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Classical delegation of secret qubits

Adam
classical party

Adam can instruct
the preparation of
random qubits at
Bob

The classical
description of the
qubits is
(computationally)
unknown to Bob
but known to
Adam

Bob
quantum party

Unique feature
that no quantum
communication is

required

This enables Adam to
perform a class of
quantum
communication
protocols with only a
public classical
channel between him
and Bob.
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|.  Main Application

» Classical delegation of quantum computations
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|.  Main Application

» Classical blind delegation of quantum computations
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Universal Blind Quantum Computing
(UBQC)

A. Broadbent, J. Fitzsimons, E. Kashefi (FOCS ’09)
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Blind delegated quantum computation

10011 \ ( 6




01101

10011




QFactory




Construction of QFactory

Required Assumptions:

This function is 2 preimag_es for all
hard to invert. . . elements in I'm(f)

\/

Functions {f;.} ]

TN

.. except if you Without trapdoor
have the trapdoor ty, hard to find
{1 associated to the x # 2/ such that

function index k. fr(z) = fr(2’)
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Security Setting

» Level of Security:
» Information Theoretic: Secure against unbounded adversaries;

» Computational: Secure against Quantum Adversaries with polynomially bounded
computational resources (QPT);

» Types of Adversaries

» Honest-But-Curious: Adversary follows the protocol, but can keep records and try
to learn from these;

» Malicious: Adversary can deviate in any step of the protocol in any way;



Security (in the quantum honest but curious setting)

Blindness of the output 6.
Corollary: QFactory is secure in
the honest-but-curious model.
If adversary:

k,y, (ai)a (bi)

.
e

@ follows the protocol

o 2 @ can only access classical
=0 registers

= he cannot determine ¢
Cannot be better than random
guess: ¢ hard-core function.




Proof Intuition

6 is a hardcore function: proof based on Goldreich-Levin Theorem:

If fis a one-way function, then the predicate
he(e,r) =Y xr; mod 2 cannot be distinguished from a random
bit, given r and f(x).

Recall, in our case: f(x) =~ y and

QNZ —;rl) (4b; +a?) mod 8

Unknown Known
to server to server




Proof Intuition

@ is a hardcore function: proof based on Goldreich-Levin Theorem:

If fis a one-way function, then the predicate
he(r,r) = > a7, mod 2 cannot be distinguished from a random
bit, given r and f(x).

Recall, in our case: f(x) ~ y and

QNE - 4b +a?) mod &
Unknown Known
to server to server

Collision
GL one-wayness o f : » :
: unction resistance



Il. Classical delegation of secret qubits
against Malicious Adversaries

or
Malicious 4-states QFactory




Malicious 4-states QFactory functionality

= |output) & ([0}, 1), [4),1-)}
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Motivation

There exist protocols for

most of these applications
where quantum communication
only consists of

the qubits |0), [1), |+), |—)

Functionality of Malicious 4-
states QFactory = classical
delegation of quantum
computation (against
malicious adversaries)

as long as the basis of qubits is
hidden from any adversary

SIMULATE
QUANTUM
CHANNEL




This function is hard 2 preimages for any
to invert. element in Im(f)

\/

[ Functions {fi} J

Trapdoor Collision resistant
except if you have the Without 'fhe trapdc?or tr,
trapdoor t;, associated hard to find x # x

k —_ r
to the index function k o such that fi(x) = fic(x')




2-Regular

This function is hard 2 preimages for any
to invert. element in Im(f)

\/

[ Functions {fi} J

Trapdoor Collision resistant
except if you have the Without ’fhe trapdc?or tr,
trapdoor t;, associated hard to find x # x

k —_ r
to the index function k o such that f;. (x) = fi(x)

Jr: D = R injective, homomorphic, quantum-safe,
trapdoor one-way;

fi:Dx{0,1} >R

_ gk(x)r lf c=0
filx,e) = {gk(x) * gr(xo) = gi(x + xp),if c =1

where x, is chosen by the Client at random from the domain of g;



2-Regular

This function is hard 2 preimages for any
to invert. element in Im(f)

\/

[ Functions {fi} J
as the same domain as g hy(x) @ hy(xz)

Trapdoor Collision resistant
except if you have the U Ui U FEleer iy,
trapdoor t;, associated hard to find x # x
k _ 2
to the index function k o such that f;. (x) = fi(x)
and outputs a single bit. = h(x; — x1)

