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Outline

We consider classical optimization algorithms to learn / simulate parametrized unitary
transformations generated by two Hamiltonians applied in alternation ( QAOA ).

Gradient Descent algorithms are first order classical methods widely studied in the
machine learning community for convex optimization.

Recently, it was shown that QAOA can be used for universal quantum computation.
S. Lloyd (2018)
Any unitary can be simulated with 242 parameters via the alternating operator method.

S. Lloyd & RM (2019)

Aim : Study the learnability / simulability of unitaries under the alternating operator /
QAOA formalism with gradient descent.



Problem

QAOA Unitary : U(L.T) = e BTN g 1Aty ... g—iBT1 g—iAly

A, B are random matrices of dimension d sampled from the GUE and 2N < d=.

Learning problem
* Given access to a target unitary 2{(¢*, 7*) and knowledge of A.B, can we simulate
by a sequence V(t, 7) = e BTk —idlK .. o—iBT1—iAll ysing gradient descent on all 2K
parameters such that ||U/(i*, 7%) — V(I,7)|| < e ?
What is the time complexity = minimum number of parameters 2K + total number
of gradient descent steps ?

* Suppose U(t*,7*) is a shallow depth unitary (say, depth-4 with parameters t}.7},3.75 ),
can we find a sequence V such that K < O(polylog d) ?



Non-Convex Optimization

QAOA Unitary : U(E, T) = e BN g AN ... g—iBT1o—idl
* The space of the set of unitaries (¢, 7) is in general non-convex.

e Standard gradient descent algorithms do not converge in non-convex spaces.

* Gradient descent usually gets stuck at some local critical point tc; 7c where
[UE,7*) = V(Ee, 7o) > €.



Non-Convex Optimization

* Second order optimization techniques (eg. Newton’s method : calculate Hessian and
then it’s inverse) require,
a) at least O(m?)time for a Hessian matrix of dimension 17

b) fine tuning of hyperparameters.

* Gradient descent methods can be powerful due to their computational efficiency from

the above perspectives.
Require O(m) time to calculate gradients for m parameters, fine tuning not required.

* Can gradient descent optimization enable us to learn paramterized/QAOA unitaries ?



Results so far

QAOA Unitary : M(f: 7) = e—iBTN g—iAtN | p—iBT g—iAt

V(I? 7—:) _ E—iB'rKE—iAtK o E—?’.Bﬂ E—-.iAtl

U (t*, %) = V(I 7| < e

* We find that gradient descent optimization requires at least d? parameters in V to
approximate U(t*.7*) with accuracy € where U(t*.7*) is sampled from a parameter

manifold of dimension < 2 .

The rate of learning increases when gradient descent is done in overparametrized
spaces with dimension = d? .

* We propose a greedy algorithm for learning low-depth U(t,7) in time < 42. However
the success probability of efficient learning in non-convex spaces is not ideal.



Gradient Descent

M{f_': ,].—_*J _ E—iBT_.-.‘rE—fAt_.\r L E—iBTl E—iAtL

V(£ 7) = emBK o—iALK . o=iBT o —iAl

Some basic equations for gradient descent optimization,
Loss function : C(t.7) = |U(t*,7%) = V(L. 7)|
Gradients : Vv:C, V.,.C

Parameter update: t+t—nV,C', 7+ 17 —nV:C

Aim : Optimize C(t,7) to a desired accuracy € .

Learning rate : 1, fixed to a certain value during the entire iteration .

e.g.”7 =0.001



Learning with gradient descent
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Gradient Descent Step

In this work,
Loss Function : C(£,7) = U, 7%) - V(¢,7)|3.
Aim : Learn U(t*,7*) to an accuracy O(107%.d?).

Simulations for 32 dimension target unitaries U/(t¢,7) with 2 /2 or 512 parameters
while varying the number of learning parameters 2K in V.,



Gradient Descent Numerics
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Gradient Descent Step

A “transition’ occurs when gradient descent is performed in the overparameterized
domain, 2K > d? .
The rate of learning increases as we do gradient descent on more parameters beyond d?.



Gradient Descent Numerics (Contd.)
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Underparametrized Overparametrized

a = rate of learning

For the first 200 gradient descent steps, Loss = k (no. of grad. descent steps) ™
The underparametrized models learn u(t*. 7*) following a power law while the

overparametrized models learn faster than the power law.



A Greedy Algorithm for low depth QAOA unitary

—
*

Can we learn low depth U(t*,7*) with << d? parameters ?

Pseudocode : Given access to U(t*, 7*) with A. B known .

1. ay = Initial Loss = Ut ) ~TI|%.

2. Add a layer to T with parameters 1, 71. Cost function = [[U(t*,7%) — e=BTiet4t |3

3. Perform gradient descent on 1, 71to obtain optimized 1,7 .
a, = Updated Loss = |[U(t*,7) — e B 4|3 and a; < a .

4. Add a new layer with parameters t2, 72 to the layer in the previous step. Updated Cost
function = [U(F,7%) — eiBre-idt =BTl —iAtl 2

5. Perform gradient descent on t},7{,%2,72 to obtain optimized t?,7Z,t3,73.
a, = Updated Loss = |[U(f*,7%) — e B el =BT =403 and g, < q; .

6. Repeat the above for n steps till convergence i.e. a,, < €.



Greedy Algorithm Performance

g/g(f: T) = p—iBTN g—iAty | o—iBT p—iAty

V(I? 7—:) _ t.,—iB'rKE—iAtK o E—?’.Bﬂ t.,—-e',Atl

—

Can we learn low depth U(t*, 7*) with << d? parameters ?

Approximating U(t*, 7*) with depth-4 correspondingto n = 2, 3, 4, 5, 6 qubits .

Succeeds in finding a sequence V with at most 20-24 parameters and |[[U(t*, 7%) — V(. 7)| < ¢

Success probability of learning in non-convex spaces is not ideal , between 0.1 and 0.15 .

Usually gets stuck at some local critical point or saddle point .



Learning with random local circuits

A general learning setting
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Motivation : Study many-body dynamics / MBL .
Goal : Learn / Simulate ¢(t*, 7*) with U; V, U, V, ..Uy Vy
without assuming knowledge of A, .

[[] — ¢—tui2ts R e —tuzats ® e —tus6ts
-V, . . . .
V = e WiT1 ) ¢~ W2372 ) ¢~ W45T3 () ¢ W6T4
U u,v are random matrices sampled from GUE.
B V]_ . — — .
J Result : Simulates depth-4 U (i*, 7*) when gradient

} U, descent is done on all d? parameters.
Can the local circuit model simulate low depth
U(t*. 7*) with << ? parameters ? Can it simulate
Haar random unitaries ?



Remarks

QAOA Unitary : yf(t, 7) = e BTN g—iAtN . .. g=iBT1g—iAl

* Numerical simulations of the learnability of #/(*. 7*) with at least 2 parameters by
gradient descent.

* A greedy algorithm for simulating short depth (%, 7*) with << 42 parameters. Success
probability is not ideal.

In progress
* Arigorous justification of the requirement of more than <2 parameters for learning

U(t*, 7*) . Investigate the distribution of critical points in the loss function landscape.
* A local circuit model algorithm that can efficiently simulate low depth #/(¢*, 7*) with

higher success probability than the greedy one.
* Noise resilience of simulating constant depth QAOA unitaries in NISQ devices.



