

Majorana dimers and holographic quantum error-correcting codes [arXiv:1905.03268]

A. Jahn, M. Gluza, F. Pastawski, J. Eisert

Dahlem Center for Complex Quantum Systems Freie Universität Berlin, 14195 Berlin, Germany

Kyoto, June 12, 2019

AdS/CFT correspondence

The general idea:

 \sim

Gravity in d + 1 dimensions, weakly coupled

(Antoniadis et al., Science 340 (2013))

QFT in *d* dimensions, strongly coupled

⁽STAR detector image, Brookhaven RHIC)

The more specific idea:

- J. M. Maldacena, "The Large N limit of superconformal field theories and supergravity," Adv. Theor. Math. Phys. 2 (1998) 231.
- E. Witten, "Anti-de Sitter space and holography," Adv. Theor. Math. Phys. 2 (1998) 253.

AdS/CFT correspondence

Key features:

- Einstein gravity on $AdS_{d+1} \leftrightarrow$ conformal field theory (CFT_d)
- ▶ AdS_{*d*+1} boundary = CFT_{*d*} spacetime
- Bulk dynamics \equiv boundary dynamics ($Z_{AdS} = Z_{CFT}$)
- Features quantum error-correction of bulk information

Tensor networks

Quantum state on N physical sites as a tensor T:

$$|\psi\rangle = \sum_{j_1,\dots,j_N=0,1} T_{j_1,\dots,j_N} |j_1,\dots,j_N\rangle$$

Simple ansatz for T: Contraction over a product of tensors

Network structure of contracted tensor indices \equiv **Entanglement structure** of the quantum state

Tensor networks + AdS/CFT

Tensor network holography:

Mapping between **bulk** tensor content and **boundary** state

bulk geometry \equiv tensor network structure boundary regions \equiv open tensor indices

The hyperbolic pentagon code (HyPeC)

Tensor network for holographic quantum error correction*:

Hyperbolic pentagon tiling of *perfect tensors* corresponding to encoding isometry of [[5, 1, 3]] quantum error-correcting code.

* F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, JHEP 1506, 149 (2015).

The hyperbolic pentagon code (HyPeC)

HyPeC properties:

- Each pentagon tile encodes a logical qubit
- Entire network encodes bulk qubits on boundary
- Logical qubit reconstructable from *different* boundary regions

$HyPeC \rightarrow Majorana \ dimers$

Pentagon logical state is spanned by basis states $\overline{0}$ and $\overline{1}$. These states are characterized by *Majorana dimers*^{*}:

Each **arrow** between Majorana modes $j \rightarrow k$ defines an **operator** $\gamma_i + i \gamma_k$ that annihilates the total state.

What happens during tensor contraction of dimer states?

* B. Ware et al., Phys. Rev. B 94, 115127 (2016).

$\mathsf{HyPeC} \to \mathsf{Majorana}\ \mathsf{dimers}$

Dimer state contraction \equiv "Fusing" of dimers along edges!

Applied to basis-state HyPeC: Geodesic structure of dimers

On boundary: Average **polynomial** 1/d decay of correlations!

HyPeC \rightarrow Majorana dimers

General HyPeC: Local **superpositions** of $\overline{0}$ and $\overline{1}$ inputs:

Contraction of *n* tiles \equiv sum of 2^n Majorana dimer states $|\psi_k\rangle$. But: $\langle \psi_j | \gamma_a \gamma_b | \psi_k \rangle \propto \delta_{j,k}$. 2-point functions become easy!

10/14

$\mathsf{HyPeC} \to \mathsf{Majorana}\ \mathsf{dimers}$

Entanglement between regions mediated by dimers:

Realizes holographic *Ryu-Takayanagi*¹ formula

$$S_A = \frac{|\gamma_A|}{4G_N}$$

with the minimal bulk geodesic γ_A .

Resemblance to the holographic *bit thread*² proposal!

¹ S. Ryu and T. Takayanagi, Phys. Rev. Lett. **96**, 181602 (2006).

² M. Freedman and M. Headrick, Commun. Math. Phys. **352** (2017) no.1, 407.

$HyPeC \rightarrow Majorana \ dimers$

(with a boundary of L = 2605 sites)

 \Rightarrow CFT-like logarithmic scaling with central charge $c \approx 4.2$

Quasiregular symmetries suggest an underlying aperiodic system!

Summary and outlook

Our work

- Diagrammatic notation of Majorana dimers + contractions
- Application to the hyperbolic pentagon code; computation of two-point correlators, entanglement entropies
- Explicit bulk/boundary mapping of Majorana modes

Future directions

- Other models of dimer-based tensor networks
- Entanglement scaling for disjoint regions
- Generalization to other holographic models
- Connection to translation-invariant CFTs (MERA)

Thank you for your attention!

Acknowledgements:

Jens Eisert

Fernando Pastawski

Marek Gluza

Paper available on arXiv:1905.03268

From spins to Majorana modes

Mapping chain of N spins to 2N Majorana modes:

Jordan-Wigner transformation from spin to fermionic operators:

$$\gamma_{2k-1} = (\sigma^z)^{\otimes (k-1)} \otimes \sigma^x \otimes \mathbb{1}^{\otimes (N-k)},$$

$$\gamma_{2k} = (\sigma^z)^{\otimes (k-1)} \otimes \sigma^y \otimes \mathbb{1}^{\otimes (N-k)},$$

In terms of standard fermionic operators f_k and f_k^{\dagger} :

$$f_k = (\gamma_{2k-1} + i\gamma_{2k})/2$$
, $f_k^{\dagger} = (\gamma_{2k-1} - i\gamma_{2k})/2$

Contraction rules for Majorana dimers

Using a lot of Grassmann algebra, we found that Majorana dimer states are closed under contraction. Examples:

Dimers "fuse" under contraction!

Greedy algorithm in dimer language

Reduced density matrix for HyPeC of local dimer superpositions:

