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Proposals (for impatient listeners)

* | will construct the interior operator in a “state-independent” manner without
iInvolving the distant radiation ever. It "avoids” previous no-go results.

* | will show that the infalling observer leaves non-trivial gravitational backreaction
and disentangles the outgoing mode from the early radiation, no matter how she
falls.

| will argue that the infalling observer sees a smooth horizon. Her infalling
experience cannot be influenced by any operation on the early radiation.

(Each phrase will be defined more precisely later)
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Firewall puzzle(s), brief summary

From the outside (Bob) From the inside (Alice)

C : Remaining black hole
D : Outgoing mode DD : Rindler modes

R : Early radiation _
Y (D, D) ~ max

Monogamy of entanglement

“old” black hole
» I(D,D)~0 firewall?

I(D, R) ~ max I(C,D)~0
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Interior operators

* In outside description, [ is supported on C'R not on C (remaining BH)

* Non-locality problem

Place R at a far distant universe.

‘A = RB” approach, “ER = EPR” approach (This is how quantum gravity works?)
* State-dependence problem

- Interior operators depend on the state, namely R.
- Violation of Born rule, Frozen vacuum, ...

- Papadodimas-Raju proposal for state-dependence, ...
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Hayden-Preskill, brief summary

* Alice throws a quantum state into an old black hole. Bob collects the Hawking
radiation and reconstruct the original state.

C : Remaining BH
D : Late radiation

R : Early radiation

A

|9)
TAout
v

D

R

- Bob needs to collect just a few qubits from D.

“Black hole as mirrors” (Hayden-Preskill)

V : recovery unitary



Out-of-time order correlation

e Hayden-Preskill : Haar random U. Existence proof of decoder V.

® [P)
TAout
C V
2 AR
U
TA BI
) EPR
. Input

: remaining BH
. late radiation
. early radiation



Out-of-time order correlation

e Hayden-Preskill : Haar random U. Existence proof of decoder V.

* Hosur-Qi-Roberts-BY : decay of out-of-time order correlator (OTOC) implies
existence of V. (2015)
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e Hayden-Preskill : Haar random U. Existence proof of decoder V.

* Hosur-Qi-Roberts-BY : decay of out-of-time order correlator (OTOC) implies
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Out-of-time order correlation

e Hayden-Preskill : Haar random U. Existence proof of decoder V.

* Hosur-Qi-Roberts-BY : decay of out-of-time order correlator (OTOC) implies
existence of V. (2015)
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C : remaining BH
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. late radiation
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Decoding protocol

e Kitaev-BY : decay of OTOC implies “simple” recovery protocols. (2017)

* Project DD onto the EPR pair. (probabilistic)

 Deterministic protocol : incorporate Grover algorithm, unitarily restore DD in EPR.

projection )
M A A
U U*
A B B A
]m T EPRT T_

“Decoding protocol” “Traversable wormhole”
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Interior operators

» Recall the Hayden-Preskill recovery

EPR EPR EPR

EPR
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Interior operators

e and the AMPS problem...

R R C : Remaining BH
D C A B D C A B D : Outgoing mode
| R T ” | I * R : Radiation
Op Oca
U U
EPR - EPR

Split R into AB Rotate the figure...

Reconstruct on CA.
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Interior operators

e Interior partner in A (a few qubits in R) and C (remaining BH)

= = C : Remaining BH
T D CT T D C’T
D : Outgoing mode

R : Radiation

AMPS Reconstruct D (outgoing) from C (remaining BH) and A (early mode)

HP Reconstruct A (early mode) from B (initial BH) and D (outgoing)
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« Construction of D is naturally fault-tolerant.
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Interior operators

* Properties
e You can choose any subsystem A from R to reconstruct D
« Construction of D is naturally fault-tolerant.

e D is “almost” inside C with a few extra qubits from R.

C : Remaining BH

* Problems ...
D : The zone
e Construction is state-dependent. (I ® K)|EPR) R : Radiation
e Non-locality problem (use of A)
D B A C D B A C
| | |
UT ~ UT
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Some lesson

e Reconstruction of interior operators

If Alice takes A, then Alice possesses the EPR pair

If Alice didn’t take A, then Bob possesses the EPR pair

______________
~
~
~
‘\

AB : Radiation (R)

C : remaining black hole

D : outgoing mode

* WWe can choose A to be any small subsystem !

