg = 0,h; = h.
e But we want admissible characters, i.e. those that have

non-negative integer coeflicients a,.

e The a!, are rational functions of the parameters in the
equation (e.g. u). The methodology to find admissible
characters is then:

(i) Vary the parameters yu; of the equation until the first few
coefficients a!, are non-negative integers.

(ii) Verify that the af, continue to be non-negative integers to
very high orders in q. Then we have an “admissible
character”.
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e Thus, Problem (I) for two-character CFT becomes: what
are all the admissible characters for £ =0,2,4,6,---7

e After solving this, we can turn to Problem (II) — to find
out which ones correspond to actual CFT.

e Until 2018, the only studied cases were:
e (=0 [Mathur-Mukhi-Sen (1988)],

e (=2 [Naculich (1989), Hampapura-Mukhi (2015),
Gaberdiel-Hampapura-Mukhi (2016)],

e (=4 [Tener-Wang (2016)].
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£=0 (WZW)

¢ =2 (KM, but not WZW)

No. || ¢ | h | af | KM Algebra ¢ | h| & KM Algebra
1 1] 1] 3 Ay 23 | T ] 69 (A11)%8,-+
2 1l 08 Az 22 | 3| 88 (A1)t
322 14 G2, 106 | 81106 | Fes3®Gan, -
4 || 4 | 1] 28 Dy 20 | 2] 140 (Da1)%, -+
5 2613 52 Fy1 21 I 188 | Csi®Fun,--
6 6 | 2] 78 Eg,1 18 | 4] 234 (Bo1)3, -
7 7| 3| 133 E7.1 17 | 3] 323 | Doy @ Ery,-
8 — | 248 Es 16 | — | 496 Eg1 @ Fs 1

Table: CFT with £ =0 and ¢ = 2.
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Remarkably the Kac-Moody algebras appearing in the £ =0
series are in 1-1 correspondence with a special set of Lie
algebras whose properties were noted by [Deligne (1996)].
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In each of these cases there is a finite set of admissible
characters.

For ¢ = 0,2 each set has been completely identified with
actual RCFT.

Also, we found a novel coset relation between each ¢ =0
theory and a corresponding ¢ = 2 theory, with
c+eé=24,h+h=2.

Thus both Problems (I) and (II) are solved for ¢ = 0, 2.

Only Problem 1 is solved for ¢ = 4. There are just three
irreducible new sets of characters, but so far no one has
been able to associate them to CFT.

But until recently, nothing was known about ¢ > 6.



The literature has had some suggestions/claims (and one
“proof”) that only ¢ = 0 is allowed, or only low values of ¢
are allowed (other than tensor products).

But it was shown in [Harvey-Wu (2018)], using Hecke
operators, that it is quite easy to construct admissible pairs
of characters for generically large ¢. Their method is rather
complicated and they made no claim of completeness.

In [Chandra-Mukhi (2018)] we have shown by a different
method that, starting from every ¢ > 6, there are infinitely
many admissible pairs of characters, and we have provided
a complete construction of all of them.

This solves Problem (I) for all 2d CFT with one critical
exponent.
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Quasi-characters and ¢ > 6

The strategy we used to solve Problem (I) for all even
£ > 6, is based on a series of works by mathematicians:
[Kaneko7 Zagier, Koike].

[Kaneko-Zagier (1998)] studied a 2nd order MLDE which,
after a simple transformation, is the same as the MMS
equation for £ =0 CFT:

<D2 + /AE4(7'))X =0

When this equation was studied by MMS, only solutions
with non-negative integer g-series were retained. There are
finitely many, all lying in the range 0 < ¢ < 8.

Remarkably, if we relax the assumption of non-negativity
then we get infinitely many integral solutions.

V]



e To see this, note first that all possible fusion classes were
classified for two-character theories in [Christe-Ravanini
(1989), Mathur-Sen (1989)] and they are of four types:
Lee-Yang, Ay, Az, Dy.

e Now choosing the parametrisation p = —C(g;rgl) in the MMS
equation, Kaneko et al studied the following rational values
of ¢, where n is an integer:

c=06n+1, A class
c=4n+2, n# 2 mod 3 Ag class
c=8n+4 Dy, class

= M, n#4mod5  Lee-Yang class

e For those values of ¢ in the above list that also satisfy
0 < ¢ < 8, the solutions are precisely the ones of MMS.
They are admissible characters that correspond to genuine
CFT’s.
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For all the remaining (infinitely many) values of ¢ in the
above list one still finds integer degeneracies, but some of
them are negative.

