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EE of singular regions in CFTs: known facts and conjectures

Entanglement entropy in CFTs

Rényi/Entanglement entropy of subregions is intrinsically divergent
for QFTs, “area law” divergence built in.

Luckily, well-defined “uni-
versal terms”. [Even for those, some care must be taken when theory contains
superselection sectors; see Javier’s talk & Horacio’s last lecture; subtlety ignored
here]

Given smooth spatial entangling region V with characteristic length
scale H,

S
(d)
n = bd−2

Hd−2

δd−2 +bd−4
Hd−4

δd−4 +· · ·+

{
b1
H
δ

+ (−1)
d−1

2 suniv
n , (odd d) ,

b2
H2

δ2 + (−1)
d−2

2 suniv
n log

(
H
δ

)
+ b0 , (even d) .

where δ, UV regulator.
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EE of singular regions in CFTs: known facts and conjectures

Universal terms in d = 3, 4
Even d: suniv

n ⇔ logarithmic term, linear combination of local integrals on Σ ≡ ∂V
weighted by theory-dependent “charges”.

d = 4, Σ⇐ smooth surface [Solodukhin; Fursaev]

suniv
n = −

1
2π

[
fa(n)

∫
Σ
R+ fb(n)

∫
Σ
k2 − fc(n)

∫
Σ
W

]
log
(
H

δ

)
where fa(1) = a, fb(1) = fc(1) = c trace-anomaly coefficients. Geometry
and theory dependences factorize term by term.

Odd d: suniv
n ⇔ constant term, no longer controlled by local integral on Σ ≡ ∂V .

Less robust than logarithmic terms⇒May use Mutual Information as a regulator.
[Casini; Casini, Huerta, Myers, Yale]

d = 3, Σ⇐ smooth curve

S
(3)
n = b1

H

δ
− suniv

n

e.g., Σ = S1, then suniv
1 = free energy of CFT on S3 [Casini, Huerta, Myers;

Dowker], non-local quantity. Geometry and theory dependences entangled.
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EE of singular regions in CFTs: known facts and conjectures

Corner entanglement in d = 3

Situation changes when geometric singularities present on Σ. Consider
corner of opening angle Ω on a time slice of a d = 3 CFT,

Scorner
EE = b1

H

δ
− a(3)

n (Ω) log
(
H

δ

)
+ b0

Logarithmic universal term arises, controlled
by a(3)

n (Ω). Vast literature, free fields, lattice
models, holography, etc. [Many people]

Angular and theory dependences do not dis-
entangle (e.g., simple result for holographic
theories [Drukker, Gross, Ooguri; Hirata, Takayanagi] vs
horrendous expressions for free fields [Casini,

Huerta]).
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EE of singular regions in CFTs: known facts and conjectures

Corner entanglement in d = 3
Still, remarkable amount of universality observed [PB, Myers, Witczak-Krempa]

a
(3)
1 (Ω) = σ (Ω− π)2 + . . . , σ =

π2

24
CT (1)

Conjectured to hold ∀ CFTs in d = 3.

Proven! [Faulkner, Leigh, Parrikar]

Stress tensor charge CT provides natural normalization.
Universal lower bound ⇔ a

(3)
1 (Ω) ≥ π2CT

3 log[1/ sin(Ω/2)] [PB, Witczak-Krempa]
Analogous result to (1) for (hyper)-cones in general d. [PB, Myers; Mezei; Miao]
Rényi entropy generalization is trickier...
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EE of singular regions in CFTs: known facts and conjectures

Cone entanglement in d = 4

Fundamentally different from corner, theory dependence completely
disentangled from angular dependence (which is the same for all CFTs)
[Klebanov, Nishioka, Pufu, Safdi]

S(4) cone
n = b2

H2

δ2 − a
(4)
n (Ω) log2

(
H

δ

)
+ b0 log

(
H

δ

)
+ c0

a(4)
n (Ω) = 1

4fb(n)cos2 Ω
sin Ω ∀ CFTs
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EE of singular regions in CFTs: known facts and conjectures

Other singular regions in d = 4

Polyhedral corner of opening angles θ1, θ2, . . . , θj

S(4) polyh.
n = b2

H2

δ2 −w1
H

δ
+vn(θ1, θ2, · · · , θj) log

(
L

δ

)
+O(δ0)

log instead of log2 universal term. vn(θ1, θ2, · · · , θj) conjec-
tured to be controlled by some linear combination of fa(n),
fb(n). [Sierens, PB, Singh, Myers, Melko]

Infinite wedge of opening angle Ω

S(4) wedge
n = b2

H2

δ2 − fn(Ω)H
δ

+O(δ0)

fn(Ω) non-universal overall factor, but based on holographic
and free scalar calculations, ∂Ω

(
fn(Ω)/a(3)

n (Ω)
) (?)= 0

[Klebanov, Nishioka, Pufu, Safdi]
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EE of singular regions in CFTs: New results

2. EE of singular regions in
CFTs: New results
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EE of singular regions in CFTs: New results Vertex-induced universal terms

Vertex-induced universal terms

Setup: free scalar in d-dim. Rényi entropy from Euclidean par-
tition function on Rd for a field which picks up a phase when
entangling region V is crossed. [Casini, Huerta]

Regions emanating from vertices⇒ radial dimensional reduction
possible.

