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Backqground



The 7T deformation

Consider a family of quantum field theories along a trajectory
defined as follows:

d Sl e J (TT),
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i |
where:  TT(x) = g(ga(cgd)b — gabgcd)Tab(x)TCd(x)

whose expectation value on a plane or on the cylinder factories:
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‘Satvabdi;&v’ . Deformed
Energy levels

Consider a deformed CFT on the cylinder:

solve

 time  O,E[u,L] = L{n|TT|n)

Taking the factorisation into account:

The Solution reads:
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-~ ldea: treat this as a UV cutoff.

The level n at which the energies hit the square root singularity
Is set by u



Bad sigi: Truncated Spectrum

[McGough,Mezei,Verlinde 1%']

Figure 1: The energy levels F,, at L = 27 and J = 0 as a function of p for different values of
E(0) = A, + A, — §5. States with E(0) > 0 that correspond to black holes in holographic CFTs are
plotted in blue, while low-lying states are plotted in orange. For 1 > 0 that is the relevant regime in
our study we used solid lines, while for ;1 < 0 the spectrum is plotted with dotted lines. The levels
exhibit a square root singularity at the critical value uFE(0) = 27w. This indicates that, for given pu,
the energy spectrum of the deformed CFT is bounded by E < %, indicated on the plot by a dashed

black line.




CDD phase of the 2->2 S-matbrix in IQFT

[A. Cavaglia, S. Negro, I.M. Szecsenyi, R. Tateo 16']

[F. Smirnoy, A, Zamolodchikov 16']

In an integrable QFT, the 2->2 S-Matrix is fixed by crossing, analyticity, unitarity, YBE
etc. up o a phase:

Klegy — ,mm; sinh(0.—0) o ki
Szj () =ecz ' JSU.

It can be shown that turning on this phase corresponds to deforming by 7T



Modular Invariance and Torus Partikion Funcktion

[0. Aharony, S. Datta, A, Giveon, Y. Jiang & D.
Kutasov 19']

The forus partition function reads:

- (T, T, ) = Z e mat! n_zmzRE”@’R)
n

solves the Burgers’ equation

% Is also modular invariant in a unique sense:
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Sebbing of Interest



Main motivation: Finite cutoff Holography

[McGough, Mezei, Verlinde 1%’]

Apply the following deformation to large ¢, holographic CFTs.
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The radius of the cutoff surface is related to the deformation

parameter:
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Check: Quasi Local Energy

The quasi local energy of a BTZ black hole with a cutoff surface at
r = r,. given by:
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Large-c flow equation
| on curved SF’&&Q

b TP |

(TT) = ((T“b><T ») =138

This leads to the large-c flow equation:

(T2) = - Z TN TP IHRE = R(s)




The Radial
Hamilkonian Cownskraink

Identify the momentum conjugate to the
induced metric on a constant r surface:
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Large ¢ flow equation <-> Radial Hamiltonian constraint in AdS;:
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Sphere Partition function

Due to symmeftry: (Tab> = a(r)g“b

o (T ((Tabe b — (T6)?) — %R(g) “
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—¥% Matches on shell action in cutoff- AdS; [Pcaputa, S.vatta, ViShyam 19']
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Entanglement | »Mﬁrotpv

[W.Donnelly, V.S, 1%']
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Bulle Minimal Surface

e ds?= 00 (dp2 + sinh2(p)dgz§2)

.‘: Lo

N L = 2{100



Entanglement En&ragv th CFT wvs
Deformed Theory

Arcsinh(r/l)
Log(2r/)

Figure 1. Entanglement entropy in the T'T theory agrees with the CFT result for » > ,/uc, but
is UV finite.

[W.Donnelly, V.S, 1%']



Conical ME\*OPE;@.S

[X.Dong 1&]

s d
S, = (1 = n—) logZ,
dn

Relation o Renyi Entropy — nzdn ( 5 nS )

n
n
In holography, this quanftity is the conjectured dual to the area

of a cosmic brane in the bulk AdS; /7, anchored to the
{ entangling surface.

Back-reacts to create a

(n—1) angle:
= n—1
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Energy momentum tensor on (S29:17,

2 1 1
(T8 =2 | 1 xf Tt PR L | | ,
U 2drxre  247xr? \ n? sin(f)?2

5 s
Reality (T¢) = = =
: 1 12 cU CU | |
requires: -
nq 2 \/1 e mm< . 1> S

Integrate then analytically continue result to n > 1



[W.Donnelly, V.S, 1%7]

n=1,arcsinh(r/l)




Dong’s conjecture at finite radius

Rescale the angular co-ordinate to put the
conical singularities on the boundary

L L.l —n
(n)H




Oth Cownical Ewnbro by
S = — i <log(T’”Pn) )
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DLscussion:

Similarity with Entanglement
Renormalization



Finiteness of EE ot Short distances

Notice that at small r, both Von Neumann entropy:

oAt R
N

and Conical entropies at fixed n:

Conical entropies at fixed n

do NOT diverge, instead go to a constant.



Choice of boundary conditions

In order to obtain this behaviour of the entanglement entropy, we
need to impose the boundary condition:

Z(ro=0) =

However, one could also fix boundary conditions at large radius to
match with a CFT:

3
Z(I" ) | Q [V. Gorbenko, £ Silverstein,
i = € G Torroba 1%7]

So that the partition function is given by:

r. 3
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Interpolation bebween Erivial theory and CFT
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Figure 1. Entanglement entropy in the T'T theory agrees with the CFT result for r > ,/uc, but
is UV finite.
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