Jr: D = R injective, homomorphic, quantum-safe, \ /
trapdoor one-way;

[ Functions {h;} ]

fo:Dx{0,1} >R /

Homomorphic

Hardcore Predicate

; — When x is sampled
f (x C) = gk(x)' lf c=0 uniformI:/ at random,
kA5 gk(.X') * gk(xo) = gk(x + xo), lf c=1 it is hard to distinguish

h;(x) from a random bit.

where x, is chosen by the Client at random from the domain of g,



Malicious 4-states QFactory Protocol
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Malicious 4-states QFactory Protocol
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Malicious 4-states QFactory Protocol
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Malicious 4-states QFactory Protocol
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Malicious 4-states QFactory Protocol

[ |On> |Om> - ZxEDom(fk)|x>|0m) - ZxEDom(fk)lef(x))
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Malicious 4-states QFactory Protocol
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Malicious 4-states QFactory Protocol
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Malicious 4-states QFactory Protocol
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Malicious 4-states QFactory Protocol
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Security (in the quantum malicious setting)

= |Output) = HP1X52|0)
= B, = the basis bit of |OQutput)
= If B; = 0 then [Output) € {]|0),|1)} and if B; = 1 then |Output) € {|+),|—)}

« Server cannot do better than a random guess:
B, is a hard-core predicate (wrt the function g);

« Blindness of the basis B; of |OQutput)
against malicious adversaries.

« Theorem: No matter what Bob does,
he cannot determine B,.




Security (in the quantum malicious setting)

» B, is a hard-core predicate = basis-blindness
» The basis-blindness is the “maximum” security:

» Even after an honest run we can at most guarantee basis blindness, but not full
blindness about the output state:

> |Output) € {|0),]1),|+),|-)}
» Then the Adversary can determine B, with probability at least z:

> Makes a random guess B; and then measures |Output) in the B; basis, obtaining
measurement outcome B, : if B; = B; then B, = B, with probability 1, otherwise

B, = B, with probability ;;

> Basis-blindness is proven to be sufficient for many secure computation protocols,
e.g. blind quantum computation (UBQC protocol);

> Basis-blindness is required for classical verification of QFactory;
=> classical verification of quantum computations




Security (in the quantum malicious setting)

Recall:

. [Output) € {|0),]1),|+), =)}
|Output) = HB1X52|0)

B, = {[X(x; ® x;") - bj] mod 2 - B;} ®
[h(z) - (1 D By)]

--------------------------

Bi = h(2) ® h()




Security (in the quantum malicious setting)

Recall:

|Output) € {|0),[1),[+),]—)}
B; = the basis bit of |OQutput)
_ yBiyB 1
|Output) = H™1X"2|0) = |Output) € {|0),|1)} & B; =0

B, = h(z) ® h(z) = |Output) € {|+),|-)} & By =1

B, = {[X(x; ® x;") - bj] mod 2 - B;} ®
[h(z) - (1 D By)]

= Hiding the basis equivalent to hiding
B, = h(z) ® h(z)



Security (in the quantum malicious setting)

Recall:

|Output) € {|0),[1),[+),]=)}

_ 1By yB, B, = the basis bit of |Output)
|Output) = H1X72{0) » |OQutput) € {|0),|1)} & B; =0

B, = h(z) ® h(z) = |Output) € {|+),|-)} & By =1

B, = {[X(x; ® x;") - bj] mod 2 - B;} ®
[h(z) - (1 D By)]

Using the definition of f: _
fo) = g@+ c- glz) "TET glz + - 2)

= Hiding the basis equivalent to hiding
B, = h(z) ® h(z)



Security (in the quantum malicious setting)

Recall:

. [Output) € {|0),]1), |+),|-)}
B; = the basis bit of |OQutput)

» |OQutput) € {|0),|1)} & B; =0
= |Output) € {|+),|-)} & B; =1

|Output) = HB1X52|0)

= Hiding the basis equivalent to hiding

B, = {[X(x; ® x;") - bl mod 2 - B;} ® B, = h(z) ® h(z)
L=

[h(2) - (1 © B1)]
Using the definition of f:

E B, = h(z) @ h(z)

homomorphic

f(z,c)= g+ c- g(z) = gz + ¢+ zp)

g is injective, the 2 preimages of f are:

x = (z,0)andx’ = (z + z5,1) =2 = z + z,



Security (in the quantum malicious setting)

Recall:

|Output) € {|0),[1),[+),]=)}

_ 1By yB, B, = the basis bit of |Output)
|Output) = H1X72{0) » |OQutput) € {|0),|1)} & B; =0

B, = h(z) ® h(z) = |Output) € {|+),|-)} & By =1

B, = {[X(x; ® x;") - bj] mod 2 - B;} ®
[h(z) - (1 D By)]

Using the definition of f: _
fo) = g@+ c- glz) "TET glz + - 2)

= Hiding the basis equivalent to hiding
B, = h(z) ® h(z)

g is injective, the 2 preimages of f are:
x = (z,0)andx’ = (z + z5,1) =2 = z + z,

h is homomorphic:
By = h(z) @ h(z') = h(z' — z) = h(z,)



Security (in the quantum malicious setting)

Recall:

|Output) € {|0),[1),[+),]—)}
B; = the basis bit of |OQutput)
_ yBiyB 1
|Output) = H™1X"2|0) = |Output) € {|0),|1)} & B; =0

B, = h(z) ® h(z) = |Output) € {|+),|-)} & By =1

B, = {[X(x; ® x;") - bj] mod 2 - B;} ®
[h(z) - (1 D By)]

Using the definition of f:

= Hiding the basis equivalent to hiding
B, = h(z) ® h(z)

homomorphic

fz,c) = g@)+ c- g(2) = 9(z + ¢ z)
g is injective, the 2 preimages of f are:
x = (z,0)andx’ = (z + z5,1) =2 = z + z,

h is homomorphic:
By = h(z) @ h(z') = h(z' — z) = h(z,)

h is hardcore predicate:
B, = h(zy) is hidden



Security (in the quantum malicious setting)

Overview

» The client picks at random z, and then sends K’ = (K, gK(ZO)) to the Server
(as the public description of f)

» As the basis of the output qubit is B; = h(z,), then the basis is basically fixed
by the Client at the very beginning of the protocol.

» The output basis depends only on the Client’s random choice of z, and is
independent of the Server’s communication.

» Then, no matter how the Server deviates and no matter what are the
messages (y, b) sent by Server, to prove that the basis B; = h(z,) is
completely hidden from the Server, is sufficient to use that h is a hardcore
predicate.



Extensions of QFactory




Malicious 8-states QFactory

» To use Malicious 4-states QFactory for applications where communication consists
of |[+4), with 8 € {0,%, ...,77?}, we provide a gadget that achieves such a state from
2 outputs of Malicious 4-states QFactory.



Malicious 8-states QFactory

» To use Malicious 4-states QFactory for applications where communication consists
of |[+4), with 8 € {0,%, ...,%”}, we provide a gadget that achieves such a state from
2 outputs of Malicious 4-states QFactory.

|£) Lo
jout) = R[Ly7r + L%+ Ly 7] 14)
|£) 52
| L3 =B,
lout) i L, = By @ [(B, © s7) - B4]

Ly =B, @ B, @ [B; - (51 D s2)]

_________________________________________________



Malicious 8-states QFactory

» To use Malicious 4-states QFactory for applications where communication consists of
|[+6), with 8 € {0,%, ...,%ﬂ}, we provide a gadget that achieves such a state from 2
outputs of Malicious 4-states QFactory.

|£) Lo
T T
|:|:> . |Out> =R [Llﬂ + Lz E + L3 Z:I |+>
: Ly =B,
lout) i L, = By @ [(B, © s7) - B4]
. Ly =B, ® B, @ [B; - (51 D s2)]

_________________________________________________

» No information about the bases (L, L3) of the new output state |out) is leaked:
» We prove the basis blindness of the output of the gadget by a reduction to the
basis-blindness of 1 of the 2 outputs of Malicious 4-states QFactory;

If you could determine L, and L;, then you would determine B, or B,'.



Blind Measurements

» Perform a measurement on a first qubit of an arbitrary state |y) in such a way
that the adversary is oblivious whether he is performing a measurement in 1
out of 2 possible basis (e.g. X or Z basis).