We call such solutions quasi-characters. There is precisely
one for each c in the list.

Example: for the ¢ = 6n + 1 series with n = 4, the
“identity” quasi-character looks like:

Xo = ¢~ 21 (1 — 245 + 142640¢° + 18615395¢° + 837384535¢" +- - - )

and all higher coefficients are positive.

Using the works of [Kaneko et al] we were able to classify all
quasi-characters with £ = 0. They exhibit two types of
behaviour depending on the value of c:

e Type I have finitely many negative signs, and then
asymptote to positive integers.

e Type II have finitely many positive signs, and then
asymptote to negative integers.
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Such quasi-characters cannot directly describe a CFT since
they are not admissible: what sense does a degeneracy of
—245 make?

However we showed that quasi-characters with £ = 0 are
building blocks for all admissible characters with £ = 6p for
every positive integer p. The latter are obtained as linear
combinations with integer coeflicients.

We also constructed quasi-characters for ¢ = 2,4 and
showed that these are building blocks for admissible
characters with ¢ = 6p + 2, 6p + 4 respectively, thus
exhausting all even £.

Due to time constraints I will only discuss the ¢ = 6p cases
in this talk.
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Let us see how this works in a simple example. We add a
pair of quasi-characters in a given fusion class to each
other, chosen such that their value of ¢ differs by 24.

Such addition is consistent, because when ¢ jumps by 24,
the quasi-characters transform in the same way under
modular transformations.

By the Riemann-Roch theorem:
1—-/

C
_EHL* 6

the h value of these two will differ by 2 units.

Thus, if one of them is labelled by (¢, k) then the other is
labelled by (¢ +24,h + 2).

Let us choose the former character to be admissible and

the latter to be a Type I quasi-character with a single
negative coefficient.
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Thus the behaviour of the sum is given by:

Yo=¢ 2@ Y1— )+ Nigzi(l+-)
X1 :q_i+h+1(1+...)_|_/\/’1q_i+h(1_|_...)

From the leading power of ¢ in each of these, we find that
these characters correspond to a central charge c + 24 and
dimension h + 1.

Applying Riemann-Roch again, we find that the added
quasi-characters have ¢ = 6.

Moreover, choosing N7 suitably we can cancel the negative
term, leading to an admissible character.

If we start with a Type I quasi-character having multiple

negative values then we need to add several terms to get an
admissible character.
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e The algorithm to construct an admissible character is then:

(i) First pick a quasi-character for a particular central charge
and having finitely many negative degeneracies.

(ii) To it, add some more quasi-characters in the same class.
Adjust coefficients such that the result is admissible (all
negative signs cancelled).

e We have proved that this procedure is complete: every set
of characters with ¢ = 6 is obtained as a sum of £ =0
quasi-characters.

30/



Outline

@ (=6CFT



¢ =6 CFT

We now turn to Problem (II): given these new infinite
families of admissible characters, which of them are actual
CFT?

We address the case of ¢ = 6. This is the first value for
which an infinite family of admissible characters arose.

This is somewhat reminiscent of the meromorphic case at
¢ = 24 (which also has ¢ = 6, in fact).

A complete list of admissible characters for ¢ = 6 is given
on the next page. They all have:

24 < ec< 32



No. ¢ | h | Character sum
L2 |8 | vt + Mg
2 || 25 |3 xaTt N
30026 | 3| xX%0+ N
4B T A Mg
500 28 | 3] B2+ N
6 || 5% | 5 | XY H N
70030 | 3| XM
8 | 31 | I | xa+ NG
9 | 2|5 | i+ M

Table: £ = 6 pairs obtained by addition of quasi-characters



Though there are only 9 rows in the table, each one has
infinitely many pairs of characters due to the free integer
Ni. Do any of these correspond to actual CFT?

Our proposed method to construct CFT’s starts by looking
at even, unimodular lattices with ¢ = 32 [Chandra-Mukhi
(2018)].

As mentioned earlier, there are more than 100 of them.
But 132 of these are special. They have complete root
systems and are called Kervaire lattices.

