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Thermalization

|\If7{)> are initial states.




Thermalization

|\If7{)> are initial states.

Local observables in A

depend on initial condition.
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Thermalization
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States can be approximated
by thermal state, locally .



Thermalization

o dis(pa(t), pif') = 0
YOIO®) = (1"0)  wp  Thermalize!!

States can be approximated
by thermal state, locally .

Thermalization depends on
(1) Initial state, (2)Dynamics.
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States can be approximated
by thermal state, locally .

Key point:
Locally, states forget the initial conditions.



Scrambling
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States can be approximated
by thermal state, locally .

Key point:

Locally, states forget the initial conditions.
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Scrambling effect depends on time evolution operator.



Key point:

Locally, states forget the initial condition.

-
Scrambling effect

W (t) @mf

Scrambling effect depends on time evolution operator.

| would like to know how the scrambling effect depends on
the unitary channels.




Key point:

Locally, states forget the initial condition.

N
Scrambling effect

W (t) @w

Scrambling effect depends on time evolution operator.

| would like to quantify scrambling effect.




Key point:

Locally, states forget the initial condition.

. B
Scrambling effect

W (t) @w

Scrambling effect depends on time evolution operator.

To understand scrambling
leads to understanding thermalization.



Scrambling

U(t) _ 6—itH

input A

- U(t)

output
Space




Scrambling input = 0

Expectation

Correlation between A and B

How much information sent from A to B due to
U(t) = e UtH



Scrambling input = 0

Expectation

No correlation between A and B
> <

Signature of (maximally) scrambling




We would like to study the correlation between
A and B by studying operator entanglement,

which is independent of state.

Expectation

No correlation between A and B
> <

Signature of (maximally) scrambling




Operator entanglement

Unitary channel:
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Channel-state dual map: <Cb\m — |a>m
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Unitary channel:
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Channel-state dual map: <Cb\m — |a>m
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A regulator for normalization.

Hilbert space:



Operator entanglement

Unitary channel:

Ut) =e " = Z e~ tHat a) . (al.

a

Channel-state dual map: <Cb\m — |a>m

Dual state:

U(t) =N Ze‘“tﬁ)’fa @)t |V H = Hin @ Hout

Only this depends on the initial state.

Hilbert space:



Operator entanglement

Unitary channel:

U(t) =e ™ =% e ella),, (al,,
Energy eigenstate

a
Our initial state

Initial) = NZ Cola) = NZ Coe ! a

Channel-state dual map: {(a|,, —

Dual state: ‘
U@) =Ny e (HIEa gy




Operator entanglement

Unitary channel:

U(t)y=e"" =3 e *Ftla),,, (d,,

a
Our initial state

Initial) =

Channel-state dual map: {(a|,, —

Dual state: ‘
U@) =Ny e (14 )
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Energy eigenstate
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Operator entanglement

Unitary channel:

Ut) =e " = Z e~ tHat a) . (al.

a

Channel-state dual map: <Cb\m — |a>m

Dual state:

Ut)= Ne 2 HintHow) \TEDY H — Hyp @ Hous

Hilbert space:
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c| Correlation between input and output subsystems
» Correlation between A and B in %out ) 7‘[@'”.




Concept

Correlation between input and output subsystems

out » Correlation between A and Bin Hin @ Hout.

Space

®) Measured by mutual informationI (A, B) .




Concept

Correlation between input and output subsystems

out » Correlation between A and Bin Hin @ Hout.

Space

m) Measuredby (A, B),E(A, B) .




Motivation

Which CFT (QFT) shows a signature of
scrambling ?

Spin system: [Hosur-Qji-Roberts-Yoshida'16]



Motivation

How much information from A to B are
scrambled due to channels in field theory?

Spin system: [Hosur-Qji-Roberts-Yoshida'16]



Results (Mainl)

No correlation
between A and any B

Y

input

No one in output subsystem
can’t get quantum information
locally. outpu!

‘ Space

Signature of
maximally scrambling




Results (Mainl)

For disjoint or late-time case, for any B,

Holographic
channel I(A,B)=0,£(A,B)=0

No correlation
between A and any B

output

Space




Results (Mainl)

input A

For disjoint or late-time case, for any B,

Holographic
channel I(A,B)=0,£(A,B)=0

VO correlation
Space < m——
between A and any B E



Results (Main2)  I(A,B) =Sa+ Sp — Saus

We have computed tri-partite operator mutual information:

Output system B1 B 2

B is the whole of output system. -—r—

D N
B

Bl and BZ are the halves of output system.

A IS subsystem in input system. Input system

A



Results (Main2)

We have computed tri-partite operator logarithmic negativity:

Time

Output system B1 B 2

B is the whole of output system. -—r—

D N
B

Bl and BZ are the halves of output system.

A IS subsystem in input system. Input system

A



2d free fermion channel

Time

Output system B1 B 2

B is the whole of output system. -—r—

S t

B1 and BZ are the halves of output system.

B
A

A IS subsystem in input system. Input system



2d free fermion channel

This can be interpreted in terms of
the relativistic propagation of local objects (quasi-particles) . "™™¢

Output system Bl B 2

B is the whole of output system. -—r—

D N
B

B1 and BZ are the halves of output system.

A IS subsystem in input system. Input system

A



2d chaotic channel (holographic channel)

Late time: I(A, Bl, BQ) s SQSA
Es(A, By, By) — —2 x Zsﬁ/” — 28, ;

Time

Output system B1 B 2

B is the whole of output system. -—r—

S t

B1 and BZ are the halves of output system.

B

A IS subsystem in input system. Input system

A



2d chaotic channel (holographic channel)

Late time: I(A Bl,Bz) s QSA

Time
Output system B 1 B y)
B is the whole of output system. ¢
B1 and BZ are the halves of output system. B
A IS subsystem in input system. Input system 0

A A A



2d chaotic channel (holographic chanrzg\‘)e

r bound

Time
Output system B 1 B y)
B is the whole of output system. -—— ¢
B1 and BZ are the halves of output system. B
A IS subsystem in input system. Input system 0

A



2d chaotic channel (holographic chanrzg\‘)e

r bound

We expect QFT-channels with strong scrambling ability to satisfy
this lower bound, eventually.



2d chaotic channel (holographic channel)

Late time: I(A Bl,Bz) s QSA
g (A Bl,BQ) — —2 X S(1/2) — —251471[1

Time

t system B1 BZ

B is the whole of output system. -—r—

A



How channels scrambles information

Scrambling channel

Free fermion channel = Compact boson channel (maximally scramble)

%
Unscrambling Scrambling

—




Bipartite operator mutual information in the replica trick

What we compute is
I(A,B) = Sa+ Sp — Saup = lim [${) + 8 — 54,
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Bipartite operator mutual information in the replica trick
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Bipartite operator mutual information in the replica trick
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Bipartite operator mutual information in the replica trick

Eap = ?}igl log [trAug (pgﬁB)ne}



Bipartite operator mutual information in the replica trick
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Bipartite operator mutual information in the replica trick
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Free fermion channel

We consider the following setups to extract properties of free fermion
channel:

1. Fully overlapping case 2. Partially overlapping case 3. Disjoint case

L=1+s B




1. Fully overlapping case Redeurve s (1, L) = (10, 10)
Purple curve : (l) L) — (2()’ 2())

[(A) B) Blue curve:(l,L) — (3()7 30)

40




2. Partially overlapping case
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3. Disjoint case

I(A, B)

Red curve : (I, L,d) = (10, 20,0)
Purple curve : (1T, d) = (10, 20, 10)
Blue curve: (] [, d) = (10, 20, 20)




Red curve : (l7 L, d) = (10, 20, O)
Purple curve : (I, L,d) = (10,20, 10)

3. DlSJOlnt case ](A7 B) Blue curve : (l)L)d) = (10, 20,20)

Time evolution of operator logarithmic is quite
similar to operator mutual information.







Slopes and bumps shows properties of free fermion channel are
interpreted in terms of the relativistic propagation of quasi-particles.
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Tripartite operator mutual information




Tripartite operator mutual information

doesn’t depend on the time and the choice for
subsystems.



Tripartite operator logarithmic negativity

Relativistic propagation
of quasi-particle.




Toy model

The time evolution of operator mutual information (logarithmic negativity) and
tripartite operator mutual information (logarithmic negativity) for free fermion

channel can be interpreted in terms of the relativistic propagation of local
objects as follows:

1. Each point in the input subsystem A has two particles.
- One of them propagates in the right direction @==) at speed of light.

- The other («=®). hd

- particle size ~ ¢ ~e

-# of particles in A is proportional to Hzn Al

the input subsystem size | 0000000O0O0CT

—=2000000000



Toy model

2. The particles in the output subsystem B contribute to [(A7 B)

- I(A, B)  # of particles in B.



2. Partially overlapping case

(1, 5) = (10, 20)
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Purple curve : (I, L,d) = (10,20, 10)

3. Disjoint case




o o e Purple curve : . L. d) = (10.20.10
3. Disjoint case (1, L,d) = (10,20, 10)
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3. Disjoint case
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3. Disjoint case
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o o e Purple curve : . L. d) = (10.20.10
3. Disjoint case (1, L,d) = (10,20, 10)
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Tri-partite information

* Tri-partite information can be interpreted in terms of the relativistic
propagation of local objects, too.
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propagation of local objects, too.
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Tri-partite information

* Tri-partite information can be interpreted in terms of the relativistic
propagation of local objects, too.
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Tri-partite information

* Tri-partite information can be interpreted in terms of the relativistic
propagation of local objects, too.

@time =t

B1 B2




Tri-partite information

* Tri-partite information can be interpreted in terms of the relativistic
propagation of local objects, too.

@time =t

B1 B B2
_l_Hout

00—
200




Tri-partite information

Operator mutual information for free
fermion channel can be interpreted in
terms of the relativistic propagation of

local object such as quasi-particles.




Tri-partite information

For free fermion channel, quantum correlation
between input and output subsystems is
explained by local object (quasi-particles)!!




Tri-partite information

Quantum information for free fermion
channel is carried by local object (quasi-
particles)!!




Comparison

We consider the following setups to extract properties of compact

boson and holographic channels by comparing them to free fermion
channel:

1. Fully overlapping case 2. Partially overlapping case 3. Disjoint case

L=1+s B




Comparison

We consider the following setups to extract properties of compact
boson and holographic channels by comparing them to free fermion
channel:

1. Fully overlapping case 2. Partially overlapping case 3. Disjoint case

L=I1+s B




2. Partially overlapping case —,

(¢,1,5) = (1,10, 50)

/ \ —

Free fermion channel: Compact boson channel:

10
8
6
4

20 o 40 o 60 80 ‘10 20 30 50

. o (e.1,5) = (1,10,5) ,(1,10,10),
n = 1:Blue n==6:Purple Red Purole

n = mRed ,— L.Black dash (1,10,20), (1,10, 50)
6 Blue Black




2. Partially overlapping case —,

(¢,1,5) = (1,10, 50)

Free fer

20 40 60 80 ' 10 20 30 50

_ . (e.0,5) = (1,10,5) ,(1,10,10)
n = 1:Blue n==6:Purple Red Purole

n = mRed ,— L.Black dash (1,10,20), (1,10, 50)
6 Blue Black




2. Partially overlapping case —,

channel:

60 80

(e,1,5) = (1

40

1,10, 10),

” . , LU, 7(
n = 1:Blue 7 =6:Purple Red  Purple

n = mRed ,— L.Black dash (1,10,20), (1,10, 50)
6 Blue Black




2. Partially overlapping case —,

channel:

60 80

(e,1,5) = (1

40

1,10, 10),

” . , LU, 7(
n = 1:Blue 7 =6:Purple Red  Purple

n = mRed ,— L.Black dash (1,10,20), (1,10, 50)
6 Blue Black




Holographic channel

(e,1,s) = (1,10,5) ,(1,10,10),

Red Purple I S
(1,10, 20), (1.10. 50)

Blue Black =] .




Holographic channel

—
(e,1,5) = (1,10,5) ,(1,10,10), 2
Red  Purple S
(1’ 107 20)7 (13 107 50)
Blue Black —A | H.

10

Monotonically decreasing

8¥

y

Once quantum information «
leaks from B, it keeps to leak ,
before all information leaks.




Holographic channel

L=1+s B
(e,1,s) = (1,10,5) ,(1,10,10), i Hout
Red Purple I S
(1,10, 20), (1.10. 50)
Blue Black —A__ H.
e

Monotonically decreasing "'\

‘ If quantum information is carried
by local objects,

Once quantum information | this doesn’t happen!!
leaks from B, it keeps to leak

before all information leaks.

|||||||||||||||||||||||




Holographic channel

—
(e,1,5) = (1,10,5) ,(1,10,10), 2
Red  Purple S
(1’ 107 20)7 (13 107 50)
Blue Black —A | H.

The slope changesat?{ = s |




Heuristic explanation




Heuristic explanation

Quantum information keeps to go out from the left boundary with z—ﬁ .
€

At t=0, right-moving signal appears at the right boundary of A.
Its speed is the light’s.




Heuristic explanation




Heuristic explanation

When the right-moving signal hits the right
boundary of B, the information starts to go

out from B with E—W .
€




Heuristic explanation

I(A,B)in s<t<l+ s/2

decreases twice faster than
thatin 0 <t < s,




Heuristic explanation




Holographic channel

—
(e,1,5) = (1,10,5) ,(1,10,10), =2
Red Purple : S
(1’ 107 20)7 (13 107 50)
Blue Black —A | H.

Fors > 21, I(A, B) linearly
decreases .”|
I(A,B)=0@t =2l ¢

oo
T T T




Heuristic explanation

All the information of A goes out
from the left boundary of B
before the signal arrives at the
right boundary. Once whole

information has gone, the signal
disappears.




Heuristic explanation

*Early time:
Quasi-particle description works well.

=Late time:

B before the signal arrives at
the right boundary. The signal
disappears.



3. Disjoint interval

(e,1,L,d) = (1,10, 20, 10)

1

Free fermion channel:

Compact boson channel:

- N w H ()] (o] ~

20 40 60

|
AL d o H.

Holographic channel:

If A and B are disjoint(d > (),

I(A,B) =0

80

n==6 :Purple

n=m:Red n= % :Black dash



3. Disjoint interval i
(.1, L,d) = (1,10, 20, 10) Ay 4 L

Time evolution can be interpreted in terms of particles, almost.

;T"“"' _

c~

If A and B are disjoint(d > (),

I(A,B) =0

n = 1:Blue n=6 :Purple
n=m:Red n= % :Black dash



3. Disjoint interval . = e
l l -
(e,1,L,d) = (1,10, 20, 10) Ay d 1 g
| AN T

Holographic channel:

A surprising property
of holographic channel. [ ———. /" oema=0

J \ :j \ I[(A,B)=0

n = 1:Blue n=6 :Purple
n=m:Red n= % :Black dash




B

3. Disjoint interval . = e
l l -
(e,1,L,d) = (1,10, 20, 10) Ay d 1 g
| AN T

Holographic channel:

A surprising property
of holographic channel. | ——— /" oema=0

| z I(A,B) =0
SR

Information Scrambling. |, _ ¢ .pyrple

I

n=m:Red n= % :Black dash



Free fermion channel

input | =

U(t)

output
Space ? t




Free fermion channel

input | =

U (t)

output
Space

Bumps

/\

Can be interpreted in terms of particles




Free fermion channel

@t =10 8
00000 ™
900000



Free fermion channel

. Here, you can get information locally.
@t =0
B ~
—
000000
900000

A



Free fermion channel

@t = ()
-
000000~
900000
@1 = tl /Here, you can get information Iocally\

900000 000000



Free fermion channel

@t =1(
—
00000
900000
. Here, you can getinformation locall
@ t —_— tl / fo y\
——>
900000 00000 ™
t . t Here, you can getinformation locally.

900000 000000~



Free fermion channel

@t =0
————————————— e ———————————————————————————-
00000
900000
@1t =1 By changing the position of B,
«@ you can get information locally.
@ t — t2 A/Here, you can getinformation Iocally.\

900000 000000~



Holographic channel

iINput =

U (t)

output
Space _B t

For disjoint or late-time case, for any B

I(A,B) =0



Holographic channel

iINput =

Beyond the quasi-particle model

For disjoint or late-time case, for any B /

I(A,B) =0




Holographic channel

Everywhere , you can’t get information locally at late time .

ot—1 | \




Holographic channel

We cannot mine the information in A
from B locally.

1

iINput =

Beyond the quasi-particle model

For disjoint or late-time case, for any B /

I(A,B) =0




Holographic channel Signature of information scrambling

We cannot mine the information in A
from B locally.

1

iINput =

Beyond the quasi-particle model

For disjoint or late-time case, for any B /

I(A,B) =0




Holographic channel Signature of information scrambling

N 4
We cannot mine the information in A
from B locally.

iINput =
Can we treat the effect of
information scrambling quantitatively?

For disjoint or late-time case, for any B

I(A, B) =0



A definition of (maximally) Information scrambling

(It might be different from usual one... Sorry.)

We cannot mine any information about A locally, but we can

mine the information from the whole of output system.




A definition of (maximally) Information scrambling

We cannot mine any information about A locally, but we can
mine thelinformation from the whole of output system.




A definition of (maximally) Information scrambling

We cannot mine any information about A locally, but we can

mine thelinformation from the whole of output system.

I(A,By) =0 (A, B) #0
(A, By) =0 (A B) 20



A definition of (maximally) Information scrambling

We cannot mine any information about A locally, but we can

mine the information from the whole of output system.

$

Tripartite information (Tripartite logarithmic negativity)
is useful quantity in order to treat this phenomenon,

quantitatively. [Hosur-Qi-Roberts-Yoshida’16]



Tripartite operator mutual information

I[(A,B1,By) =1(A,By) + I(A, B2) — I(A, B)

Output system
) B. B: B is the whole of output system.
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Tripartite operator mutual information
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Tripartite operator logarithmic negativity
E3(A, B, Ba) = E(A, By) + E(A, By) — E(A, B)
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the information of A the information of A from the
whole of output system B.

from the subsystems.
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) B. B: B is the whole of output system.

| B:and B, are the halves of output system.

B Aisa subsystem in input system.
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Tripartite operator mutual information (logarithmic negativity)

If information mined from subsystems Band B- is smaller than
the information from whole of output system B,



Tripartite operator mutual information (logarithmic negativity)

If information mined from subsystems Biand B is smaller than
the information from whole of output system B,

I(A, By)+ I(A, By)
E(A, B1) -+ E(A, BQ)



Tripartite operator mutual information (logarithmic negativity)

If information mined from subsystems Biand B is smaller than
the information from whole of output system B,

[(A,By) + I(A,By) — I(A,B) <0
E(A,By) + E(A, By) — E(A,B) <0



Tripartite operator mutual information (logarithmic negativity)

If information mined from subsystems Biand B is smaller than
the information from whole of output system B,

I(A,By) + I(A,By) — I(A, B) <0
E(A,By) +E(A, By) — E(A,B) <0

¥

[(A7 B17B2) <0 753(A7B17B2) <(



Tripartite operator mutual information (logarithmic negativity)

If information mined from subsystems Biand B is smaller than
the information from whole of output system B,

I(A7 B17B2) <0 783(A7317B2) <0

Some information is hidden in whole of output system due to information scrambling effect.

This quantity can quantify the effect of information scrambling.



Holographic channel
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Holographic channel

At late time,

I[(A, By, B2) = I(A, B1) + I(A, Ba) — [(AlB)

0 Constant

E4(A, By, By) = E(AB)) + £(A'B,) — £(A' B
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We cannot mine information locally, but we can mine the information
about A from the whole of output system B.
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Holographic channel

At late time,

I[(A, By, B2) = I(A, B1) + I(A, Ba) — [(AlB)

0 Constant

E5(A, By, By) = £VAIBy) + £(A' By) — £(A! B)
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We cannot mine information locally, but we can mine the information
about A from the whole of output system B.
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Holographic channel

At late time,

I[(A, By, B2) = I(A, B1) + I(A, Ba) — I(AlB)

0 Constant

0
E4(A, By, By) = EVAB)) + £VA'B,) — (A B

We cannot mine information locally, but we can mine the information

about A from the whole of output system B.




Holographic channel

At late time,

I[(A, By, B2) = I(A, B1) + I(A, Ba) — [(AlB)

0 Constant

0
E4(A, By, By) = EVAB)) + £VA'B,) — £(A' B

We cannot mine information locally, but we can mine the information

about A from the whole of output system B.

» All information sent from A is scrambled.



Holographic channel

At late time,

I(A, By, By) = I(A, By) + I(A, B) — I(A, B)

0 Constant

0
E4(A, By, By) = EVAB)) + £VA'B,) — £(A' B

We cannot mine information locally, but we can mine the information

about A from the whole of output system B.

» They measure how much information is scrambled.



. In the low energy limit,
Holographic channel these kinks can be negligible.
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Summary

Bipartite operator mutual information (logarithmic negativity)

Free fermion and Compact boson channels:

Here, you can get information locally.

@ t:tl / \
—— — e — e —
900000 00000 O™

Holographic channel:

Everywhere , you can’t get information locally.

0 t—t / \




Summary

Tripartite operator mutual information (Tripartite operator logarithmic negativity)

Free fermion channels: Holographic channel:
I(A,B1,B3) =0 I(A, By, Bs) — —254
E3(A, Bi, By) =0 Es(A, By, By) — —2E(A, A)
B1 B2 | /
_Bl_ Hout 4 /
200’ /<

All initial information

uasi-particles )
Q P is scrambled.



Future directions

1. Operator entanglement of local operator
2. Complexity

3. Operator entanglement of CMERA

4. Many-body localization

5. Quantum Chaos and thermalization

6. Wormhole (double trace deformation)