» Useful for classical verification of quantum computations (Mahadev FOCS18);



Blind Measurements

» Perform a measurement on a first qubit of an arbitrary state |y) in such a way
that the adversary is oblivious whether he is performing a measurement in 1
out of 2 possible basis (e.g. X or Z basis).

» Useful for classical verification of quantum computations (Mahadev FOCS18);

» Achieved using the following gadget:

S1

S2




Blind Measurements

» Perform a measurement on an arbitrary state |y) in such a way that the
adversary is oblivious whether he is performing a measurement in 1 out of 2

possible basis (e.g. X or Z basis).
» Useful for classical verification of quantum computations (Mahadev FOCS18);

» Achieved using the following gadget:

S1

S2

» No information about the basis of the measurement is leaked;
» We prove the measurement blindness of the output of the gadget by a reduction to

the basis-blindness of Malicious 4-states QFactory;




Classical verification of quantum computations

» Basis-blindness is not sufficient for verifiable blind quantum computation;

» To achieve verification, we combine Basis Blindness and Self-Testing;



Classical verification of quantum computations

» Basis-blindness is not sufficient for verifiable blind quantum computation;
» To achieve verification, we combine Basis Blindness and Self-Testing;

» Self-Testing

» Given measurement statistics, classical parties are certain that some untrusted
quantum states, that 2 non-communicating quantum parties share, are the states
that the classical parties believe to have;

» In our case, we replace the non-communication property with the basis-blindness
condition;



Classical verification of quantum computations

{10y 11, 14+), 1)} > [+6), 6 €{0,7, ...~}

I 4 states hidden bases I « I 8 states hidden bases I I Self-Testing I

Verification



Classical verification of quantum computations

Verification Protocol

/1. We repeat Malicious 8-states QFactory multiple times - independent runs; \
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runs to use them for a test;
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Verification Protocol

ﬁ We repeat Malicious 8-states QFactory multiple times - independent runs; \

2. The Client chooses and announces a random fraction of the output qubits of these
runs to use them for a test;

3. The Server is instructed by the Client to measure the test qubits in random angles
and sends the measurement results to the Client;
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Classical verification of quantum computations

Verification Protocol

K We repeat Malicious 8-states QFactory multiple times - independent runs; \

2. The Client chooses and announces a random fraction of the output qubits of these
runs to use them for a test;

3. The Server is instructed by the Client to measure the test qubits in random angles
and sends the measurement results to the Client;

4. With the measurement results, the Client knowing the basis of the test qubits and
the measurement angles, he can check their statistics;

o /




Classical verification of quantum computations

Verification Protocol

K We repeat Malicious 8-states QFactory multiple times - independent runs; \

2.

The Client chooses and announces a random fraction of the output qubits of these
runs to use them for a test;

The Server is instructed by the Client to measure the test qubits in random angles
and sends the measurement results to the Client;

With the measurement results, the Client knowing the basis of the test qubits and
the measurement angles, he can check their statistics;

Since the Server does not know the basis bits of these test states, he is unlikely to
succeed in guessing the correct statistics unless he is honest. /




QHBC QFactory
Function Construction




QHBC QFactory

Required Assumptions:

This function is 2 preimag_es for all
hard to invert. . . elements in I'm(f)

\/

[ Functions {f;.} ]

N

... except if you Without trapdoor
have the trapdoor ty, hard to find
{1 associated to the x # 2/ such that

function index k. fr(z) = fr(2’)




|.  Function Constructions

» We propose 2 generic constructions, using:

» A) A bijective, quantum-safe, trapdoor one-way function g;: D - R

fr: Dx{0,1} - R (kp,th,) s Geng(1™)
(kg,tkg) —3 GEﬂg[lnj

ka (.’I?, C) _ 9k, (SC), 1f c=10 'I‘f — (k1. ko)
iy (), ife=1 th 1= (thys th)




|.  Function Constructions

» We propose 2 generic constructions, using:

» A) A bijective, quantum-safe, trapdoor one-way function g;: D - R

fw: D x {0,1} > R
if ¢ =0
if c=1

9kq ('T):

el ) = ko (),

» B) An injective, homomorphic, quantum-safe, trapdoor one-way function g,: D - R

fir : D x{0,1} = R
fula.c) = {gk{:r), ife=0

gk () * gr(x0) = gr(x + x0) . if e =1

where x, is chosen by the Client at random from the domain of g,

(Ky,tr, ) +8Geng(1™)
(kQ, tkg) 3 GEﬂg [1”)
k' = (ky, k2)

th = (thy, thy)

