Verifying commuting quantum computations via fidelity estimation of weighted graph states

Masahito Hayashi1,2,3

1: Graduate School of Mathematics, Nagoya University
2: Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology
3: Centre for Quantum Technologies, National University of Singapore

Collaborator: Y. Takeuchi, (T. Morimae, H. Zhu)

arXiv:1902.03369
Contents

• Why verification of weighted graph state?
• Verification of two-colorable graph state
• Verification of multiple-colorable graph state
• Verification of weighted graph state
• Application to quantum supremacy
• Conclusion
How can we demonstrate quantum supremacy?

Quantum supremacy: A task that can be realized by quantum computer but cannot be realized by classical computer.

Solving factorization via Shor’s algorithm by using quantum computer

However, there is no guarantee that *no classical algorithm realizes the same performance as Shor’s algorithm.*

This type of supremacy depends on the above conjecture.
Another idea for Quantum supremacy

More convinced conjecture (Conjecture 1):

Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be uniformly random degree-three polynomial over \(\mathbb{F}_2 \).

It is \#P-hard to approximate \(\left(\frac{\text{gap}(f)}{2^n} \right)^2 \) up to a multiplicative error of \(1/4 + o(1) \) for a 1/24 fraction of polynomials \(f \).

\[
\text{gap}(f) := | \{ x : f(x) = 0 \} | - | \{ x : f(x) = 1 \} |
\]

Bremner, Montanaro, and Shepherd

More people convinc this conjecture.
Another idea for Quantum supremacy

The polynomial-time hierarchy (PH): a hierarchy of complexity classes,

\[0^{th} \text{ PH} \subset 1^{st} \text{ PH} \subset 2^{nd} \text{ PH} \subset 3^{rd} \text{ PH} \subset \ldots \text{ nth PH} \quad ...

Another more convinced conjecture (Conjecture 2): The PH does not collapse to its third level.

\[0^{th} \text{ PH} \subset 1^{st} \text{ PH} \subset 2^{nd} \text{ PH} \subset 3^{rd} \text{ PH} = n^{th} \text{ PH} \quad \]

More people convince this conjecture.
How can we demonstrate quantum supremacy?

Theorem: Assume Conjectures 1 and 2 are true. There exists an IQP circuit whose diagonal gate D is composed of Z, C-Z, and CC-Z gates such that its output probability distribution cannot be classically simulated in polynomial time, within an error 1/192 in l1 norm.

Quantum Supremacy: Realization of the output state any IQP circuit whose diagonal gate D is composed of Z, C-Z, and CC-Z gates within an error 1/192 in l1 norm.

How to verify such output state

The output state of such an IQP circuit is given as a weighted graph state.

\[|+\rangle := \left(|0\rangle + |1\rangle \right) / \sqrt{2} \]

Graph state:

\[
\bigg[\bigwedge_{(j,k) \in E} CZ_{j,k} \bigg]|+\rangle^\otimes n
\]

\[
CZ_{j,k} := |0\rangle\langle 0|_j \otimes I_k + |1\rangle\langle 1|_j \otimes Z_k
\]

Weighted graph state:

\[
\bigg[\bigwedge_{(j,k) \in E} \Lambda_{j,k}(\theta_{j,k}) \bigg]|+\rangle^\otimes n
\]

\[
\Lambda_{j,k}(\theta_{j,k}) := |0\rangle\langle 0|_j \otimes I_k
\]

\[+ |1\rangle\langle 1|_j \otimes \left(|0\rangle\langle 0|_k + e^{i\theta_{j,k}} |1\rangle\langle 1|_k \right) \]

It is sufficient to verify a weighted graph state!
How to construct graph state

(1) For each vertex, we set the qubit system to

\[
|+\rangle := \frac{|0\rangle + |1\rangle}{\sqrt{2}}
\]

(2) Apply controlled \(Z\)

\[
CZ := |0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes Z
\]

to the two-qubit systems connected by edges

\[
Z := |0\rangle \langle 0| - |1\rangle \langle 1|
\]
Concepts of Verification (same as QKD)

Detectability: State and measurement should be rejected when they are not properly prepared. This condition is needed for guaranteeing the precision of computation outcome when the test is passed.

