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Quantum Entanglement is a non local feature of Quantum Mechanics   

• Quantum Teleportation via EPR Pairs 

• Non-local order parameter in Topological phases 

• Many body localization  

• Quantum gravity: Emergent smooth spacetimes from 
quantum entanglement 

Add some pictures 
Singlet example 

Entangled EPR

Unentangled



 What do we mean by locality in quantum mechanics? 

U(N) Yang Mills on a spatial 
circle . 

N non-relativisitic fermions in 
on a spatial circle 

Hilbert Space factorization

 Different notions of locality can be assigned to the same Hilbert space

=



AdS/CFT and Bulk locality

Free Fermions in a Magnetic field in the LLL
Ten- Dimensional Geometry for the IIB string 

1 Introduction

In this paper we consider a class of 1/2 BPS states that arises very naturally in the study
of the AdS/CFT correspondence for maximally supersymmetric theories. These states
are associated to chiral primary operators with conformal weight ∆ = J , where J is a
particular U(1) charge in the R-symmetry group. For small excitation energies J ≪ N
these BPS states correspond to particular gravity modes propagating in the bulk [1]. As
one increases the excitation energy so that J ∼ N one finds that some of the states can
be described as branes in the internal sphere [2] or as branes in AdS [3]. These were
called “giant gravitons”. As we increase the excitation energy to J ∼ N2 we expect to
find new geometries. The BPS states in question have a simple field theory description in
terms of free fermions [4] (see also [5]). In a semiclassical limit we can characterize these
states by giving the regions, or “droplets”, in phase space occupied by the fermions. We
can also picture the BPS states as fermions in a magnetic field on the lowest Landau
level (quantum Hall problem). In this paper we study the geometries corresponding to
these configurations. These are smooth geometries that preserve 16 of the original 32
supersymmetries. We are able to give the general form of the solution in terms of an
equation whose boundary conditions are specified on a particular plane. We can have two
types of boundary conditions corresponding to either of two different spheres shrinking
on this plane in an smooth fashion. This plane, and the corresponding regions are in
direct correspondence with the regions in phase space that were discussed above. Once
the occupied regions are given on this plane, the solution is determined uniquely and the
ten (or eleven) dimensional geometry is non-singular and does not contain horizons.

(a) (b) (c)

Figure 1: Droplets representing chiral primary states. In the field theory description
these are droplets in phase space occupied by the fermions. In the gravity picture this
is a particular two-plane in ten dimensions which specifies the solution uniquely. In (a)
we see the droplet corresponding to the AdS × S ground state. In (b) we see ripples on
the surface corresponding to gravitons in AdS ×S. The separated black region is a giant
graviton brane which wraps an S3 in AdS5 and the hole at the center is a giant graviton
brane wrapping an S3 in S5. In (c) we see a more general state.

The topology of the solutions is fixed by the topology of the droplets on the plane.
The actual geometry depends on the shape of the droplets. In fact, this characterization
is reminiscent of toric geometry. In the type IIB case we simply need to solve a Laplace
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F(5) = Fµνdxµ ∧ dxν ∧ dΩ3 + F̃µνdxµ ∧ dxν ∧ dΩ̃3 (2.2)

where µ, ν = 0, · · · , 3. In addition, we assume that the dilaton and axion are constant and
that the three-form field strengths are zero. The self duality condition on the five-form
field strength implies that Fµν and F̃µν are dual to each other in four dimensions:

F = e3G ∗4 F̃ , F = dB, F̃ = dB̃ (2.3)

We now demand that this geometry preserves the Killing spinor, i.e. we require that
there are solutions to the equations

∇Mη +
i

480
ΓM1M2M3M4M5F (5)

M1M2M3M4M5
ΓMη = 0 (2.4)

This equation is analyzed using techniques similar to the ones developed in [25, 19, 20].
One first writes the ten dimensional spinor as a product of four dimensional spinors and
spinors on the spheres. Due to the spherical symmetry the problem reduces to a four
dimensional problem involving a four dimensional spinor. One then constructs various
forms by using spinor bilinears. These forms have interesting properties. For example, we
can construct a Killing vector, which we assume to be non-zero. This is the translation
generator, ∆ − J . There is another interesting form which is a closed one form. This
can be used to define a local coordinate y. This coordinate y is rather special since one
can show that y is the product of the radii of the two S3s. By analyzing the Killing
spinor equations one can relate the various functions appearing in the metric to a single
function. This function ends up obeying a simple differential equation. We present the
details of this analysis in appendix A. The end result is:

ds2 = −h−2(dt + Vidxi)2 + h2(dy2 + dxidxi) + yeGdΩ2
3 + ye−GdΩ̃2

3 (2.5)

h−2 = 2y cosh G, (2.6)

y∂yVi = ϵij∂jz, y(∂iVj − ∂jVi) = ϵij∂yz (2.7)

z =
1

2
tanh G (2.8)

F = dBt ∧ (dt + V ) + BtdV + dB̂ ,

F̃ = dB̃t ∧ (dt + V ) + B̃tdV + d ˆ̃B (2.9)

Bt = −1

4
y2e2G, B̃t = −1

4
y2e−2G (2.10)

dB̂ = −1

4
y3 ∗3 d(

z + 1
2

y2
) , d ˆ̃B = −1

4
y3 ∗3 d(

z − 1
2

y2
) (2.11)

where i = 1, 2 and ∗3 is the flat space epsilon symbol in the three dimensions parameter-
ized by y, x1, x2. We see that the full solution is determined in terms of a single function
z. This function obeys the linear equation

∂i∂iz + y∂y(
∂yz

y
) = 0 (2.12)
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• AdS/CFT provides a QG Hilbert space at 
asymptotic infinity 

• How is the local bulk spacetime encoded in the 
CFT Hilbert space at infinity? 

1/2 BPS sector of N=4 SYM
(Lin, Lunin, Maldacena) 

The Emergence of Bulk Physics in AdS/CFT Daniel Harlow
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Figure 7: The AdS-Rindler wedge.

is a solution of the massive Klein-Gordon equation. Yl are the eigenfunctions of the Laplacian on
Hd�1 (l is partly continuous and partly discrete), and ywl behaves at large r like13

ywl ! Nwl r�D. (3.25)

As in global coordinates, we can then use the extrapolate dictionary to read off that

Owl = Nwl awl . (3.26)

Repackaging back in position space, we have finally

f(x)|x2W =
Z

∂W
dXK̂(x,X)O(X), (3.27)

where W denotes the AdS-Rindler wedge and ∂W denotes its intersection with the AdS boundary.
∂W is equivalent to the boundary domain of dependence (or causal diamond) of a hemisphere of
the boundary timeslice at t = 0 in global coordinates. The Rindler smearing function K̂ is given by

K̂(x;t,a) =
Z •

�•

dw
2p Â

l

1
Nwl

fwl (x)eiwtY ⇤
l (a). (3.28)

The key point here is that as long as a bulk scalar field lies in the AdS-Rindler wedge W , it has
a CFT representation (3.27) using only Heisenberg operators in ∂W . By doing boundary evolution
we can turn these into (very nonlocal) Schrodinger operators supported in the hemisphere at t = 0,
as shown for d = 2 in figure 8.

This construction can immediately be generalized from boundary hemispheres to a more gen-
eral set of subregions: by acting with the conformal symmetry we can map a hemisphere of the
Sd�1 at t = 0 to any other “ball-shaped” subregion of Sd�1: we show some examples in figure 9.
There is an elegant covariant description of these generalized AdS-Rindler wedges, which can be
stated for an arbitrary boundary spatial subregion as follows [52]:

13For explicit forms of ywl and Nwl see appendix A of [10].
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A free fermion Hilbert space in N=4 SYM



 A subregion  has a a boundary and therefore edge modes, even for a 
scalar field! ( Agon, HeadrickJefferis,Kasko  ) (Campaglia, Freidal,et al) 

1

Degrees of freedom in subregions are not independent    

•Gauss Law constraint in gauge theory.    Even on a lattice !  

2

• continuity in a quantum field theory 

The extended Hilbert space construction

The extended Hilbert space construction provides a solution by 
combining 1 and 2  (Donnelly, Freidel, Buividovich ,…)

Two obstructions 

Hilbert Space factorization



Extended Hilbert space for gauge theories 

Contains edge modes transforming under 
boundary symmetry group 

Gauss law

Entangling product  

Entanglement Entropy

Reduced density matrix

for

= 



Extended Hilbert space and extended TQFT   

•Edge modes are not unique  e.g. in quantum hall states  (Cano, Cheng, Mulligan, 
…et. al) (Fliss,Wen,Parrikar,..et. al.)  

•What are the rules for determining the “correct” edge modes and their gluings?

•In 2D, we provide constraints on the Hilbert space extension using the 
frame work of extended topological quantum field theory

•Key insight:  View the entangling product as a spacetime process=cobordism

It also has to satisfy the Frobenius condition:

= = (1.7)

What Moore calls the Frobenius condition is di↵erent, it’s that

= (1.8)

What is the relation between these conditions?

And it must be commutative (µ = µ � ⌧):

= (1.9)

1.2 Open TQFT

Moore-Segal call this O instead of A, and we should too.

An open TQFT is similar, we can define it in terms of a symmetric Frobenius algebra.

Here the Hilbert spaces are associated to intervals, and the basic building blocks correspond

to the diagrams:

µ = ⌘ = � = ✏ = ⌧ = (1.10)

Note that the commutativity property is not satisfied:

6= (1.11)

Instead we require that it be symmetric (✏ � µ = ✏ � µ � ⌧):

= (1.12)

– 3 –



=

Modular Hamiltonian CPT

=

Euclidean path integral prepares the 
(unnormalized) vacuum 

Angular quantization

Entangling product  
in CS gauge theory 
(Wong 2018)

Entangling product from the path integral

State-Channel duality

Modular flow
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Locality in Extended TQFT

which says that the bilinear form is symmetric,

= (1.13)

1.3 Open-closed TQFT

Open-closed TQFTs are similarly classified by knowledgeable Frobenius algebras. A knowl-

edgeable Frobenius algebra is a combination of a commutative Frobenius algebra C (rep-

resenting the closed sector) and a symmetric Frobenius algebra A (representing the open

sector). It also has two additional morphisms: the zipper i : C ! A and a dual cozipper

i
⇤ : A ! C.

i : C ! A, zipper (1.14)

i
⇤ : A ! C, cozipper (1.15)

which are expressed graphically by:

i = i
⇤ = (1.16)

There are some further consistency conditions that relate the open and closed sectors.