(k. t1,) s Geng(1™)

i iy +—s D \ {0}
K = (b, gu(z0))
ty == (tk, Zo)



Learning With Errors
» LWE problem (Regev, 2005, Godel Prize 2018):

» Given s € Zg, the task is to distinguish between a set of polynomially many “noisy” random
linear combinations of the elements of s and a set of polynomially many random numbers
from Z,.

q

» Decisional LWE:
» | Pr [A(AsTA+e")=1] - ., Pr. [A (A b) = 1] | = negl(n), for any QPT adversary A

seZq
Aezgm" beZ?
e—x™m

» Search LWE:
» Pr [A(AsTA+e") =s] =negl(n), forany QPT adversary A

s<Lqg
AeZg*™

e—xy™m



Learning With Errors
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LWE problem (Regev, 2005, Godel Prize 2018):

Given s € Zg, the task is to distinguish between a set of polynomially many “noisy” random

linear combinations of the elements of s and a set of polynomially many random numbers
from Z,.
q

Decisional LWE:
» | Pr [A(AsTA+e")=1] - ., Pr. [A (A b) = 1] | = negl(n), for any QPT adversary A

seZq
APZQ“" beZ?
e—x™m

Search LWE:
» Pr [A(As"TA+e") =s] =negl(n), forany QPT adversary A

s<Lqg
AeZg*™

e—ym
Regev (2005) and Peikert (2009) have proven quantum and classical reductions from average
case LWE to problems as approximating the length of the shortest vector or the shortest

independent vectors problem in the worst case - conjectured to be hard for quantum
computers.
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LWE problem (Regev, 2005, Godel Prize 2018):

Given s € Zg, the task is to distinguish between a set of polynomially many “noisy” random

linear combinations of the elements of s and a set of polynomially many random numbers
from Z,.
q

Decisional LWE:
» | Pr [A(AsTA+e")=1] - ., Pr. [A (A b) = 1] | = negl(n), for any QPT adversary A

s<—Zq
Aezgxm b<—Z}’7”
e—x™m

Search LWE:
» Pr [A(As"TA+e") =s] =negl(n), forany QPT adversary A

s<Lqg
AeZg*™

e—xy™m
Regev and Peikert have proven quantum and classical reductions from average case LWE to
problems as approximating the length of the shortest vector (SVP) or the shortest
independent vectors problem (SIVP) in the worst case - conjectured to be hard for
quantum computers.

As f; kn
S Iar as we Xnow, Injective: given (A,sTA +e”),

Search LWE: trivial LWE is hard
(even as hard as SIS) there is a unique solution (s, e)

m =1 m=n m=Q(n), m>>n



Injective, homomorphic, quantum-safe, trapdoor one-way function

Construction based on the Micciancio and Peikert trapdoor function (Eurocrypt ‘12)
- derived from the Learning With Errors problem:

gk Lq X Y™ = Lg
gk (s,e) = Ks +emod q

1

where K « Zg"" and e; € y if |e;)| < u = ;



Homomorphic property

» gk(s,e) + gix(sg,ep) modqg = (Ks +e +Ksy +ey) mod g =gK((S + so) mod q,e + e,




Homomorphic property

» gk(s,e) + gix(sg,ep) modqg = (Ks +e +Ksy +ey) mod g =gK((S + sy) mod q,e + eo)
» Issue: domain of g, imposes that each component of e + e, must be bounded by u !

» Otherwise, we will just have 1 preimage;



Homomorphic property

gk(s,e) + gk(sg,eg) modq = (Ks +e +Ksqy +ey) modq = gK((S + sy) mod q,e + eo)
Issue: domain of g, imposes that each component of e + e, must be bounded by u !
Otherwise, we will just have 1 preimage;

To solve this:

» We are sampling e, from a smaller set, such that when added with a random input e, the total
noise e + e, is bounded by u with high probability;

» We showed that if ¢, is sampled such that it is bounded by y’ = %, then e + ¢ lies in the domain
of the function with constant probability E=) f is 2-regular with constant probability

