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- Entanglement entropy 1s not convenient to capture quantum
entanglement of mixed states.

- Entanglement entropy of mixed state contains classical correlations,
so 1n particular 1s nonzero for unentangled mixed states.

» One 1dea to do better job, 1s to consider entanglement entropy of
purifications, and minimize E.E over certain set C of purifications.

- Consider a mixed state pAB on Hs ® Hp.
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* When ( contains all possible purifications, this quantity 1s called
Entanglement of Purification.

» Proposal for gravity dual of EoP: Entanglement wedge cross section.

[ Takayanagi, Umemoto|[Nguyen, Devakul,
Halbasch, Zaletel, Swingle]
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» Computing EoP 1s extremely hard, theretore proving this equality 1s
also ditficult.

* In this work, we will consider a particular preparation of purification
of the given mixed state, using continuous tensor network.
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+  We can associate entanglement entropy Sa4/(|¥)) for each factorization
of auxiliary Hilbert space HE.

Hg =Hy ® Hp



*  We consider all such (allowed) factorizations, and minimize the associated
entanglement entropy, defining £.
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» It turns out that, for 2d CF1 ground state, when A & B are adjacent
intervals, fi¢ gives Entanglement wedge cross section.
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» Tensor Network: Efficient representation of ground state wave
function. [White|[Vidal]
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+ Entanglement structure of CF1 state 1s encoded 1n the geometry, in a
very similar manner as that of AdS/CF1] or Ryu-Takayanagi formula.

* » 'lensor network = Timeslice of bulk spacetime in AdS/CFT
[Swingle]



[M.M, Takayanagi, Watanabe]| [Gaputa, Kundu, M.M, Takayanagi, Watanabe]|

* We apply Weyl transtormation to GF'1" ground state wave function.
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* Such Weyl transformation makes the effective lattice spacing position
dependent, introducing tensor network structure 1n the path integral.
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* Because of the conformal invariance, the wave function remains
unchanged, up to overall constant; Liouville action.

<¢O’Qvac> x [ Dp(x,T) e Jodr [ dzLplé(x,T)]

T < —€

¢(2, —€) = do(z)

L G_SL [w] D¢(£B, Z) e~ f:o dz [ dxLg[p(x,2),w(z,z)]

Z>€

o,

Liouville action: Sp|w 2 24 / dz / daz 3w } [Polyakov]

» Such Liouville action corresponds to number of tensors of tensor
network|CGzech|, which 1s to be minimized.

.

Weyl factor satisfies Liouville equation (+ sources), when the
path-integral is “optimized”.




*  We consider wave function reduced density matrix of CF1' ground

state.
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* We apply Weyl transtormation to this wave
function, keeping metric on subregions A & B fixed.

2 2
i = dydj wegp»  g2- . Lo
2 A= yPly —al

(Im g:;

» 'The state at t = 0 gives a purification of PAB.



[Caputa, M.M, Takayanagi, Umemoto]

*  We consider arbitrary partition of auxiliary system, and consider
entanglement entropy of A/\.

 We consider 2d CFT and A and B are
adjacent intervals. N A B B A

Original subsystems a p b 4
A=la, p] B=|p, b
Auxiliary subsystems

A'=[-00, a]Ulg, o] B'=1[b, q] 4o < -0

»  Using twist field, entanglement entropy of AA 1s
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[Caputa, M.M, Takayanagi, Umemoto]

+ Minimizing the entanglement entropy over all partitions, resulting
entanglement entropy gives entanglement wedge cross section!
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» This implies,

» A field theory calculation of EWCS.

»  Optimized path-integral geometry corresponds to the
entanglement wedge.



The result so far 1s general, independent from large c and field
theory content.

This 1s O.K as long as we are considering adjacent intervals, but
how about non-adjacent intervals?

Can we identify the optimized metric as timeslice of
entanglement wedge?

Relation to canonical purification? [Dutta, Faulkner]

Higher dimensions etc.