1. The zipper preserves the unit:

= (1.17)

2. The zipper preserves the product:

= (1.18)

3. Knowledge The zipper maps into the center of the open string category, so the open

strings ”know” about the center.

= (1.19)

– 4 –
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Cut path integral along  surfaces of increasing codimension

description. The key property of the entanglement brane is that it can be sewn up without

changing the partition function. General issues about entanglement discussed in [2], [3].

Can we think of the E-brane as a boundary condition? It is essentially a non-local

boundary condition, so perhaps we have to view it as a sum over boundary conditions.

So we discussed before that it is the boundary condition U = 1, which i guess is a a

sum over boundary conditions in the sense that the delta function that sets U = 1 requires

a sum over all characters. Also in the string theory picture we have to sum over all strings

winding around the middle of the cap. I was perplex why the closed strings are allowed to

wind around a contractible point, but perhaps summing over all possible windings actually

makes that a smooth point? We can also consider other boundary conditions corresponding

to a non-trivial wilson loop at the boundary. I seem to recall that you even worked out

the modular hamiltonian in this case. Perhaps the di↵erent labels of the endpoints should

correspond to the di↵erent holonomies we impose there, rather than the indices of |Ra, bi as

I incorrectly assumed before?

See also [4], which desribes 2D Yang-Mills as an ”area-dependent” QFT. In fact, this

is an old result which is mentioned in Segal’s notes (http://web.math.ucsb.edu/~drm/

conferences/ITP99/segal/, section 1.4) as due to Witten — I think in [5]

Lauda and Pfei↵er look at “open-closed” TQFT [1]. See also the notes by Moore [6].

1.1 Closed TQFT

Two dimensional closed TQFTs are classified by commutative Frobenius algebras.

A Frobenius algebra is an algebra A with some additional operations:

µ : A⌦A ! A, product (1.1)

⌘ : 1 ! A,
unit (1.2)

� : A ! A⌦A, coproduct (1.3)

✏ : A ! 1, counit/trace (1.4)

There is also a braiding operation ⌧ , which just maps X ⌦ Y ! Y ⌦X. Using these one can

construct a natural pairing ✏ � µ : A⌦A ! 1.

These are most easily expressed graphically:

µ = ⌘ = � = ✏ = ⌧ = (1.5)

We can use these to define a bilinear pairing:

:= (1.6)

– 2 –
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Moore-Segal gave sewing constraints for cutting and gluing  path integrals.  
  These rules determine allowed boundary conditions=D branes. 

It also has to satisfy the Frobenius condition:

= = (1.7)

What Moore calls the Frobenius condition is di↵erent, it’s that

= (1.8)

What is the relation between these conditions?

And it must be commutative (µ = µ � ⌧):

= (1.9)

1.2 Open TQFT

Moore-Segal call this O instead of A, and we should too.

An open TQFT is similar, we can define it in terms of a symmetric Frobenius algebra.

Here the Hilbert spaces are associated to intervals, and the basic building blocks correspond

to the diagrams:

µ = ⌘ = � = ✏ = ⌧ = (1.10)

Note that the commutativity property is not satisfied:

6= (1.11)

Instead we require that it be symmetric (✏ � µ = ✏ � µ � ⌧):

= (1.12)

– 3 –

•Interpret Moore-Segal as constraints for extended Hilbert space and edge modes 

•Formulate 2D Yang Mills as an extended TQFT a la Moore-Segal 
•Compute multi-interval modular flows, EE, negativity

What we did: 
•Introduce the Entanglement brane boundary condition 

which says we can sew up holes. Note also that

= (4.7)

which also shows how we can sew up holes.

Actually, I think this property is very important. In fact it seems natural to call this the

defining property of an entanglement brane: it says that we can poke a hole at the entangling

surface without changing the theory.

4.1 Entanglement

To talk about entanglement, we can take the Hartle-Hawking state and unroll it into a state

on two intervals:

= = =
X

R,a,b

|Rabi |Rbai (4.8)

Note that this state is not normalized. If we turn this sideways, we get the state  as a map

from one interval to the other,

 = = (4.9)

which is not very interesting. By composing it with itself we just get a factor of dim(R)2,

which shows that it represents the sphere. Reading the diagram sideways seem to be a

crucial ingredient in our open string description of the entanglgment in 2dym, but where is

this explicitly described in the axioms for the open-closed cobordisms? The cobordisms can

be read any way, the axioms should guarantee that any topologically equivalent diagrams are

equivalent. But I don’t see precisely how to do it. I think the way to write the open and

closed string channels is:

?
= (4.10)

– 9 –

D branes E branes

(Atiyah, Segal, Freed, Baez,…)



• Open-closed extended TQFT (Moore-Segal)


• Entanglement brane


• Multi-interval Modular flows, EE


• 2DYM as an open-closed TQFT


• Future works:  CFT, higher dimensions, holography

Outline



Atiyah’s formulation of Axiomatic TQFT

In 2D, a TQFT is a rule assigning

Gluing Cobordisms =Composing linear maps

description. The key property of the entanglement brane is that it can be sewn up without

changing the partition function. General issues about entanglement discussed in [2], [3].

Can we think of the E-brane as a boundary condition? It is essentially a non-local

boundary condition, so perhaps we have to view it as a sum over boundary conditions.

So we discussed before that it is the boundary condition U = 1, which i guess is a a

sum over boundary conditions in the sense that the delta function that sets U = 1 requires

a sum over all characters. Also in the string theory picture we have to sum over all strings

winding around the middle of the cap. I was perplex why the closed strings are allowed to

wind around a contractible point, but perhaps summing over all possible windings actually

makes that a smooth point? We can also consider other boundary conditions corresponding

to a non-trivial wilson loop at the boundary. I seem to recall that you even worked out

the modular hamiltonian in this case. Perhaps the di↵erent labels of the endpoints should

correspond to the di↵erent holonomies we impose there, rather than the indices of |Ra, bi as

I incorrectly assumed before?

See also [4], which desribes 2D Yang-Mills as an ”area-dependent” QFT. In fact, this

is an old result which is mentioned in Segal’s notes (http://web.math.ucsb.edu/~drm/

conferences/ITP99/segal/, section 1.4) as due to Witten — I think in [5]

Lauda and Pfei↵er look at “open-closed” TQFT [1]. See also the notes by Moore [6].

1.1 Closed TQFT

Two dimensional closed TQFTs are classified by commutative Frobenius algebras.

A Frobenius algebra is an algebra A with some additional operations:

µ : A⌦A ! A, product (1.1)

⌘ : 1 ! A, unit (1.2)

� : A ! A⌦A, coproduct (1.3)

✏ : A ! 1, counit/trace (1.4)

There is also a braiding operation ⌧ , which just maps X ⌦ Y ! Y ⌦X. Using these one can

construct a natural pairing ✏ � µ : A⌦A ! 1.

These are most easily expressed graphically:

µ = ⌘ = � = ✏ = ⌧ = (1.5)

We can use these to define a bilinear pairing:

:= (1.6)

– 2 –
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1-dim closed manifolds =Hilbert space over 

=

Cobordism between circles = Linear maps (quantum evolution) 
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changing the partition function. General issues about entanglement discussed in [2], [3].

Can we think of the E-brane as a boundary condition? It is essentially a non-local
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Two-dimensional Yang-Mills:partition function

Like in TQFT, we can build any partition function from building blocks:

=
X

R

e
�

�A
2N C2(R)

|Ri hR|

=
X

R

e
�

�A
2N C2(R) dim(R) |Ri

=
X

R

e
�

�A
2N C2(R) 1

dim(R)
|Ri hR| hR|

These describe a commutative Frobenius algebra, with unit given by the cap, and
product given by the pair of pants.
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A 2D Closed TQFT is a commutative Frobenius algebra

We can use these to define a bilinear pairing:

:= (2.6)

It also has to satisfy the Frobenius condition:

= = (2.7)

What Moore calls the Frobenius condition is di↵erent, it’s that

= (2.8)

What is the relation between these conditions?

And it must be commutative (µ = µ � ⌧):

= (2.9)

2.2 Open TQFT

Moore-Segal call this O instead of A, and we should too.

An open TQFT is similar, we can define it in terms of a symmetric Frobenius algebra.

Here the Hilbert spaces are associated to intervals, and the basic building blocks correspond

to the diagrams:

µ = ⌘ = � = ✏ = ⌧ = (2.10)

Note that the commutativity property is not satisfied:

6= (2.11)

– 3 –
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description. The key property of the entanglement brane is that it can be sewn up without

changing the partition function. General issues about entanglement discussed in [2], [3].

Can we think of the E-brane as a boundary condition? It is essentially a non-local

boundary condition, so perhaps we have to view it as a sum over boundary conditions.

So we discussed before that it is the boundary condition U = 1, which i guess is a a

sum over boundary conditions in the sense that the delta function that sets U = 1 requires

a sum over all characters. Also in the string theory picture we have to sum over all strings

winding around the middle of the cap. I was perplex why the closed strings are allowed to

wind around a contractible point, but perhaps summing over all possible windings actually

makes that a smooth point? We can also consider other boundary conditions corresponding

to a non-trivial wilson loop at the boundary. I seem to recall that you even worked out

the modular hamiltonian in this case. Perhaps the di↵erent labels of the endpoints should

correspond to the di↵erent holonomies we impose there, rather than the indices of |Ra, bi as

I incorrectly assumed before?

See also [4], which desribes 2D Yang-Mills as an ”area-dependent” QFT. In fact, this

is an old result which is mentioned in Segal’s notes (http://web.math.ucsb.edu/~drm/

conferences/ITP99/segal/, section 1.4) as due to Witten — I think in [5]

Lauda and Pfei↵er look at “open-closed” TQFT [1]. See also the notes by Moore [6].
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is an old result which is mentioned in Segal’s notes (http://web.math.ucsb.edu/~drm/

conferences/ITP99/segal/, section 1.4) as due to Witten — I think in [5]

Lauda and Pfei↵er look at “open-closed” TQFT [1]. See also the notes by Moore [6].

1.1 Closed TQFT

Two dimensional closed TQFTs are classified by commutative Frobenius algebras.