» However, what we must show is that when e, is restricted to this smaller domain gk (s, ey) is still
hard to invert.
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Homomorphic property

gk(s,e) + gk(sg,eg) modq = (Ks +e +Ksqy +ey) modq = gK((S + sy) mod q,e + eo)
Issue: domain of g, imposes that each component of e + e, must be bounded by u !
Otherwise, we will just have 1 preimage;

To solve this:

» We are sampling e, from a smaller set, such that when added with a random input e, the total
noise e + e, is bounded by u with high probability;

» We showed that if ¢, is sampled such that it is bounded by y’ = %, then e + ¢ lies in the domain
of the function with constant probability mm) f is 2-regular with constant probability

» However, what we must show is that when e, is restricted to this smaller domain gk (s, ey) is still
hard to invert.

Finally, we show there exists an explicit choice of parameters such that both g and the
restriction of g to the domain of e, are one-way functions and such that all the other
properties of g are preserved.



Malicious QFactory
Function Construction




This function is hard 2 preimages for any
to invert. element in Im(f)

\/

[ Functions {fi} J

Trapdoor Collision resistant
except if you have the Without ’fhe trapdc?or tr,
trapdoor t;, associated hard to find x # x

k —_ r
to the index function k o such that f;. (x) = fi(x)

Jr: D = R injective, homomorphic, quantum-safe,
trapdoor one-way;

fi:Dx{0,1} >R

_ gk(x)r lf c=0
fill,e) = () * gi(xo) = gr(x + x),if c =1

as the same domain as g
and outputs a single bit.

Hardcore Predicate

When x is sampled
uniformly at random,

it is hard to distinguish
h;(x) from a random bit.

T

[ Functions {h;} ]

~

Homomorphic

hy(x) @ hy(xz)

= hy(xz — x1)




Malicious QFactory functions

» “QHBC” functions:
gk Ly X x™ = LY fir 2 Zg % x™ x{0,1} > Z§
$
K «Zg™" K' = (K, gx(so, €o))

gK(s,e) = Ks + e mod q fK’(Srerc) - gK(sre) tc- gK(SO; 80)




Malicious QFactory functions

» “QHBC” functions:
gk 1 Lq X x™ = Lg
K izmxn
q

Jx(s,e) = Ks + emod q

» “Malicious” functions:
gk Ly x x™ x{0,1} - Zg
gk (s,e,d) = gg(s,e) +d-vmodq

fier + Ly X x™ x{0,1} - Z§

K'= (K' g_K(Sor 60))
fri(s,e,c) = gig(s,e) +c- gglso, €o)

frr 2 Zg x x™ x{0,1} x {0,1} - Zg'

fx'(s,e,d,c) = gg(s,e,d) + c - gg(so, eo, do)




Construction of the function h

> gk Zg X x™x{0,1} - Z7
)modq

o onNn|x

gk (s,e,d) = gg(s,e)+d-vmodq=Ks+e+d- (




Construction of the function h

> gk Zgx x™x{0,1} - Zg
)modq

gk(s,e,d) = gg(s,e)+d-vmodq=Ks+e+d- (

o: oNn|Q

» h: Zgxxy™x{0,1} > {0,1}
h(s,e,d) =d




Construction of the function h

> gk Zgx x™x{0,1} - Zg

a
2
gk(s,e,d) = gg(s,e)+d-vmodq=Ks+e+d-| 0| modq
0
» h: Zgxxy™x{0,1} > {0,1}
h(s,e,d) =d
Properties of g
1. Homomorphic:
> 9k (s1,€1,d1) + gi (52, €5,d3) = gi(sy,e1) +dy - v + gi(sy,€2) +dy - v mod q =

Jx(s1 +s,mod q,e; +ey)+(dy+dy) - v modq = gg(s; +s, mod q,e; +e,,d, D dy)




Construction of the function h

> gk Zgx x™x{0,1} - Zg

a
2
gk(s,e,d) = gg(s,e)+d-vmodq=Ks+e+d-| 0| modq

0

» h: Zgxxy™x{0,1} > {0,1}

h(s,e,d) =d

Properties of g

1. Homomorphic:

> 9k (s1,€1,d1) + gi (52, €5,d3) = gi(sy,e1) +dy - v + gi(sy,€2) +dy - v mod q =

Jx(s1 +s,mod q,e; +ey)+(dy+dy) - v modq = gg(s; +s, mod q,e; +e,,d, D dy)