 Alice does not need to take A. She simply needs to fall into a black hole.
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“Generic” two-sided “AdS” black hole

* Generic two-sided AdS BH (/ ® K)|EPR) D O Ap
Ur
Prepare ancillary EPR and apply SWAP by
| ; |
: D c| E|E| 4R Uy
i T B, Ay
I :T | | Ut—l |
U,
U. | P
By A, . ¢ Ul %
SWAP tl jt,_ 1
E E | U,_4 | TB
EPR | | TR
U, K
TB A, : boundary modes
EPR B, : other modes

e D can be reconstructed on C' and A,

without ever accessing R

Generic two-sided AdS = K is arbitrary, BH not evaporating
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State-independence

e Construction does not depend on K
* Works for one-sided BH too.

|O>®n
D) 8, AR
Ur
| i |
L
Uy
==2: 2,
Ui_1
| : |
L P
U, K




Evaporating black hole

R; : high-energy radiation
A; : modes on the zone

B, : modes at stretched horizon

§ R
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Evaporating black hole

* Use A; not R

R; : high-energy radiation

A; : modes on the zone

B, : modes at stretched horizon
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Codeword subspaces

* State-independence inside codeword subspace

“S-qubit” toy model
Coarse-grained Hilbert space Hcode &~ 2°BH-dimensional , determined by M, J, Q...

Hcode : wavefunctions with the same classical geometry

* Eigenstate Thermalization Hypothesis (ETH)

e Claim: state-independence for black holes initially in thermal equilibrium.

SEES ~ rglogrg

thermalization time scrambling time
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Including Alice

e Consider the eternal AdS. Bob’s can verify entanglement on DD from the boundary.

* Add an apparatus M which travels along with A.

M becomes gravitational shockwave. Bob’s entanglement is disturbed.

Due to decay of OTOC:s. D
t=20

* Outgoing mode D is disentangled from R (RHS) ?

“Proof” | | t=—At
D C R A M
’ D
U
BT Tx Ml Small OTOC » [(C, D) ~ max
0) » D is not entangled with R

EPR

* Works for black holes on flat space. (Follows from QM and OTOC decay).
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Sending probes

e Shoot a probe mode into the BH (mimics the reconstruction protocol)

* OTOC decay implies (D, EC) ~ max , so D is not entangled with R.

* Qutgoing mode is disentangled from early radiation no matter how Alice
falls in !

* Decay of OTOC is universal gravitational phenomena.

* Interior operator does not depend on R, but depends on the observer.

e Some caveats

- This requires scrambling time separation.

- A(or E) needs to be as large as D.
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Bulk interpretations

e Treat Alice as a shockwave

D

~ —

without Alice D —— D with Alice D —— D

« Interior operator D is outside the causal influence of RHS. Alice won't be affected
by RHS.

Resolution of non-locality problem

e Alice sees a “phantom” of D. Non-locality problem can be resolved.
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Can we create a firewall?

* Bob can stop Alice from seeing the EPR by preventing her from jumping into the BH.

» Perform the Hayden-Preskill recovery !

* Recall the recovery protocol by BY and Kitaev... Verification of DD entanglement.

e Bob’s verification of the EPR pair performs the HP recovery

* Bob cannot perform HP recovery by acting on the early radiation only.

projection
PR [4)

>
~
>
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Firewall (Hayden-Preskill) in a laboratory

* |[n a sense, Hayden-Preskill recovery is a firewall although it actually saves Alice.

Experiment of HP recovery protocol

Nature 567 (7746), 61

LETTER

https://doi.org/10.1038/s41586-019-0952-6

Verified quantum information scrambling

K. A. Landsman'*, C. Figgatt"®, T. Schuster?, N. M. Linke!, B. Yoshida?, N. Y. Yao>* & C. Monroe!>

Quantum scrambling is the dispersal of local information into
many-body quantum entanglements and correlations distributed
throughout an entire system. This concept accompanies the
dynamics of thermalization in closed quantum systems, and has
recently emerged as a powerful tool for characterizing chaos in
black holes'*. However, the direct experimental measurement
of quantum scrambling is difficult, owing to the exponential
complexity of ergodic many-body entangled states. One way to
characterize quantum scrambling is to measure an out-of-time-
ordered correlation function (OTOC); however, because scrambling
leads to their decay, OTOCs do not generally discriminate between
quantum scrambling and ordinary decoherence. Here we implement
a quantum circuit that provides a positive test for the scrambling
features of a given unitary process>®. This approach conditionally
teleports a quantum state through the circuit, providing an
unambiguous test for whether scrambling has occurred, while
simultaneously measuring an OTOC. We engineer quantum
scrambling processes through a tunable three-qubit unitary
operation as part of a seven-qubit circuit on an ion trap quantum
computer. Measured teleportation fidelities are typically about 80
per cent, and enable us to experimentally bound the scrambling-
induced decay of the corresponding OTOC measurement.