A Frobenius algebra is an algebra A with some additional operations:

µ : A⌦A ! A, product (1.1)

⌘ : 1 ! A, unit (1.2)

� : A ! A⌦A, coproduct (1.3)

✏ : A ! 1, counit/trace (1.4)

There is also a braiding operation ⌧ , which just maps X ⌦ Y ! Y ⌦X. Using these one can

construct a natural pairing ✏ � µ : A⌦A ! 1.

These are most easily expressed graphically:

µ = ⌘ = � = ✏ = ⌧ = (1.5)

We can use these to define a bilinear pairing:

:= (1.6)

– 2 –

We can use these to define a bilinear pairing:
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It also has to satisfy the Frobenius condition:
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What Moore calls the Frobenius condition is di↵erent, it’s that

= (2.8)

What is the relation between these conditions?

And it must be commutative (µ = µ � ⌧):

= (2.9)

2.2 Open TQFT

Moore-Segal call this O instead of A, and we should too.

An open TQFT is similar, we can define it in terms of a symmetric Frobenius algebra.

Here the Hilbert spaces are associated to intervals, and the basic building blocks correspond

to the diagrams:

µ = ⌘ = � = ✏ = ⌧ = (2.10)

Note that the commutativity property is not satisfied:

6= (2.11)

– 3 –
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Invariance =

Two-dimensional Yang-Mills:partition function

Like in TQFT, we can build any partition function from building blocks:

=
X

R

e
�

�A
2N C2(R)

|Ri hR|

=
X

R

e
�

�A
2N C2(R) dim(R) |Ri

=
X

R

e
�

�A
2N C2(R) 1

dim(R)
|Ri hR| hR|

These describe a commutative Frobenius algebra, with unit given by the cap, and
product given by the pair of pants.
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the modular hamiltonian in this case. Perhaps the di↵erent labels of the endpoints should
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= = (2.7)

What Moore calls the Frobenius condition is di↵erent, it’s that

= (2.8)

What is the relation between these conditions?

And it must be commutative (µ = µ � ⌧):

= (2.9)

2.2 Open TQFT

Moore-Segal call this O instead of A, and we should too.

An open TQFT is similar, we can define it in terms of a symmetric Frobenius algebra.

Here the Hilbert spaces are associated to intervals, and the basic building blocks correspond

to the diagrams:

µ = ⌘ = � = ✏ = ⌧ = (2.10)

Note that the commutativity property is not satisfied:

6= (2.11)

– 3 –



Open TQFT is a symmetric Frobenius Algebra 

Hilbert space to oriented intervals with boundary conditions :

Open cobordisms to linear maps
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Instead we require that it be symmetric (✏ � µ = ✏ � µ � ⌧):

= (2.12)

which says that the bilinear form is symmetric,

= (2.13)

2.3 Open-closed TQFT

Open-closed TQFTs are similarly classified by knowledgeable Frobenius algebras. A knowl-

edgeable Frobenius algebra is a combination of a commutative Frobenius algebra C (rep-

resenting the closed sector) and a symmetric Frobenius algebra A (representing the open

sector). It also has two additional morphisms: the zipper i : C ! A and a dual cozipper

i
⇤ : A ! C.

i : C ! A, zipper (2.14)

i
⇤ : A ! C, cozipper (2.15)

which are expressed graphically by:

i = i
⇤ = (2.16)

There are some further consistency conditions that relate the open and closed sectors.

1. The zipper preserves the unit:

= (2.17)

2. The zipper preserves the product:

= (2.18)
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theory on a fixed background. In quantum gravity it is unclear whether local algebras of

observables exist [], or what their classification as von Neumann algebras would be.

In gauge theory, the physical Hilbert space consists of wavefunctionals satisfying local

constraints. As a result, the Hilbert space does not have a local tensor product structure

[2? –7]. Instead, one can associate an extended Hilbert space to each region of space which

contains edge modes on the boundary. The edge modes carry gauge charges which allow

Wilson lines to end on the boundary. These local Hilbert spaces can be combined with an

entangling product [8], which enforces cancellation of the surface charges.

The purpose of the present article is to show how this generalized notion of entanglement

can be understood in topological quantum field theory (TQFT). In the axiomatic formulation

of TQFT one associates Hilbert spaces with closed manifolds and disjoint unions with tensor

products. [? ? ]. This is su�cient to describe entanglement between two disconnected

universes.

To describe entanglement of regions within a single connected spacetime, we need addi-

tional rules for describing the Hilbert space of manifolds with boundaries. This is the subject

of extended TQFT. In the context of two-dimensional TQFT we can make use of a set of

axioms due to Moore and Segal.

The rule for embedding the Hilbert space of a circle into that of an interval, and for

embedding the Hilbert space of one interval into a larger interval are described by cobordisms:

: Hcircle ! Hinterval, : Hinterval ! Hinterval ⌦Hinterval. (1.2)

These diagrams are to be read from top to bottom, and describe a circle being cut open into

an interval, and that interval being split into two subintervals.

In splitting the interval, we have introduced a new boundary, the semicircle at the bottom

of the diagram. To ensure that the introduction of the entangling surface does not change

the state, these processes have to be reversible. Thus we require that holes in the diagrams

can be sewn up:

= = (1.3)

This is a boundary condition that was identified in [9] as an entanglement brane.

We begin in section 2 by reviewing the axioms of “open-closed” TQFT and its diagram-

matic notation. We will avoid discussion of the underlying category theory, details of which

can be found elsewhere [10].

In section 3 we show how entanglement can be described in open-closed TQFT using one

additional axiom. We show how this can be used to study entanglement entropy of arbitrary

states, as well as negativity.

– 2 –
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In gauge theory, the physical Hilbert space consists of wavefunctionals satisfying local

constraints. As a result, the Hilbert space does not have a local tensor product structure

[2? –7]. Instead, one can associate an extended Hilbert space to each region of space which

contains edge modes on the boundary. The edge modes carry gauge charges which allow

Wilson lines to end on the boundary. These local Hilbert spaces can be combined with an

entangling product [8], which enforces cancellation of the surface charges.

The purpose of the present article is to show how this generalized notion of entanglement

can be understood in topological quantum field theory (TQFT). In the axiomatic formulation

of TQFT one associates Hilbert spaces with closed manifolds and disjoint unions with tensor

products. [? ? ]. This is su�cient to describe entanglement between two disconnected

universes.

To describe entanglement of regions within a single connected spacetime, we need addi-

tional rules for describing the Hilbert space of manifolds with boundaries. This is the subject

of extended TQFT. In the context of two-dimensional TQFT we can make use of a set of

axioms due to Moore and Segal.

The rule for embedding the Hilbert space of a circle into that of an interval, and for

embedding the Hilbert space of one interval into a larger interval are described by cobordisms:

: Hcircle ! Hinterval, : Hinterval ! Hinterval ⌦Hinterval. (1.2)

These diagrams are to be read from top to bottom, and describe a circle being cut open into

an interval, and that interval being split into two subintervals.

In splitting the interval, we have introduced a new boundary, the semicircle at the bottom

of the diagram. To ensure that the introduction of the entangling surface does not change

the state, these processes have to be reversible. Thus we require that holes in the diagrams

can be sewn up:

= = (1.3)

This is a boundary condition that was identified in [9] as an entanglement brane.

We begin in section 2 by reviewing the axioms of “open-closed” TQFT and its diagram-

matic notation. We will avoid discussion of the underlying category theory, details of which

can be found elsewhere [10].

In section 3 we show how entanglement can be described in open-closed TQFT using one

additional axiom. We show how this can be used to study entanglement entropy of arbitrary

states, as well as negativity.
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description. The key property of the entanglement brane is that it can be sewn up without

changing the partition function. General issues about entanglement discussed in [2], [3].

Can we think of the E-brane as a boundary condition? It is essentially a non-local

boundary condition, so perhaps we have to view it as a sum over boundary conditions.

So we discussed before that it is the boundary condition U = 1, which i guess is a a

sum over boundary conditions in the sense that the delta function that sets U = 1 requires

a sum over all characters. Also in the string theory picture we have to sum over all strings

winding around the middle of the cap. I was perplex why the closed strings are allowed to

wind around a contractible point, but perhaps summing over all possible windings actually

makes that a smooth point? We can also consider other boundary conditions corresponding

to a non-trivial wilson loop at the boundary. I seem to recall that you even worked out

the modular hamiltonian in this case. Perhaps the di↵erent labels of the endpoints should

correspond to the di↵erent holonomies we impose there, rather than the indices of |Ra, bi as

I incorrectly assumed before?

See also [4], which desribes 2D Yang-Mills as an ”area-dependent” QFT. In fact, this

is an old result which is mentioned in Segal’s notes (http://web.math.ucsb.edu/~drm/

conferences/ITP99/segal/, section 1.4) as due to Witten — I think in [5]

Lauda and Pfei↵er look at “open-closed” TQFT [1]. See also the notes by Moore [6].
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A Frobenius algebra is an algebra A with some additional operations:

µ : A⌦A ! A, product (1.1)

⌘ : 1 ! A, unit (1.2)

� : A ! A⌦A, coproduct (1.3)

✏ : A ! 1, counit/trace (1.4)

There is also a braiding operation ⌧ , which just maps X ⌦ Y ! Y ⌦X. Using these one can

construct a natural pairing ✏ � µ : A⌦A ! 1.

These are most easily expressed graphically:

µ = ⌘ = � = ✏ = ⌧ = (1.5)

We can use these to define a bilinear pairing:

:= (1.6)
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component from a coloured one. The black part of the boundary coincides with the union of the
source and the target objects. Two such manifolds with corners are considered equivalent if they
are related by an orientation preserving diffeomorphism which restricts to the identity on the black
part of the boundary. An example of such an open-closed cobordism is depicted here3,

(1.1)

where the boundaries at the top and at the bottom of the diagram are the black ones. In Section 3,
we present a formal definition which includes some additional technical properties. Gluing such
cobordisms along their black boundaries, i.e. putting the building blocks of (1.1) on top of each
other, is the composition of morphisms. The free union of manifolds, i.e. putting the building
blocks of (1.1) next to each other, provides 2Cobext with the structure of a strict symmetric
monoidal category.

Open-closed cobordisms can be seen as a generalization of the conventional 2-dimensional
cobordism category 2Cob. The objects of this symmetric monoidal category are compact oriented
smooth 1-manifolds without boundary ; the morphisms are compact oriented smooth cobordisms
between them, modulo orientation-preserving diffeomorphisms that restrict to the identity on the
boundary.

The study of open-closed cobordisms plays an important role in conformal field theory if one
is interested in boundary conditions, and open-closed cobordisms have a natural string theoretic
interpretation. The intervals in the black boundaries are interpreted as open strings, the circles as
closed strings, and the open-closed cobordisms as string worldsheets. Here we consider only the
underlying smooth manifolds, but not any additional conformal or complex structure. Additional
labels at the coloured boundaries are interpreted as D-branes or boundary conditions on the open
strings.

An open-closed Topological Quantum Field Theory (TQFT), which we formally define in Sec-
tion 4 below, is a symmetric monoidal functor 2Cobext → C into a symmetric monoidal category
C. If C is the category of vector spaces over a fixed field k, then the open-closed TQFT assigns vec-
tor spaces to the 1-manifolds I and S1, it assigns tensor products to free unions of these manifolds,
and k-linear maps to open-closed cobordisms.

Such an open-closed TQFT can be seen as an extension of the notion of a 2-dimensional
TQFT [2] which is a symmetric monoidal functor 2Cob → C. We refer to this conventional notion
of 2-dimensional TQFT as a closed TQFT and to the morphisms of 2Cob as closed cobordisms.
For the classic results on 2-dimensional closed TQFTs, we recommend the original works [3–5]
and the book [6].

The most powerful results on closed TQFTs crucially depend on results from Morse theory.
Morse theory provides a generators and relations description of the category 2Cob. First, any
compact cobordism Σ can be obtained by gluing a finite number of elementary cobordisms along
their boundaries. In order to see this, one chooses a Morse function f : Σ → such that all
critical points have distinct critical values and considers the pre-images f−1([x0 − ε, x0 + ε]) ⊆ Σ
of intervals that contain precisely one critical value x0 ∈ . Each such pre-image is the free union
of one of the elementary cobordisms,

(1.2)

3In order to get a feeling for these diagrams, the reader might wish to verify that this cobordism is diffeomorphic
to the one depicted in Figure 1 of [1].
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Open-closed Hilbert spaces and cobordisms:

4. Duality The cozipper is dual to the zipper.

= (1.20)

5. Cardy The “double twist” projects onto the center.

= (1.21)

1.4 Entanglement brane

In order to talk about entanglement we want to be able to take a closed diagram such as the

sphere and express it as a trace in the open sector. This requires a special type of brane which

obeys a condition of “shrinkability”. We call this special brane the entanglement brane. We

can express this as a new axiom for the entanglement brane:

= (1.22)

To see how this allows us to write the sphere as a trace, we have:

= = = = (1.23)

where we have used the definition of the entanglement brane, the Cardy axiom, the definition

of the bilinear pairing and the symmetry of the bilinear form. This shows that the sphere

diagram can be opened up to a trace in the open string sector.
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We can use these to define a bilinear pairing:

:= (2.6)

It also has to satisfy the Frobenius condition:

= = (2.7)

What Moore calls the Frobenius condition is di↵erent, it’s that

= (2.8)

What is the relation between these conditions?

And it must be commutative (µ = µ � ⌧):

= (2.9)

2.2 Open TQFT

Moore-Segal call this O instead of A, and we should too.

An open TQFT is similar, we can define it in terms of a symmetric Frobenius algebra.

Here the Hilbert spaces are associated to intervals, and the basic building blocks correspond

to the diagrams:

µ = ⌘ = � = ✏ = ⌧ = (2.10)

Note that the commutativity property is not satisfied:

6= (2.11)
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Moore-Segal Sewing relations

which says that the bilinear form is symmetric,

= (1.13)

1.3 Open-closed TQFT

Open-closed TQFTs are similarly classified by knowledgeable Frobenius algebras. A knowl-

edgeable Frobenius algebra is a combination of a commutative Frobenius algebra C (rep-

resenting the closed sector) and a symmetric Frobenius algebra A (representing the open

sector). It also has two additional morphisms: the zipper i : C ! A and a dual cozipper

i
⇤ : A ! C.

i : C ! A, zipper (1.14)

i
⇤ : A ! C, cozipper (1.15)

which are expressed graphically by:

i = i
⇤ = (1.16)

There are some further consistency conditions that relate the open and closed sectors.

1. The zipper preserves the unit:

= (1.17)

2. The zipper preserves the product:

= (1.18)

3. Knowledge The zipper maps into the center of the open string category, so the open

strings ”know” about the center.

= (1.19)

– 4 –

which says that the bilinear form is symmetric,

= (1.13)

1.3 Open-closed TQFT

Open-closed TQFTs are similarly classified by knowledgeable Frobenius algebras. A knowl-

edgeable Frobenius algebra is a combination of a commutative Frobenius algebra C (rep-

resenting the closed sector) and a symmetric Frobenius algebra A (representing the open

sector). It also has two additional morphisms: the zipper i : C ! A and a dual cozipper

i
⇤ : A ! C.

i : C ! A, zipper (1.14)

i
⇤ : A ! C, cozipper (1.15)

which are expressed graphically by:

i = i
⇤ = (1.16)

There are some further consistency conditions that relate the open and closed sectors.

1. The zipper preserves the unit:

= (1.17)

2. The zipper preserves the product:

= (1.18)

3. Knowledge The zipper maps into the center of the open string category, so the open

strings ”know” about the center.

= (1.19)

– 4 –

which says that the bilinear form is symmetric,

= (1.13)

1.3 Open-closed TQFT

Open-closed TQFTs are similarly classified by knowledgeable Frobenius algebras. A knowl-

edgeable Frobenius algebra is a combination of a commutative Frobenius algebra C (rep-

resenting the closed sector) and a symmetric Frobenius algebra A (representing the open

sector). It also has two additional morphisms: the zipper i : C ! A and a dual cozipper

i
⇤ : A ! C.

i : C ! A, zipper (1.14)

i
⇤ : A ! C, cozipper (1.15)

which are expressed graphically by:

i = i
⇤ = (1.16)

There are some further consistency conditions that relate the open and closed sectors.

1. The zipper preserves the unit:

= (1.17)

2. The zipper preserves the product:

= (1.18)

3. Knowledge The zipper maps into the center of the open string category, so the open

strings ”know” about the center.

= (1.19)

– 4 –

4. Duality The cozipper is dual to the zipper.

= (1.20)

5. Cardy The “double twist” projects onto the center.

= (1.21)

1.4 Entanglement brane

In order to talk about entanglement we want to be able to take a closed diagram such as the

sphere and express it as a trace in the open sector. This requires a special type of brane which

obeys a condition of “shrinkability”. We call this special brane the entanglement brane. We

can express this as a new axiom for the entanglement brane:

= (1.22)

To see how this allows us to write the sphere as a trace, we have:

= = = = (1.23)

where we have used the definition of the entanglement brane, the Cardy axiom, the definition

of the bilinear pairing and the symmetry of the bilinear form. This shows that the sphere

diagram can be opened up to a trace in the open string sector.

– 5 –

4. Duality The cozipper is dual to the zipper.

= (1.20)

5. Cardy The “double twist” projects onto the center.

= (1.21)

1.4 Entanglement brane

In order to talk about entanglement we want to be able to take a closed diagram such as the

sphere and express it as a trace in the open sector. This requires a special type of brane which

obeys a condition of “shrinkability”. We call this special brane the entanglement brane. We

can express this as a new axiom for the entanglement brane:

= (1.22)

To see how this allows us to write the sphere as a trace, we have:

= = = = (1.23)

where we have used the definition of the entanglement brane, the Cardy axiom, the definition

of the bilinear pairing and the symmetry of the bilinear form. This shows that the sphere

diagram can be opened up to a trace in the open string sector.

– 5 –

Q: Given a closed string theory,  what are the possible boundaries, i.e. D Branes?

A: D branes correspond to extensions to an open 
string algebra satisfying these constraints. 

Open string algebra ~ choice of Hilbert space extension i.e. edge modes 

It also has to satisfy the Frobenius condition:

= = (1.7)

What Moore calls the Frobenius condition is di↵erent, it’s that

= (1.8)

What is the relation between these conditions?

And it must be commutative (µ = µ � ⌧):

= (1.9)

1.2 Open TQFT

Moore-Segal call this O instead of A, and we should too.

An open TQFT is similar, we can define it in terms of a symmetric Frobenius algebra.

Here the Hilbert spaces are associated to intervals, and the basic building blocks correspond

to the diagrams:

µ = ⌘ = � = ✏ = ⌧ = (1.10)

Note that the commutativity property is not satisfied:

6= (1.11)

Instead we require that it be symmetric (✏ � µ = ✏ � µ � ⌧):

= (1.12)
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For us: 

Moore-Segal:



• Open-closed extended TQFT (Moore-Segal)


• Entanglement brane


• Multi-interval Modular flows,EE


• 2DYM as an open closed TQFT


• Future works:  CFT, higher dimensions, holography

Outline



The Entanglement Brane axiom
Holes originating from splitting the Hilbert space can be sewed up  

e=  choice of (possibly nonlocal ) boundary conditions

In 2D Yang  Mills:  e = trivial holonomy along boundary circles 
                                    ~sum over electric boundary conditions.

I think we can sew up any holes using these axioms. Are there any other diagrams with

holes that we should consider?

3 2D Yang-Mills

All of these quantities can be defined for 2D Yang-Mills theory:

µC =
X

R

1

dim(R)
|Ri hR| hR| = (3.1)

⌘C =
X

R

dim(R) |Ri = (3.2)

µA =
X

R,a,b,c

1p
dim(R)

|Raci hRab| hRbc| = (3.3)

⌘A =
X

R,a

p
dim(R) |Raai = (3.4)

i =
X

R,a

1p
dim(R)

|Raai hR| = (3.5)

I suppressed all the factors of e�C2(R), so really we are talking about BF theory, but it’s

straightforward to put them back in.

Note that in 2DYM, we have

= (3.6)

which says we can sew up holes. Note also that

= (3.7)

which also shows how we can sew up holes.

Actually, I think this property is very important. In fact it seems natural to call this the

defining property of an entanglement brane: it says that we can poke a hole at the entangling

surface without changing the theory.
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3. Knowledge The zipper maps into the center of the open string category, so the open

strings ”know” about the center.

= (2.19)

4. Duality The cozipper is dual to the zipper.

= (2.20)

5. Cardy The “double twist” projects onto the center.

= (2.21)

3 The entanglement brane

In order to talk about entanglement we want to be able to take a closed diagram such as the

sphere and express it as a trace in the open sector.I am still confused about the validity of this

statement for general QFT. For example take a CFT with conformally invariant boundary

conditions at the regulated entangling surface. This is not the same as the vacuum state,

which would correspond to inserting a disk.... This requires a special type of brane which

obeys a condition of “shrinkability”. We call this special brane the entanglement brane. We

can express this as a new axiom for the entanglement brane:

= (3.1)
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E brane axiom

description. The key property of the entanglement brane is that it can be sewn up without

changing the partition function. General issues about entanglement discussed in [2], [3].

Can we think of the E-brane as a boundary condition? It is essentially a non-local

boundary condition, so perhaps we have to view it as a sum over boundary conditions.

So we discussed before that it is the boundary condition U = 1, which i guess is a a

sum over boundary conditions in the sense that the delta function that sets U = 1 requires

a sum over all characters. Also in the string theory picture we have to sum over all strings

winding around the middle of the cap. I was perplex why the closed strings are allowed to

wind around a contractible point, but perhaps summing over all possible windings actually

makes that a smooth point? We can also consider other boundary conditions corresponding

to a non-trivial wilson loop at the boundary. I seem to recall that you even worked out

the modular hamiltonian in this case. Perhaps the di↵erent labels of the endpoints should

correspond to the di↵erent holonomies we impose there, rather than the indices of |Ra, bi as

I incorrectly assumed before?

See also [4], which desribes 2D Yang-Mills as an ”area-dependent” QFT. In fact, this

is an old result which is mentioned in Segal’s notes (http://web.math.ucsb.edu/~drm/

conferences/ITP99/segal/, section 1.4) as due to Witten — I think in [5]

Lauda and Pfei↵er look at “open-closed” TQFT [1]. See also the notes by Moore [6].

1.1 Closed TQFT

Two dimensional closed TQFTs are classified by commutative Frobenius algebras.

A Frobenius algebra is an algebra A with some additional operations:

µ : A⌦A ! A, product (1.1)

⌘ : 1 ! A, unit (1.2)

� : A ! A⌦A, coproduct (1.3)

✏ : A ! 1, counit/trace (1.4)

There is also a braiding operation ⌧ , which just maps X ⌦ Y ! Y ⌦X. Using these one can

construct a natural pairing ✏ � µ : A⌦A ! 1.

These are most easily expressed graphically:

µ = ⌘ = � = ✏ = ⌧ = (1.5)

We can use these to define a bilinear pairing:

:= (1.6)
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U=1 

Toseehowthisallowsustowritethesphereasatrace,wehave:

====(3.2)

wherewehaveusedthedefinitionoftheentanglementbrane,theCardyaxiom,thedefinition

ofthebilinearpairingandthesymmetryofthebilinearform.Thisshowsthatthesphere

diagramcanbeopeneduptoatraceintheopenstringsector.

Actually,theeasierwaytodothis(whichisalsomoreenlighteningIthink)is

====(3.3)

Oncewehavetheentanglementbranewecantransformanycloseddiagramintoanopen

diagram.First,wecanshowthatwecanreplaceatubewithazipper/cozipperpair:

====

(3.4)

Thenwecanusethattoopenuptheproduct:

==(3.5)

Nowwecanconvertanycloseddiagramtoopenasfollows.First,weopenupeveryunit

andproduct.Thenwewindupwithabunchofzipper/cozippercontractionswhichcanbe

replacedwithopendiagramsusingtheCardyaxiom.
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Implies correlations are preserved under reduction to V: 



The Entanglement Brane in a toy string theory
 2D Yang Mills =   Closed String theory  (Gross-Taylor)  

Cutting a closed string results in N=               Chan-Paton factors.  

Entanglement brane axiom 
relates open and closed sector: 

Outline

Two-dimensional Yang-Mills theory

• Canonical formulation

• Entanglement

Gross-Taylor string theory

• Canonical closed string description

• Canonical open string description

• Entanglement

• Free string theory

�

14

Outline

Two-dimensional Yang-Mills theory

• Canonical formulation

• Entanglement

Gross-Taylor string theory

• Canonical closed string description

• Canonical open string description

• Entanglement

• Free string theory
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c.f. Susskind-Uglum



• Open-closed extended TQFT (Moore-Segal)


• Entanglement brane


• Multi-interval Modular flows,EE


• 2DYM as an open-closed TQFT


• Future works:  CFT, higher dimensions, holography

Outline



Tensor product factorization

3.1 Entanglement

To talk about entanglement, we can take the Hartle-Hawking state and unroll it into a state

on two intervals:

= = =
X

R,a,b

|Rabi |Rbai (3.8)

Note that this state is not normalized. If we turn this sideways, we get the state  as a map

from one interval to the other,

 = = (3.9)

which is not very interesting. By composing it with itself we just get a factor of dim(R)2,

which shows that it represents the sphere. Reading the diagram sideways seem to be a

crucial ingredient in our open string description of the entanglgment in 2dym, but where is

this explicitly described in the axioms for the open-closed cobordisms? The cobordisms can

be read any way, the axioms should guarantee that any topologically equivalent diagrams are

equivalent. But I don’t see precisely how to do it. I think the way to write the open and

closed string channels is:

?
= (3.10)

We can also consider the state for an entangling surface consisting of two intervals. To

do this we have to further subdivide the intervals,

(3.11)

– 8 –

Effective partition function

=

To see how this allows us to write the sphere as a trace, we have:

= = = = (3.2)

where we have used the definition of the entanglement brane, the Cardy axiom, the definition

of the bilinear pairing and the symmetry of the bilinear form. This shows that the sphere

diagram can be opened up to a trace in the open string sector.

Actually, the easier way to do this (which is also more enlightening I think) is

= = = = (3.3)

Once we have the entanglement brane we can transform any closed diagram into an open

diagram. First, we can show that we can replace a tube with a zipper/cozipper pair:

= = = =

(3.4)

Then we can use that to open up the product:

= = (3.5)

Now we can convert any closed diagram to open as follows. First, we open up every unit

and product. Then we wind up with a bunch of zipper/cozipper contractions which can be

replaced with open diagrams using the Cardy axiom.
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and product. Then we wind up with a bunch of zipper/cozipper contractions which can be

replaced with open diagrams using the Cardy axiom.
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Single interval Modular flow

State-Channel duality

3.1 Entanglement

To talk about entanglement, we can take the Hartle-Hawking state and unroll it into a state

on two intervals:

= = =
X

R,a,b

|Rabi |Rbai (3.8)

Note that this state is not normalized. If we turn this sideways, we get the state  as a map

from one interval to the other,

 = = (3.9)

which is not very interesting. By composing it with itself we just get a factor of dim(R)2,

which shows that it represents the sphere. Reading the diagram sideways seem to be a

crucial ingredient in our open string description of the entanglgment in 2dym, but where is

this explicitly described in the axioms for the open-closed cobordisms? The cobordisms can

be read any way, the axioms should guarantee that any topologically equivalent diagrams are

equivalent. But I don’t see precisely how to do it. I think the way to write the open and

closed string channels is:

?
= (3.10)

We can also consider the state for an entangling surface consisting of two intervals. To

do this we have to further subdivide the intervals,

(3.11)
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Unnormalized reduced density matrix

which says we can sew up holes. Note also that

= (4.7)

which also shows how we can sew up holes.

Actually, I think this property is very important. In fact it seems natural to call this the

defining property of an entanglement brane: it says that we can poke a hole at the entangling

surface without changing the theory.

4.1 Entanglement

To talk about entanglement, we can take the Hartle-Hawking state and unroll it into a state
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which shows that it represents the sphere. Reading the diagram sideways seem to be a

crucial ingredient in our open string description of the entanglgment in 2dym, but where is

this explicitly described in the axioms for the open-closed cobordisms? The cobordisms can

be read any way, the axioms should guarantee that any topologically equivalent diagrams are

equivalent. But I don’t see precisely how to do it. I think the way to write the open and

closed string channels is:

?
= (4.10)
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theory on a fixed background. In quantum gravity it is unclear whether local algebras of

observables exist [], or what their classification as von Neumann algebras would be.

In gauge theory, the physical Hilbert space consists of wavefunctionals satisfying local

constraints. As a result, the Hilbert space does not have a local tensor product structure

[2? –7]. Instead, one can associate an extended Hilbert space to each region of space which

contains edge modes on the boundary. The edge modes carry gauge charges which allow

Wilson lines to end on the boundary. These local Hilbert spaces can be combined with an

entangling product [8], which enforces cancellation of the surface charges.

The purpose of the present article is to show how this generalized notion of entanglement

can be understood in topological quantum field theory (TQFT). In the axiomatic formulation

of TQFT one associates Hilbert spaces with closed manifolds and disjoint unions with tensor

products. [? ? ]. This is su�cient to describe entanglement between two disconnected

universes.

To describe entanglement of regions within a single connected spacetime, we need addi-

tional rules for describing the Hilbert space of manifolds with boundaries. This is the subject

of extended TQFT. In the context of two-dimensional TQFT we can make use of a set of

axioms due to Moore and Segal.

The rule for embedding the Hilbert space of a circle into that of an interval, and for

embedding the Hilbert space of one interval into a larger interval are described by cobordisms:

: Hcircle ! Hinterval, : Hinterval ! Hinterval ⌦Hinterval. (1.2)

These diagrams are to be read from top to bottom, and describe a circle being cut open into

an interval, and that interval being split into two subintervals.

In splitting the interval, we have introduced a new boundary, the semicircle at the bottom

of the diagram. To ensure that the introduction of the entangling surface does not change

the state, these processes have to be reversible. Thus we require that holes in the diagrams

can be sewn up:

= = (1.3)

This is a boundary condition that was identified in [9] as an entanglement brane.

We begin in section 2 by reviewing the axioms of “open-closed” TQFT and its diagram-

matic notation. We will avoid discussion of the underlying category theory, details of which

can be found elsewhere [10].

