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Statistical mechanics & thermodynamics

Statistical mechanics provides a successtul framework
to describe thermodynamic behaviour.

However, precise relation of the
macroscopic quantities/phenomena to
microscopic details 1s often subtle.

For instance, at the microscopic level a number of physical laws
are reversible while thermodynamic laws aren’t.

T'hese 1ssues are important while trying to understand
thermalization microscopically.



Microstates & thermodynamics

T'here are a number ot possible approaches to understand
the emergence of macroscopic behaviour from microscopics.

'T'he most conventional way 1mnvokes
the ergodic hypothesis.

T'his states that ensemble averages

approximate long-time averages.
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Microstates & thermodynamics

Another approach 1s to consider typicality ot states.
An overwhelmingly large number of microstates
reproduce the same macroscopic behaviour.

A single typical state may be good enough
to reproduce thermodynamics.



Figenstate thermalization

The eigenstate thermalization hypothesis (E'1H) states that
thermal expectation values can be reproduced by
a single typical microstate of finite energy density.
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[Deutsch; Srednicki]

A stronger version of E'T'H states that all finite energy
microstates reproduce thermal expectation values.

'T'here are of course violations of E'1TH.



Figenstate thermalization
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T'’he notion of temperature arises when the operator O 1s
chosen to be the Hamiltonian 4.

ETH proposes an ansatz for all matrix elements of the operator
[Srednicks; ... ]

(m|O|n) = go(Em)dmn + e V2 fo(E, w) Ryn.



Figenstate thermalization

We can pose these questions in 2d CF 15

which offers an arena of analytic tractability.

Does a typical high-energy microstate appear thermal?
What do we mean by ‘typical’?

What 1s the microscopic/CGF1 realisation of
the B'1'Z black hole?

Is the ETH ansatz for matrix elements obeyed?



E'TH for primaries?

Quasi-primary expectation values in
a heavy primary state disagree with thermal ones.
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T'here 1s a disagreement beyond the leading order
1n a large central charge hmit.



E'TH for primaries?

One possible resolution to this may be

offered by the generalised Gibbs ensemble.

[Maloney-Ng-Ross-Tsiares; Dymarsky-Pavlenko; Brehm-Das]

But the reason behind this discrepancy 1s that primaries
are not typical states.
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For fixed central charge, the growth of the number of
primaries 1s exponentially smaller than the growth of all states.



Typical states

Consider a descendant at level (A-/)

of a primary with conformal dimension /£,

Growth of primaries p(hp) ~ exp ZW\/

Growth of descendants  p(h — h,) ~ exp

Typical states maximize p(hy,)p(h — hy) with respect to Ry
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T'he punchline

We focus on stress tensor correlators in ¢>1 CFE'1s
with Virasoro symmetry.

States in the CF'T' Hilbert space are
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conformal dim level the integer M. _
5 Virasoro generators state

Typical states which reproduce stress tensor correlators are
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{N; } are Boltzmann distributed with a Bose-Einstein mean.



T'he punchline
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Current correlators



Thermal current correlators in 2d CFT

We consider the 2-point tfunction of U(1) currents
on a torus as a simple example first.

T'his 1s fixed by modular properties and OPLs.
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'IT'hermal current correlators

We consider the 2-point tfunction of U(1) currents
on a torus as a simple example first.

This 1s fixed by modular properties and OPL:s.
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'IT'hermal current correlators

T'’he U(l) current can be realised as a free boson.
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The thermal 2-point function 1s, by definition
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this and the mode-expansion gives...
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'IT'hermal current correlators
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We work 1n the occupation number eigenbasis
a_pay has eigenvalues niN,

In the canonical ensemble the probability distribution
of the occupation number 1s a Boltzmann distribution
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P(Np) = . Noyrg= > P(N)N, = —
( n) Z(J)Vonzo p2miT Nnn < >L,5 NZO ( ) e—2mitn _ 1

The mean 1s given by a Bose-Einstein function.

T =1i6/L



'IT'hermal current correlators

'The final result 1s

™\ 1 n 2mnw
(J(w)J(0))p g = <2f) e (%) + m + 22% o 7 €08 ( -
and this agrees with
) o = =75 (otw/Lor) + T Balr) - 7 )

T'he details ot this computation gives
insight mto what might be the typical microstates
which reproduce this thermal result.




Microstate current correlators

Using the mode expansion for the current again,
the correlator in a microstate 1s given by
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Analogy with partitions of integers
T'he total energy 1s given by E = 2% Zn: Npn
T'he situation here 1s sitmilar to partitioning a integer M.

M = i nN,,
n=1

Partitions can be conveniently represented by Young diagrams.
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Microstate current correlators
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It states having the above properties are chosen at
random, then the occupation number 1s again chosen
from a Boltzmann distribution.
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Typicality ~ randomly choosing IV, from P(IN,,).

P(Ny)




Occupation numbers
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A sample of Boltzmann distributed
occupation numbers. The mean 1s
orven by the Bose-Einstein function.

'The variance of Ny 1s

itselt large but 1t can be
shown that the correlator
has small variance.
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Microstate v/s thermal correlator

----- thermal
microstate

B = 1,L =3x 10°




Stress-tensor correlators



Stress tensor correlators

A similar analysis can be performed
for stress tensor correlators.

We wish to establish that
(typ|T(w)T'(0)|typ) = (T'(w)T(0))g

The thermal 2-point function 1s

(T(w)T (w))p = (Q—ZE)Q i 362 (?)4 sinh4(%(1w’ — w))



Microstate stress tensor correlators

Once again we use the mode expansion
27T : C 27T : 2minw
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to get the microstate correlator
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Microstate stress tensor correlators

need to evaluate this
for a typical state

The typical state 1s a descendant. We can replace
(n|L_nLyn|vn) by the thermal average, provided the variance 1s
small.



Microstate stress tensor correlators
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The thermal 2-point function 1s indeed recovered
by the replacing (¥u|L_.L.|¢¥n) above by the thermal expectation
value of the operator L_,,L,, of a single Verma module.
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[Maloney-Ng-Ross-Tsiares]

Agreement only for real w. For complex w, there 1s agreement
only within the strip |Im(w)|< £5.



Small variance

T'he replacement
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1s allowed only 1t the variance of the following operator 1s small
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Small variance

X(w) = 3 X os () = @w) 3 babcos (220
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[t can be shown by using the Virasoro algebra that
the dominant modes contributing to the sum have

<L—mLmL—nLn>hp,B ~ <L—mLm>hp,B <L—nLn>hp,B

which 1mplies

X = (X) — (X)? ~



dSample computation

L,q"° = g"°t"L, Tr[Log™°] = q0,Tr[q"°]

Tr[L_nanLO] = q" Tr[L_nqLOLn] = C]nTI’[LnL—nC]LO]
= ¢"Tr[[Ln, L—n] ¢*°] + ¢"Tt[L_nLnq™]
|

C
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Tv[L_, L,q=0] = {anan + inSZ}
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[Maloney-Ng-Ross-Tsiares]



dample computation




Higher point functions

T'his analysis can be extended to higher point correlators
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11...1n
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The fluctuations can again be shown to be 1/L.

'T'his 1s true when the number of stress tensors in the correlator

1S held fixed as L/8 — .
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