2. One-way:
> Reduction to the one — wayness of gg:

To invert y = gg(s,e) :
$
d < {0,1}
y ey+d-v
(s, e',d") « Ak (Y")
return (s, e")




Construction of the function h

> gk Zgx x™x{0,1} - Zg

gk(s,e,d) = gx(s,e)+d-vmodq=Ks+e+d- mod q

Properties of g

3. Injective:
» Suppose 3 (s1,e1,d1), (2, €2,d3) s.t. gg(s1,e1,d1) = gk (sz, €2, d3)
» gk (s, e1) — gi(sz,ez) + (dy —dy) - v =0mod q
~ 1f dy = d; then gig(sy,e1) = gg(sz,€2) = 51 =53,e1 =€, «




Construction of the function h

> gk Zgx x™x{0,1} - Zg

q
2
Jx(s,e,d) = gg(s,e)+d-vmodgq=Ks+e+d-| 0 | modq
Properties of g o
3. Injective:
» Suppose 3 (s1,eq,d1), (52, €2,d3) s.t. gk(sy,e1,d1) = gk (52, e2,d3)
~ gr(s1,e1) — g (sz,e3) + (dy —dy) - v=0mod q
> If dl = dz then g_K(Sl,el) = g_K(SZ' ez) =51 =8y,e1 =€ «
q
2
s Ifdy #dy = gx(sy,e1) —Jx(sael) =v & K(s; —s))+(e; —ey)=| 0 | modq (¥)
0
K, e’ () (K51 —sp)+e =1 €y
>K=(_),e1—ez=e=(_) = _ 2
K e K(51—52)+e_=0 (2)
» But gg is also injective (g is injective V m = Q(n))
2
(:2 S1 =5
W , q , q
=e' = But |e'| = |ey1 —ez1| < |ewal + leas| < 5

Contradiction




Construction of the function h

> gk Zg X x™ x{0,1} - Zg

gx(s,e,d) = gg(s,e)+d-vmodq=Ks+e+d- mod q

» h: Zgxxy™x{0,1} > {0,1}
h(s,e,d) =d

Properties of h

7. Homomorphic h(x;) @ h(xy) = h(xz — x1)
> h(Sl, el,dl) @ h(Sz,ez, dz) = d1 @ dz = h(SZ -5 mod q,e; —eéeq, dz @ dl)




Construction of the function h

> gk Zg X x™ x{0,1} - Zg

gx(s,e,d) = gg(s,e)+d-vmodq=Ks+e+d- mod q
» h: Zgxxy™x{0,1} > {0,1}
h(s,e,d) =d

Properties of h

7. Homomorphic h(x;) @ h(xy) = h(xz — x1)
> h(Sl, el,dl) @ h(Sz,ez, dz) = d1 @ dz = h(SZ -5 mod q,e; —eéeq, dz @ dl)

2. Hardcore predicate (wrt g):
»  Given (K, gk(s,e,d)) is hard to guess d
»  Hard to distinguish: D, = {K,Ks + e} and D, = {K,Ks + e + v}

(o4 u
»  Fromdecisional LWE:D; = {K,u},u« 1y

. . Cc Cc
» visa fixed vector:D, = {K,u} = D,




Summary and Future work

QFactory: simulates quantum channel from classical channel;

Solve blind delegated quantum computations using quantsrr<ctient — classical
client;

Protocol is secure in the malicious setting;

Several extensions of the protocol can be achieved, including classical verification
of quantum computations;



Summary and Future work

» QFactory: simulates quantum channel from classical channel;

> S?lve blind delegated quantum computations using quantus-etient — classical
client;

» Protocol is secure in the malicious setting;

» Several extensions of the protocol can be achieved, including classical verification
of quantum computations;

Next:

> Imlprove the efficiency of the QFactory protocol, by looking at other post-quantum
solutions;

» Prove the security of the QFactory module in the composable setting;
» Explore new possible applications (e.g. multiparty quantum computation).



1) “On the possibility of classical client blind quantum computing” (AC, Colisson, Kashefi, Wallden)
» https://arxiv.org/abs/1802.08759, QCrypt ‘18.
2) “QFactory: classically-instructed remote secret qubits preparation” (AC, Colisson, Kashefi, Wallden)
» https://arxiv.org/abs/1904.06303

Thank you!
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