In section 3 we show how entanglement can be described in open-closed TQFT using one

additional axiom. We show how this can be used to study entanglement entropy of arbitrary

states, as well as negativity.
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Entanglement entropy 



Multi-interval Modular flow

3.1 Entanglement

To talk about entanglement, we can take the Hartle-Hawking state and unroll it into a state

on two intervals:

= = =
X

R,a,b

|Rabi |Rbai (3.8)

Note that this state is not normalized. If we turn this sideways, we get the state  as a map

from one interval to the other,

 = = (3.9)

which is not very interesting. By composing it with itself we just get a factor of dim(R)2,

which shows that it represents the sphere. Reading the diagram sideways seem to be a

crucial ingredient in our open string description of the entanglgment in 2dym, but where is

this explicitly described in the axioms for the open-closed cobordisms? The cobordisms can

be read any way, the axioms should guarantee that any topologically equivalent diagrams are

equivalent. But I don’t see precisely how to do it. I think the way to write the open and

closed string channels is:

?
= (3.10)

We can also consider the state for an entangling surface consisting of two intervals. To

do this we have to further subdivide the intervals,

(3.11)
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We want to view this state as an evolution from one pair of intervals to the other

 = =
X

R,a,b,c,d

1

dim(R)
|Rabi |Rcdi hRad| hRcb| (3.12)

We can flip and glue this diagram to get the modular Hamiltonian.

Note that the modular Hamiltonian comes with an explicit factor of dim(R)�2. When

we sew together any number of modular Hamiltonians there will be four boundaries. So the

n-fold replica gets a factor of (dimR)4�2n, which is the correct topology (for n = 1 it’s the

sphere, for n = 2 the torus, etc.).

The normalization factor for the density matrix on two intervals is the same as the case

for one interval:

Z =
X

R,a,b,c,d

(dimR)�2 =
X

R

(dimR)2. (3.13)

Normalizing by this factor, we can read o↵ the entanglement entropy directly from the Schmidt

decomposition  . The entropy takes a thermal form, but unlike for one interval it has non

-zero modular energy:

S = �

X

R,a,b,c,d

1

(dimR)2Z
log

1

(dimR)2Z
(3.14)

=
X

R

(dimR)2

Z
log(dimR)2 + logZ

The first term is the expectation value of the modular Hamiltonian H

H =
X

R,a,b,c,d

log(dimR)2 |Rabi |Rcdi hRab| hRcd| (3.15)

in the Hartle Hawking state while the second term is the free energy. This is the same as that

of a sphere because we can fill in each hole at the entangling surface with an E brane, which

is the closed string unit. Note that even though we have the same value for the partition

function as in the case of the single interval, the boltzmann factors are di↵erent when we view

it with respect to the Hilbert space of two intervals. In the string theory description of Z,

we should describe it in terms of a sum over worldsheets of two open strings with 4 ⌦ points

and 2 ⌦�1 points.
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State-Channel duality
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Reduced density matrix

Tensor product factorization

3 THE CATEGORY OF OPEN-CLOSED COBORDISMS 19

Proof. We analyze the properties of the non-degenerate critical point p ∈ M case by case.

1. If p ∈ M\∂M , then the critical point is characterized by its index i(p) (the number of negative
eigenvalues of Hessp(f)) as usual; see, for example [26]. There exists a neighbourhood U ⊆ M
of p and a coordinate system x : U → 2 in which the Morse function has the normal form,

f(p) = −
i(p)∑

j=1

x2
j (p) +

2∑

j=i(p)+1

x2
j (p) (3.27)

for all p ∈ U .

(a) If the index is i(p) = 2, then the Morse function has a maximum at p, and so the
neighbourhood (and thereby the entire open-closed cobordism) is diffeomorphic to εC

of (3.25). Recall that the vertical coordinate of our diagrams is −f rather than +f .

(b) If the index is i(p) = 1, then f has a saddle point. If M were a closed cobordism, i.e.
∂0M = ∂M , the usual argument would show that M is either of the form µC or ∆C

of (3.25). In the open-closed case, however, the saddle can occur in other cases, too,
depending on how the boundary ∂M is decomposed into ∂0M and ∂1M . We proceed
with a case by case analysis and show that in each case, this saddle is equivalent to one
of the compositions displayed in (3.26):

∼= , (3.28)

∼= . (3.29)

Here we show the saddle at the left and the equivalent decomposition as a composition
and tensor product of the cobordisms of (3.25) with identities on the right. The saddle
of (3.28) can appear in two orientations and with the intervals in its source and target in
any ordering. In any of these cases, it is equivalent to one of the first two compositions
displayed in (3.26). The saddle of (3.29) can appear flipped upside-down or left-right
or both, giving rise to the last four compositions displayed in (3.26).

Note that the equivalences of (3.28) and (3.29) relate cobordisms whose number of
critical points differs by an odd number. This is a new feature that dos not occur in
the case of closed cobordisms.

(c) If i(p) = 0, then f has a minimum, and the cobordism is diffeomorphic to ηC of (3.25).

2. Otherwise, p ∈ ∂1M\∂0M , i.e. the critical point is on the coloured boundary, but does not
coincide with a corner of M . Consider the restriction f |∂1M : ∂1M → which then has a
non-degenerate critical point at p with index i′(p) ∈ {0, 1}.

(a) If i′(p) = 1, then f |∂M has a maximum at p.

i. If p is a (−)-critical point of f , the cobordism is diffeomorphic to εA of (3.25).

ii. If p is a (+)-critical point of f , the neighbourhood of p looks as follows,

p
M

(3.30)

19

We want to view this state as an evolution from one pair of intervals to the other
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We can flip and glue this diagram to get the modular Hamiltonian.

Note that the modular Hamiltonian comes with an explicit factor of dim(R)�2. When

we sew together any number of modular Hamiltonians there will be four boundaries. So the

n-fold replica gets a factor of (dimR)4�2n, which is the correct topology (for n = 1 it’s the

sphere, for n = 2 the torus, etc.).
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The first term is the expectation value of the modular Hamiltonian H

H =
X

R,a,b,c,d

log(dimR)2 |Rabi |Rcdi hRab| hRcd| (3.15)

in the Hartle Hawking state while the second term is the free energy. This is the same as that

of a sphere because we can fill in each hole at the entangling surface with an E brane, which

is the closed string unit. Note that even though we have the same value for the partition

function as in the case of the single interval, the boltzmann factors are di↵erent when we view

it with respect to the Hilbert space of two intervals. In the string theory description of Z,

we should describe it in terms of a sum over worldsheets of two open strings with 4 ⌦ points

and 2 ⌦�1 points.
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Saddle point 

To see how this allows us to write the sphere as a trace, we have:

= = = = (3.2)

where we have used the definition of the entanglement brane, the Cardy axiom, the definition

of the bilinear pairing and the symmetry of the bilinear form. This shows that the sphere

diagram can be opened up to a trace in the open string sector.

Actually, the easier way to do this (which is also more enlightening I think) is

= = = = (3.3)

Once we have the entanglement brane we can transform any closed diagram into an open

diagram. First, we can show that we can replace a tube with a zipper/cozipper pair:

= = = =

(3.4)

Then we can use that to open up the product:

= = (3.5)

Now we can convert any closed diagram to open as follows. First, we open up every unit

and product. Then we wind up with a bunch of zipper/cozipper contractions which can be

replaced with open diagrams using the Cardy axiom.
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Modular time      is a morse function ! 
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 2DYM as a closed TQFT
Configuration space 

Hilbert space on a circle = Class functions on G

Hamiltonian  ~              =  Casimir

description. The key property of the entanglement brane is that it can be sewn up withoutchanging the partition function. General issues about entanglement discussed in [2], [3].Can we think of the E-brane as a boundary condition? It is essentially a non-localboundary condition, so perhaps we have to view it as a sum over boundary conditions.So we discussed before that it is the boundary condition U = 1, which i guess is a asum over boundary conditions in the sense that the delta function that sets U = 1 requiresa sum over all characters. Also in the string theory picture we have to sum over all stringswinding around the middle of the cap. I was perplex why the closed strings are allowed towind around a contractible point, but perhaps summing over all possible windings actuallymakes that a smooth point? We can also consider other boundary conditions correspondingto a non-trivial wilson loop at the boundary. I seem to recall that you even worked outthe modular hamiltonian in this case. Perhaps the di↵erent labels of the endpoints shouldcorrespond to the di↵erent holonomies we impose there, rather than the indices of |Ra, bi asI incorrectly assumed before?
See also [4], which desribes 2D Yang-Mills as an ”area-dependent” QFT. In fact, thisis an old result which is mentioned in Segal’s notes (http://web.math.ucsb.edu/~drm/conferences/ITP99/segal/, section 1.4) as due to Witten — I think in [5]Lauda and Pfei↵er look at “open-closed” TQFT [1]. See also the notes by Moore [6].

1.1 Closed TQFT

Two dimensional closed TQFTs are classified by commutative Frobenius algebras.A Frobenius algebra is an algebra A with some additional operations:

µ : A⌦A ! A, product (1.1)
⌘ : 1 ! A, unit (1.2)
� : A ! A⌦A, coproduct (1.3)
✏ : A ! 1, counit/trace (1.4)

There is also a braiding operation ⌧ , which just maps X ⌦ Y ! Y ⌦X. Using these one canconstruct a natural pairing ✏ � µ : A⌦A ! 1.
These are most easily expressed graphically:

µ = ⌘ = � = ✏ = ⌧ = (1.5)

We can use these to define a bilinear pairing:

:= (1.6)
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Two-dimensional Yang-Mills:partition function

Like in TQFT, we can build any partition function from building blocks:

=
X

R

e
�

�A
2N C2(R)

|Ri hR|

=
X

R

e
�

�A
2N C2(R) dim(R) |Ri

=
X

R

e
�

�A
2N C2(R) 1

dim(R)
|Ri hR| hR|

These describe a commutative Frobenius algebra, with unit given by the cap, and
product given by the pair of pants.
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Euler characteristic 



Configuration space  

Hilbert space on an interval

General functions on gauge group G

Basis

Boundary symmetry :

 2DYM as an open TQFT

Edge modes

Entangling product = Matrix Multiplication

=

It also has to satisfy the Frobenius condition:

= = (1.7)

What Moore calls the Frobenius condition is di↵erent, it’s that

= (1.8)

What is the relation between these conditions?

And it must be commutative (µ = µ � ⌧):

= (1.9)

1.2 Open TQFT

Moore-Segal call this O instead of A, and we should too.

An open TQFT is similar, we can define it in terms of a symmetric Frobenius algebra.