Significance level β is the maximum passing probability with incorrect state or measurements (e.g. 5%)

Fidelity between the resultant state and target state with significance level β

Acceptability: State and measurement should be accepted when they are properly prepared.

This condition is needed to accept the proper computation outcome.

Acceptance probability α is the passing probability with correct state and measurements
Verification of two-colorable graph state

Since we perfectly trust measurement, it is sufficient to verify only the two-colorable (Black and White) graph state $|G\rangle$ by local measurements.

In two-colorable state, the Z values on one color sites decide the X values on the other color sites.

Our verification:
We check whether X outcomes equal the prediction.

MH, Morimae 2015
Verification of two-colorable graph state

Random choice

N' copies

$|G\rangle \otimes 2^{N'} + 1$

or

incorrect state

N' copies

1 copy

Stabilizer test

Z on Black X on White

Z on White X on Black

Computation
Verification of two-colorable graph state

Once $2N'$ tests are passed, the state σ of the resultant system satisfies

$$\langle G | \sigma | G \rangle \geq 1 - \frac{1}{\beta (2N' + 1)}$$

with significance level β. The state $|G\rangle^{\otimes 2N' + 1}$ passes at least with probability 1.

With significance level β, the probability being incorrect computation outcome is less than $1 / \sqrt{\beta (2N' + 1)}$.
Verification of m-colorable graph state

It is natural to apply the cover protocol to N systems.

Cover protocol:

(1) We randomly choose one color with equal prob $1/m$.
(2) We measure node whose color is not the chosen color with Z basis.
(3) We measure node whose color is the chosen color with X basis.

To evaluate the performance of the above protocol, we need to prepare a general theory.
General theory for verification

\(\Omega \) is a POVM element. \(\Omega |G\rangle = |G\rangle \)

Assume that we apply the measurement \(\{\Omega, I - \Omega\} \) to \(N \) systems.

Theorem:
Once \(N \) tests are passed, the state \(\sigma \) of the resultant system satisfies

\[
\langle G | \sigma | G \rangle \geq 1 - \frac{1 - \beta}{N \beta \nu(\Omega)}
\]

with significance level \(\beta (\geq \frac{1}{N \nu(\Omega) + 1}) \)

\(\nu(\Omega) := 1 - \|\Omega - |G\rangle \langle G|\| \)

Zhu MH arXiv:1806.05565
Verification of m-colorable graph state

Once N tests are passed, the state σ of the resultant system satisfies

$$\langle G | \sigma | G \rangle \geq 1 - \frac{m(1 - \beta)}{N \beta}$$

with significance level β.

The state $|G\rangle^{\otimes N+1}$ passes at least with probability 1.
Adaptive verification of m-colorable weighted graph state with perfect match

(1) We randomly choose one color with equal prob $1/m$.

(2) We measure node whose color is not the chosen color with Z basis. $Z_l : \text{Outcome}$

(3) We measure node l whose color is the chosen color with basis \{ $\alpha_k (Z_l)$, $\alpha_k (Z_l) + \pi$ \}

$|\alpha\rangle := \frac{1}{\sqrt{2}} (|0\rangle + e^{i\alpha} |1\rangle)$
Adaptive verification of m-colorable weighted graph state with perfect match

Once N tests are passed, the state σ of the resultant system satisfies

$$\langle G | \sigma | G \rangle \geq 1 - \frac{m(1 - \beta)}{N \beta}$$

with significance level β.

The state $\left| G \right> \otimes^{N+1}$ passes at least with probability 1.
Adaptive verification of m-colorable weighted graph state with imperfect match

1. We randomly choose one color with equal prob $1/m$.

2. We measure node whose color is not the chosen color with Z basis. $Z_l : \text{Outcome}$

3. We measure node l whose color is the chosen color with basis $\{ |\alpha^h_k(Z_l)\rangle, |\alpha^h_k(Z_l) + \pi\rangle \}$

$|\alpha^h_k(Z_l)\rangle : \text{One of } |\frac{\pi}{h}\rangle, |\frac{2\pi}{h}\rangle, \ldots, |\frac{2\pi h}{h}\rangle$

$| \alpha^h_k(Z_l) - \alpha^h_k(Z_l) | < \frac{\pi}{h} \quad h : \text{No. of meshes}$
Adaptive verification of m-colorable weighted graph state with imperfect match

Once N tests are passed, the state σ of the resultant system satisfies

$$\langle G | \sigma | G \rangle \geq 1 - \frac{m(1 - \beta)}{N \beta} - n \sin \frac{\pi}{4h}$$

with significance level β.

The state $|G \rangle^{\otimes N+1}$ passes at least with probability

$$(1 - \sin^2 \frac{\pi}{4h})^{N \max_{l} |A_l|}$$
Non-adaptive verification of \(m \)-colorable weighted graph state with perfect match

1. We choose one color with equal prob \(\frac{1}{m} \).
2. We measure node whose color is not the chosen color with \(Z \) basis. \(Z_1 : \text{Outcome} \)
3. We measure node \(l \) whose color is the chosen color with basis \(\{ \frac{\pi j}{h}, \frac{\pi j}{h} + \pi \} \). \(J : \text{Outcome} \)

Here, \(j \) is chosen with equal prob \(\frac{1}{h} \).

\(|\alpha^h(z_1)\rangle \) is always one of \(|\frac{\pi}{h}\rangle, |\frac{2\pi}{h}\rangle, \ldots, |\frac{2\pi h}{h}\rangle \)

4. We reject only when outcome is \(\alpha_k(Z_1) + \pi \)
Non-adaptive verification of m-colorable weighted graph state with perfect match

Once N tests are passed, the state σ of the resultant system satisfies

$$\langle G | \sigma | G \rangle \geq 1 - \frac{m(1 - \beta)h}{N \beta}$$

with significance level β.

The state $|G\rangle^{\otimes N+1}$ passes at least with probability 1.
Non-adaptive verification of m-colorable weighted graph state with imperfect match

1. We randomly choose one color with equal prob $1/m$.
2. We measure node whose color is not the chosen color with Z basis. $Z_i : \text{Outcome}$
3. We measure node l whose color is the chosen color with basis $\{ \frac{\pi j}{h}, \frac{\pi j}{h} + \pi \}$. $J : \text{Outcome}$

Here, j is chosen with equal prob $1/h$.

4. We reject only when $|\alpha_k(Z_i) - \frac{\pi J}{h}| > \pi - \frac{\pi}{h}$
Non-adaptive verification of m-colorable weighted graph state with imperfect match

Once N tests are passed, the state σ of the resultant system satisfies

$$\langle G | \sigma | G \rangle \geq 1 - \frac{m(1 - \beta)h}{N \beta} - n \sin \frac{\pi}{4h}$$

with significance level β.

The state $|G\rangle^{\otimes N+1}$ passes at least with probability

$$(1 - \sin^2 \frac{\pi}{4h})^{N \max_i |A_i|}$$
Application to Quantum Supremacy via IQP circuit

Assume Conjectures 1 and 2 are true. There exists an output state $|G_{\text{IQP}}\rangle$ of IQP circuit whose diagonal gate D is composed of Z, $C-Z$, and $CC-Z$ gates satisfying the following.

No distribution Q on the n-bit system satisfies the following:

- Q can be classically simulated in polynomial time for n.
- $\|Q - Q_G\|_1 < 1/192$ \hspace{1cm} $Q_G(z) := |\langle z | G_{\text{IQP}} \rangle|^2$
Application to Quantum Supremacy via IQP circuit

We set

\[N = \frac{8 \cdot 192^2 \cdot n(1 - \beta)}{\beta} \]

\[h = 2 \]

\[\theta_{j,k} = \frac{\pi}{2} \]

\[m = n \]

\(n \): Size of IQP circuit

Once \(N \) tests are passed, we apply the measurement on \(Z \) to the resultant system.

Then, the output distribution \(Q' \) satisfies

\[\left\| Q' - Q_G \right\|_1 < \frac{1}{192} \]

\[Q_G(z) := \left| \left\langle z \left| G_{\text{IQP}} \right\rangle \right|^2 \]

with significance level \(\beta \).
Conclusion

• We have proposed a method to verify weighted graph state.
• We applied the result to quantum supremacy via IQP circuit.
• The required number of sampling is only linear for the size of circuit.
References

- MH Takeuchi, arXiv:1902.03369