For example, non-unitary time-evolution arising from depolarization
or classical noise processes naturally lead the OTOC to decay, even in
the absence of quantum scrambling. A similar decay can also originate
from even slight mismatches between the purported forward and back-
wards time-evolution of W (¢) (refs ©16 and 24). Although full quantum
tomography can in principle distinguish scrambling from decoherence
and experimental noise, this requires a number of measurements that
scales exponentially with system size and is thus impractical.

In this work, we overcome this challenge and implement a quantum
teleporation protocol that robustly distinguishes information scram-
bling from both decoherence and experimental noise>. Using this pro-
tocol, we demonstrate verifiable information scrambling in a family
of unitary circuits and provide a quantitative bound on the amount of
scrambling observed in the experiments.

The intuition behind our approach lies in a re-interpretation of the
black-hole information paradox®!?, under the assumption that the
dynamics of the black hole can be modelled as a random unitary oper-
ation U (Fig. 1). Schematically, an observer (Alice) throws a secret
quantum state into a black hole, while an outside observer (Bob)
attempts to reconstruct this state by collecting the Hawking radiation
emitted at a later time®1°.

An explicit decoding protocol has been recently proposed™®, which
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complexity of ergodic many-body entangled states. One way to
characterize quantum scrambling is to measure an out-of-time-
ordered correlation function (OTOC); however, because scrambling
leads to their decay, OTOCs do not generally discriminate between
quantum scrambling and ordinary decoherence. Here we implement
a quantum circuit that provides a positive test for the scrambling
features of a given unitary process>®. This approach conditionally
teleports a quantum state through the circuit, providing an
unambiguous test for whether scrambling has occurred, while
simultaneously measuring an OTOC. We engineer quantum
scrambling processes through a tunable three-qubit unitary
operation as part of a seven-qubit circuit on an ion trap quantum
computer. Measured teleportation fidelities are typically about 80
per cent, and enable us to experimentally bound the scrambling-
induced decay of the corresponding OTOC measurement.

For example, non-unitary time-evolution arising from depolarization
or classical noise processes naturally lead the OTOC to decay, even in
the absence of quantum scrambling. A similar decay can also originate
from even slight mismatches between the purported forward and back-
wards time-evolution of W (¢) (refs ©16 and 24). Although full quantum
tomography can in principle distinguish scrambling from decoherence
and experimental noise, this requires a number of measurements that
scales exponentially with system size and is thus impractical.

In this work, we overcome this challenge and implement a quantum
teleporation protocol that robustly distinguishes information scram-
bling from both decoherence and experimental noise>. Using this pro-
tocol, we demonstrate verifiable information scrambling in a family
of unitary circuits and provide a quantitative bound on the amount of
scrambling observed in the experiments.

The intuition behind our approach lies in a re-interpretation of the
black-hole information paradox®!?, under the assumption that the
dynamics of the black hole can be modelled as a random unitary oper-
ation U (Fig. 1). Schematically, an observer (Alice) throws a secret
quantum state into a black hole, while an outside observer (Bob)
attempts to reconstruct this state by collecting the Hawking radiation
emitted at a later time®1°.

An explicit decoding protocol has been recently proposed™®, which
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» Before the scrambling time, Bob may still see the EPR pair. Why Alice
cannot see the EPR pair?

e Scenario 1

Alice see D very close to the singularity.

e Scenario 2

The quality of the EPR pair becomes bad ? T = ﬁ

To have small 0, we need At Z rglogrs

e Scenario 3

Even if they are not entangled, it won'’t create a firewall (low energy)?



Entanglement wedge reconstruction

e Can we use the Hayden-Preskill recovery to construct the state-independent
interior operator in the entanglement wedge?
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Firewall in de Sitter Horizon ?

* Firewall problem in de Sitter horizon? Our universe is too young...

e Alice will leave a backreaction?

The shift is in the opposite direction!

» Alice cannot really cross the de Sitter horizon?

singularity r =00

black hole horizon cosmological horizon
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