Here the Hilbert spaces are associated to intervals, and the basic building blocks correspond

to the diagrams:

µ = ⌘ = � = ✏ = ⌧ = (1.10)

Note that the commutativity property is not satisfied:

6= (1.11)

Instead we require that it be symmetric (✏ � µ = ✏ � µ � ⌧):

= (1.12)

– 3 – whichsaysthatthebilinearformissymmetric,

=(1.13)

1.3Open-closedTQFT

Open-closedTQFTsaresimilarlyclassifiedbyknowledgeableFrobeniusalgebras.Aknowl-

edgeableFrobeniusalgebraisacombinationofacommutativeFrobeniusalgebraC(rep-

resentingtheclosedsector)andasymmetricFrobeniusalgebraA(representingtheopen

sector).Italsohastwoadditionalmorphisms:thezipperi:C!Aandadualcozipper

i
⇤:A!C.

i:C!A,zipper(1.14)

i
⇤:A!C,cozipper(1.15)

whichareexpressedgraphicallyby:

i=i
⇤=(1.16)

Therearesomefurtherconsistencyconditionsthatrelatetheopenandclosedsectors.

1.Thezipperpreservestheunit:

=(1.17)

2.Thezipperpreservestheproduct:

=(1.18)

3.KnowledgeThezippermapsintothecenteroftheopenstringcategory,sotheopen

strings”know”aboutthecenter.

=(1.19)

–4–
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which says that the bilinear form is symmetric,

= (1.13)

1.3 Open-closed TQFT

Open-closed TQFTs are similarly classified by knowledgeable Frobenius algebras. A knowl-

edgeable Frobenius algebra is a combination of a commutative Frobenius algebra C (rep-

resenting the closed sector) and a symmetric Frobenius algebra A (representing the open

sector). It also has two additional morphisms: the zipper i : C ! A and a dual cozipper

i
⇤ : A ! C.

i : C ! A, zipper (1.14)

i
⇤ : A ! C, cozipper (1.15)

which are expressed graphically by:

i = i
⇤ = (1.16)

There are some further consistency conditions that relate the open and closed sectors.

1. The zipper preserves the unit:

= (1.17)

2. The zipper preserves the product:

= (1.18)

3. Knowledge The zipper maps into the center of the open string category, so the open

strings ”know” about the center.

= (1.19)
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Tensor product factorization

Effective partition function

Single interval Modular flow and EE

=

To see how this allows us to write the sphere as a trace, we have:

= = = = (3.2)

where we have used the definition of the entanglement brane, the Cardy axiom, the definition

of the bilinear pairing and the symmetry of the bilinear form. This shows that the sphere

diagram can be opened up to a trace in the open string sector.

Actually, the easier way to do this (which is also more enlightening I think) is

= = = = (3.3)

Once we have the entanglement brane we can transform any closed diagram into an open

diagram. First, we can show that we can replace a tube with a zipper/cozipper pair:

= = = =

(3.4)

Then we can use that to open up the product:

= = (3.5)

Now we can convert any closed diagram to open as follows. First, we open up every unit

and product. Then we wind up with a bunch of zipper/cozipper contractions which can be

replaced with open diagrams using the Cardy axiom.

– 7 –

=

Edge modes 

Entanglement entropy in terms of 

To see how this allows us to write the sphere as a trace, we have:

= = = = (3.2)

where we have used the definition of the entanglement brane, the Cardy axiom, the definition

of the bilinear pairing and the symmetry of the bilinear form. This shows that the sphere

diagram can be opened up to a trace in the open string sector.

Actually, the easier way to do this (which is also more enlightening I think) is

= = = = (3.3)

Once we have the entanglement brane we can transform any closed diagram into an open

diagram. First, we can show that we can replace a tube with a zipper/cozipper pair:

= = = =

(3.4)

Then we can use that to open up the product:

= = (3.5)

Now we can convert any closed diagram to open as follows. First, we open up every unit

and product. Then we wind up with a bunch of zipper/cozipper contractions which can be

replaced with open diagrams using the Cardy axiom.
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3.1 Entanglement

To talk about entanglement, we can take the Hartle-Hawking state and unroll it into a state

on two intervals:

= = =
X

R,a,b

|Rabi |Rbai (3.8)

Note that this state is not normalized. If we turn this sideways, we get the state  as a map

from one interval to the other,

 = = (3.9)

which is not very interesting. By composing it with itself we just get a factor of dim(R)2,

which shows that it represents the sphere. Reading the diagram sideways seem to be a

crucial ingredient in our open string description of the entanglgment in 2dym, but where is

this explicitly described in the axioms for the open-closed cobordisms? The cobordisms can

be read any way, the axioms should guarantee that any topologically equivalent diagrams are

equivalent. But I don’t see precisely how to do it. I think the way to write the open and

closed string channels is:

?
= (3.10)

We can also consider the state for an entangling surface consisting of two intervals. To

do this we have to further subdivide the intervals,

(3.11)

– 8 –



Multi-interval Modular flow

3.1 Entanglement

To talk about entanglement, we can take the Hartle-Hawking state and unroll it into a state

on two intervals:

= = =
X

R,a,b

|Rabi |Rbai (3.8)

Note that this state is not normalized. If we turn this sideways, we get the state  as a map

from one interval to the other,

 = = (3.9)

which is not very interesting. By composing it with itself we just get a factor of dim(R)2,

which shows that it represents the sphere. Reading the diagram sideways seem to be a

crucial ingredient in our open string description of the entanglgment in 2dym, but where is

this explicitly described in the axioms for the open-closed cobordisms? The cobordisms can

be read any way, the axioms should guarantee that any topologically equivalent diagrams are

equivalent. But I don’t see precisely how to do it. I think the way to write the open and

closed string channels is:

?
= (3.10)

We can also consider the state for an entangling surface consisting of two intervals. To

do this we have to further subdivide the intervals,

(3.11)

– 8 –

We want to view this state as an evolution from one pair of intervals to the other

 = =
X

R,a,b,c,d

1

dim(R)
|Rabi |Rcdi hRad| hRcb| (3.12)

We can flip and glue this diagram to get the modular Hamiltonian.

Note that the modular Hamiltonian comes with an explicit factor of dim(R)�2. When

we sew together any number of modular Hamiltonians there will be four boundaries. So the

n-fold replica gets a factor of (dimR)4�2n, which is the correct topology (for n = 1 it’s the

sphere, for n = 2 the torus, etc.).

The normalization factor for the density matrix on two intervals is the same as the case

for one interval:

Z =
X

R,a,b,c,d

(dimR)�2 =
X

R

(dimR)2. (3.13)

Normalizing by this factor, we can read o↵ the entanglement entropy directly from the Schmidt

decomposition  . The entropy takes a thermal form, but unlike for one interval it has non

-zero modular energy:

S = �

X

R,a,b,c,d

1

(dimR)2Z
log

1

(dimR)2Z
(3.14)

=
X

R

(dimR)2

Z
log(dimR)2 + logZ

The first term is the expectation value of the modular Hamiltonian H

H =
X

R,a,b,c,d

log(dimR)2 |Rabi |Rcdi hRab| hRcd| (3.15)

in the Hartle Hawking state while the second term is the free energy. This is the same as that

of a sphere because we can fill in each hole at the entangling surface with an E brane, which

is the closed string unit. Note that even though we have the same value for the partition

function as in the case of the single interval, the boltzmann factors are di↵erent when we view

it with respect to the Hilbert space of two intervals. In the string theory description of Z,

we should describe it in terms of a sum over worldsheets of two open strings with 4 ⌦ points

and 2 ⌦�1 points.

– 9 –
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State-Channel duality

We can also consider the state for an entangling surface consisting of two intervals. To

do this we have to further subdivide the intervals,

(4.11)

We want to view this state as an evolution from one pair of intervals to the other

 = =
X

R,a,b,c,d

1

dim(R)
|Rabi |Rcdi hRad| hRcb| (4.12)

We can flip and glue this diagram to get the modular Hamiltonian.

Note that the modular Hamiltonian comes with an explicit factor of dim(R)�2. When

we sew together any number of modular Hamiltonians there will be four boundaries. So the

n-fold replica gets a factor of (dimR)4�2n, which is the correct topology (for n = 1 it’s the

sphere, for n = 2 the torus, etc.).

The normalization factor for the density matrix on two intervals is the same as the case

for one interval:

Z =
X

R,a,b,c,d

(dimR)�2 =
X

R

(dimR)2. (4.13)

Normalizing by this factor, we can read o↵ the entanglement entropy directly from the Schmidt

decomposition  . The entropy takes a thermal form, but unlike for one interval it has non

-zero modular energy:

S = �
X

R,a,b,c,d

1

(dimR)2Z
log

1

(dimR)2Z
(4.14)

=
X

R

(dimR)2

Z
log(dimR)2 + logZ

The first term is the expectation value of the modular Hamiltonian H

H =
X

R,a,b,c,d

log(dimR)2 |Rabi |Rcdi hRab| hRcd| (4.15)

in the Hartle Hawking state while the second term is the free energy. This is the same as that

of a sphere because we can fill in each hole at the entangling surface with an E brane, which
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We can also consider the state for an entangling surface consisting of two intervals. To

do this we have to further subdivide the intervals,

(4.11)

We want to view this state as an evolution from one pair of intervals to the other

 = =
X

R,a,b,c,d

1

dim(R) |Rabi |Rcdi hRad| hRcb| (4.12)

We can flip and glue this diagram to get the modular Hamiltonian.

Note that the modular Hamiltonian comes with an explicit factor of dim(R)�2. When

we sew together any number of modular Hamiltonians there will be four boundaries. So the

n-fold replica gets a factor of (dimR)4�2n, which is the correct topology (for n = 1 it’s the

sphere, for n = 2 the torus, etc.).

The normalization factor for the density matrix on two intervals is the same as the case

for one interval:

Z =
X

R,a,b,c,d

(dimR)�2
=

X

R

(dimR)
2
. (4.13)

Normalizing by this factor, we can read o↵ the entanglement entropy directly from the Schmidt

decomposition  . The entropy takes a thermal form, but unlike for one interval it has non

-zero modular energy:

S = �
X

R,a,b,c,d

1

(dimR)2Z log
1

(dimR)2Z (4.14)

=
X

R

(dimR)2

Z
log(dimR)

2
+ logZ

The first term is the expectation value of the modular Hamiltonian H

H =
X

R,a,b,c,d

log(dimR)
2
|Rabi |Rcdi hRab| hRcd| (4.15)

in the Hartle Hawking state while the second term is the free energy. This is the same as that

of a sphere because we can fill in each hole at the entangling surface with an E brane, which
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Number of entangling surfaces



Summary
• Entanglement probes the structure of extended QFT
e.g.  extension defines an open string algebra 

• The extension satisfies the E-brane axiom 

I think we can sew up any holes using these axioms. Are there any other diagrams with

holes that we should consider?