Now in [Gaberdiel-Hampapura-Mukhi (2016)] we discovered a
novel coset construction where, in particular, one can divide
a meromorphic CFT by a class of WZW models at level 1.
Such WZW models have ¢ = 0. If they also have two
characters then one can show that the quotient is a
two-character CFT with:

C
(=2-10
2



Thus if ¢ = 32 then the coset theory has £ = 6.

So we take the coset of a Kervaire lattice CF'T, having

¢ = 32, by any of the WZW theories falling in the MMS
series, which all have £ = 0.

The result has £ = 6, and moreover has a definite value of
N for its characters.

Thus each coset gives a fixed value of the coefficient N7 in
the table and assures that a CFT exists for that Nj.

In this way we can find one or more CF'T’s for every
Kervaire lattice.



Let us illustrate this using a simple example: a
32-dimensional lattice having the complete root system
AL,

Its root lattice is not unimodular, but one can extend it to
an even unimodular lattice I' by adding in a few vectors
from the dual lattice of AS.

Scalar field theory on the torus C32/T" defines a unique
¢ = 32 meromorphic CFT with A%f’l as its Kac-Moody
algebra.

The number of spin-1 currents is the dimension of the
algebra, which is 128.



e We can write the single character of this theory as a
non-diagonal modular invariant combination of the affine
characters of A%?l

e These are of the form ngiﬁfp where xo, x1 are the Ay 1
characters. They have conformal dimensions

mZ:mTip: 14516

R

QJ\»—!
CO\l\D

e Denoting these by ¥,,,., the modular invariant (upto a
phase) combination of these characters is easily found to
be:

X(7) = xg + 22430, + 272075 + 3360), + 256
. 1.
= j(7)3(j(r) — 864)
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Since this ¢ = 32 meromorphic theory has A%fjl as its
Kac-Moody algebra, we can coset it by the £ =0
two-character As 1 affine theory, to get a new £ =6
two-character CF'T with A%?’l as its symmetry.

The affine Ay theory has ¢ =2, h = %

Hence the coset theory has ¢ = 30 and h= %

Its characters must be linear combinations of ngf_p

. . 15— . .
whose dimensions are m; = %. These combinations turn
out to be:

Xo(T) = %o + 140%5 + 1190y + 840y, + 16
X1(T) = 425 + T65)s + 1260) 11 + 120y 14

Now we know more than just the characters and partition
function! In fact for all such theories we can use methods
of [Mathur-Mukhi-Sen (1989)] to compute correlation functions
on the plane and torus. So the CFT is fully defined.



One can construct many more (over 100) two-character
CFT’s with £ = 6 in this way.

But we do not have a complete list of £ = 6 CFT, and we
never will because there is no complete list of ¢ = 32
meromorphic CFT.

Still, given a lattice CFT with a complete root system, we
can coset it in one or more ways by an £ = 0 CFT and
obtain large classes of theories with various /.

For lattices with incomplete root systems, things are more
complicated and not yet worked out.
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Conclusions and Outlook

e A long-standing problem, to find all admissible
vector-valued modular forms of rank p, has now been
solved for p = 2.

e Previously it had been solved only for p = 1, with rather
striking consequences for theoretical physics related to
Monster symmetry, 3d gravity etc.

e We saw that for both p =1 and 2, ¢ < 6 turns out to be
extremely non-generic and gives rise to finite families of
admissible characters. Infinite families start to appear from
¢ = 6 onwards.

39 /41



e We did not actually use MLDE to classify ¢ > 6 characters!
Our method just uses £ = 0 MLDE to construct
quasi-characters and then builds characters from them.

e We have settled the debate about whether two-character
CFT with £ > 6 do exist, and provided a method to
construct examples of such theories for ¢ = 6 using cosets
of even, unimodular lattices.

e Our method can be extended to ¢ > 6.

10 / 41



e For rank 3, the £ = 0 case was studied in [Mathur-Mukhi-Sen
(1989)], but virtually nothing is known about admissible
characters or actual CFT’s with £ > 0. The methods
discussed here can very likely be applied to that case.

e Since c¢ is bounded below by ¢, theories with arbitrarily
large £ have large c¢. This might be interesting for
holography.

e Few-character CFT with superconformal invariance might
provide interesting (and solvable) world-sheet theories for
superstrings.
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