3 2D Yang-Mills

All of these quantities can be defined for 2D Yang-Mills theory:

µC =
X

R

1

dim(R)
|Ri hR| hR| = (3.1)

⌘C =
X

R

dim(R) |Ri = (3.2)

µA =
X

R,a,b,c

1p
dim(R)

|Raci hRab| hRbc| = (3.3)

⌘A =
X

R,a

p
dim(R) |Raai = (3.4)

i =
X

R,a

1p
dim(R)

|Raai hR| = (3.5)

I suppressed all the factors of e�C2(R), so really we are talking about BF theory, but it’s

straightforward to put them back in.

Note that in 2DYM, we have

= (3.6)

which says we can sew up holes. Note also that

= (3.7)

which also shows how we can sew up holes.

Actually, I think this property is very important. In fact it seems natural to call this the

defining property of an entanglement brane: it says that we can poke a hole at the entangling

surface without changing the theory.

– 7 –

It also has to satisfy the Frobenius condition:

= = (1.7)

What Moore calls the Frobenius condition is di↵erent, it’s that

= (1.8)

What is the relation between these conditions?

And it must be commutative (µ = µ � ⌧):

= (1.9)

1.2 Open TQFT

Moore-Segal call this O instead of A, and we should too.

An open TQFT is similar, we can define it in terms of a symmetric Frobenius algebra.

Here the Hilbert spaces are associated to intervals, and the basic building blocks correspond

to the diagrams:

µ = ⌘ = � = ✏ = ⌧ = (1.10)

Note that the commutativity property is not satisfied:

6= (1.11)

Instead we require that it be symmetric (✏ � µ = ✏ � µ � ⌧):

= (1.12)

– 3 –

In Progress:  Entanglement and Extended CFT  

Conformally Inv. BC

description. The key property of the entanglement brane is that it can be sewn up without

changing the partition function. General issues about entanglement discussed in [2], [3].

Can we think of the E-brane as a boundary condition? It is essentially a non-local

boundary condition, so perhaps we have to view it as a sum over boundary conditions.

So we discussed before that it is the boundary condition U = 1, which i guess is a a

sum over boundary conditions in the sense that the delta function that sets U = 1 requires

a sum over all characters. Also in the string theory picture we have to sum over all strings

winding around the middle of the cap. I was perplex why the closed strings are allowed to

wind around a contractible point, but perhaps summing over all possible windings actually

makes that a smooth point? We can also consider other boundary conditions corresponding

to a non-trivial wilson loop at the boundary. I seem to recall that you even worked out

the modular hamiltonian in this case. Perhaps the di↵erent labels of the endpoints should

correspond to the di↵erent holonomies we impose there, rather than the indices of |Ra, bi as

I incorrectly assumed before?

See also [4], which desribes 2D Yang-Mills as an ”area-dependent” QFT. In fact, this

is an old result which is mentioned in Segal’s notes (http://web.math.ucsb.edu/~drm/

conferences/ITP99/segal/, section 1.4) as due to Witten — I think in [5]

Lauda and Pfei↵er look at “open-closed” TQFT [1]. See also the notes by Moore [6].

1.1 Closed TQFT

Two dimensional closed TQFTs are classified by commutative Frobenius algebras.

A Frobenius algebra is an algebra A with some additional operations:

µ : A⌦A ! A, product (1.1)

⌘ : 1 ! A, unit (1.2)

� : A ! A⌦A, coproduct (1.3)

✏ : A ! 1, counit/trace (1.4)

There is also a braiding operation ⌧ , which just maps X ⌦ Y ! Y ⌦X. Using these one can

construct a natural pairing ✏ � µ : A⌦A ! 1.

These are most easily expressed graphically:

µ = ⌘ = � = ✏ = ⌧ = (1.5)

We can use these to define a bilinear pairing:

:= (1.6)

– 2 –

which says that the bilinear form is symmetric,

= (1.13)

1.3 Open-closed TQFT

Open-closed TQFTs are similarly classified by knowledgeable Frobenius algebras. A knowl-

edgeable Frobenius algebra is a combination of a commutative Frobenius algebra C (rep-

resenting the closed sector) and a symmetric Frobenius algebra A (representing the open

sector). It also has two additional morphisms: the zipper i : C ! A and a dual cozipper

i
⇤ : A ! C.

i : C ! A, zipper (1.14)

i
⇤ : A ! C, cozipper (1.15)

which are expressed graphically by:

i = i
⇤ = (1.16)

There are some further consistency conditions that relate the open and closed sectors.

1. The zipper preserves the unit:

= (1.17)

2. The zipper preserves the product:

= (1.18)

3. Knowledge The zipper maps into the center of the open string category, so the open

strings ”know” about the center.

= (1.19)
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It also has to satisfy the Frobenius condition:
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What Moore calls the Frobenius condition is di↵erent, it’s that

= (1.8)

What is the relation between these conditions?

And it must be commutative (µ = µ � ⌧):

= (1.9)

1.2 Open TQFT

Moore-Segal call this O instead of A, and we should too.

An open TQFT is similar, we can define it in terms of a symmetric Frobenius algebra.

Here the Hilbert spaces are associated to intervals, and the basic building blocks correspond

to the diagrams:

µ = ⌘ = � = ✏ = ⌧ = (1.10)

Note that the commutativity property is not satisfied:

6= (1.11)

Instead we require that it be symmetric (✏ � µ = ✏ � µ � ⌧):
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OPE’s of a BCFT

E brane boundary condition ~

Fusion Rule ~ Entangling product ?  

     A hint from free fermions

3 THE CATEGORY OF OPEN-CLOSED COBORDISMS 19

Proof. We analyze the properties of the non-degenerate critical point p ∈ M case by case.

1. If p ∈ M\∂M , then the critical point is characterized by its index i(p) (the number of negative
eigenvalues of Hessp(f)) as usual; see, for example [26]. There exists a neighbourhood U ⊆ M
of p and a coordinate system x : U → 2 in which the Morse function has the normal form,

f(p) = −
i(p)∑

j=1

x2
j (p) +

2∑

j=i(p)+1

x2
j (p) (3.27)

for all p ∈ U .

(a) If the index is i(p) = 2, then the Morse function has a maximum at p, and so the
neighbourhood (and thereby the entire open-closed cobordism) is diffeomorphic to εC

of (3.25). Recall that the vertical coordinate of our diagrams is −f rather than +f .

(b) If the index is i(p) = 1, then f has a saddle point. If M were a closed cobordism, i.e.
∂0M = ∂M , the usual argument would show that M is either of the form µC or ∆C

of (3.25). In the open-closed case, however, the saddle can occur in other cases, too,
depending on how the boundary ∂M is decomposed into ∂0M and ∂1M . We proceed
with a case by case analysis and show that in each case, this saddle is equivalent to one
of the compositions displayed in (3.26):

∼= , (3.28)

∼= . (3.29)

Here we show the saddle at the left and the equivalent decomposition as a composition
and tensor product of the cobordisms of (3.25) with identities on the right. The saddle
of (3.28) can appear in two orientations and with the intervals in its source and target in
any ordering. In any of these cases, it is equivalent to one of the first two compositions
displayed in (3.26). The saddle of (3.29) can appear flipped upside-down or left-right
or both, giving rise to the last four compositions displayed in (3.26).

Note that the equivalences of (3.28) and (3.29) relate cobordisms whose number of
critical points differs by an odd number. This is a new feature that dos not occur in
the case of closed cobordisms.

(c) If i(p) = 0, then f has a minimum, and the cobordism is diffeomorphic to ηC of (3.25).

2. Otherwise, p ∈ ∂1M\∂0M , i.e. the critical point is on the coloured boundary, but does not
coincide with a corner of M . Consider the restriction f |∂1M : ∂1M → which then has a
non-degenerate critical point at p with index i′(p) ∈ {0, 1}.

(a) If i′(p) = 1, then f |∂M has a maximum at p.

i. If p is a (−)-critical point of f , the cobordism is diffeomorphic to εA of (3.25).

ii. If p is a (+)-critical point of f , the neighbourhood of p looks as follows,

p
M

(3.30)

19

We want to view this state as an evolution from one pair of intervals to the other

 = =
X

R,a,b,c,d

1

dim(R)
|Rabi |Rcdi hRad| hRcb| (3.12)

We can flip and glue this diagram to get the modular Hamiltonian.

Note that the modular Hamiltonian comes with an explicit factor of dim(R)�2. When

we sew together any number of modular Hamiltonians there will be four boundaries. So the

n-fold replica gets a factor of (dimR)4�2n, which is the correct topology (for n = 1 it’s the

sphere, for n = 2 the torus, etc.).

The normalization factor for the density matrix on two intervals is the same as the case

for one interval:

Z =
X

R,a,b,c,d

(dimR)�2 =
X

R

(dimR)2. (3.13)

Normalizing by this factor, we can read o↵ the entanglement entropy directly from the Schmidt

decomposition  . The entropy takes a thermal form, but unlike for one interval it has non

-zero modular energy:

S = �

X

R,a,b,c,d

1

(dimR)2Z
log

1

(dimR)2Z
(3.14)

=
X

R

(dimR)2

Z
log(dimR)2 + logZ

The first term is the expectation value of the modular Hamiltonian H

H =
X

R,a,b,c,d

log(dimR)2 |Rabi |Rcdi hRab| hRcd| (3.15)

in the Hartle Hawking state while the second term is the free energy. This is the same as that

of a sphere because we can fill in each hole at the entangling surface with an E brane, which

is the closed string unit. Note that even though we have the same value for the partition

function as in the case of the single interval, the boltzmann factors are di↵erent when we view

it with respect to the Hilbert space of two intervals. In the string theory description of Z,

we should describe it in terms of a sum over worldsheets of two open strings with 4 ⌦ points

and 2 ⌦�1 points.
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