Connect to Rényi entropy in dS(d−1). High-mass expansion of
S

dS(d−1)
n .

Restrict to d = 4, add some salt...

Sn|log2 = −fb(n)
8π log2 δ

∫
γ

k2

where γ ⇔ boundary of area on the surface of S2 resulting from
S3 ∩ V .
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EE of singular regions in CFTs: New results Vertex-induced universal terms

Vertex-induced universal terms

Sn|log2 = −fb(n)
8π log2 δ

∫
γ

k2

For (elliptic) cones, this reproduces
result obtained from Solodukhin’s
formula.

For polyhedral corners, γ are al-
ways great circles⇒ k = 0, no log2

term.

S3 ∩ V ⇔ orange surfaces. γ ⇔ black arcs bounding them.
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EE of singular regions in CFTs: New results Vertex-induced universal terms

Polyhedral corners

S(4) polyh.
n = b2

H2

δ2 − w1
H

δ
+ vn(θ1, θ2, · · · , θj) log

(
L

δ

)
+O(δ0)

Universal function vn(θ1, θ2, · · · , θj) does not arise from log term con-
trolled by Solodukhin’s local-integrals formula. It arises however from
non-local constant piece. Its evaluation for free fields requires full cal-
culation of spectral function on sphere with a cut —fully analogous
to corner in d = 3, very different from cone.
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EE of singular regions in CFTs: New results Wedge entanglement vs corner entanglement

Wedge EE vs corner EE

For free fields, wedge entanglement function f(Ω) computable from
corner entanglement using dimensional reduction...

Result:

f(Ω) = a(Ω) [1 + logαUV]αIR

where αUV = ε/δ, αIR = L/H
are ratios of UV and IR regulators
along the two different directions.

z
L

H

Hr

ε
δ

!

Same angular dependence. Overall factor of f(Ω) ill-defined, polluted
by ambiguous choices of regulators. Ok with [Klebanov, Nishioka, Pufu, Safdi]
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EE of singular regions in CFTs: New results Wedge entanglement vs corner entanglement

Wedge EE vs Corner EE
Einstein gravity bulk ⇒ Ryu-Takayanagi prescription for EE

�����

������

��� ��� ��� ��� ��� ���
�

�

�

�

�

��

Ω/π

��� ��� ��� ��� ��� ���
-����

-����

����

����

����

Ω/π

�
-
�(
Ω
)/
�
(Ω

)

Remarkably close...

But different

a(Ω) Ω→0=
κ

Ω
+ . . . , a(Ω) Ω→π= σ · (Ω− π)2 + . . . ,

κ

σ
= 4Γ

(
3
4

)4
' 9.0198

f(Ω) Ω→0=
κ̃

Ω
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EE of singular regions in CFTs: New results

Intermezzo: EMI model

Computing EE in QFTs is difficult in general...
Usual (semi)-analytic handles

Highly symmetric regions, e.g., (hyper)spheres

Highly symmetric theories, e.g., d = 2 CFTs

Free fields

Holography

Perhaps less known: Extensive Mutual Information model (EMI).
[Casini, Fosco, Huerta; Swingle]
Defining property suggested by its name: I(A,B) + I(A,C) = I(A,B ∪ C) ⇒
Strongly constrains EE and MI expressions.

SEMI = κ

∫
∂A

dd−2r1

∫
∂A

dd−2r2
n1 · n2

|r1 − r2|2(d−2)

Free fermion in d = 2 only theory known to satisfy extensivity property. Still
EMI expressions capture generic features of EE and MI in general dimensions.
Computationally, even simpler than Ryu-Takayanagi formula.
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EE of singular regions in CFTs: New results Singular regions and EE divergences

Finite MI for touching regions

I(A,B) = 4πκ tan(Ω/2) log (L/δ) +O(δ0) for straight corner

I(A,B) = 4πκ
(1−m)

[
L1−m

λ
− 1
λ

1
m δ1− 1

m

]
for curved corner

Divergent for m ≥ 1 but finite for m < 1 ⇒ two regions touching at
a point through a sufficiently sharp corner have non-divergent MI.
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EE of singular regions in CFTs: New results Singular regions and EE divergences

New EE singularities (or lack thereof)

S
(m=1)
EE =

4κH
δ
− a(Ω) log (H/δ) +O(δ0) , a(Ω) = 2κ [1 + (π − Ω) cot Ω]

SEE =
4κH
δ

+O(δ0) , 1/2 ≤ m < 1 .

For 1/2 ≤ m < 1, curvature divergence at the tip, still no additional
EE divergence⇒ Corners less sharp than straight corner do not mod-
ify the EE structure of divergences.
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EE of singular regions in CFTs: New results Singular regions and EE divergences

New EE singularities (or lack thereof)

SEE = 4κH
δ
− 2κπcm
λ

1
m δ1− 1

m

+O(δ0) .

New non-universal divergence (same as for MI). The sharper de corner,
the closer to the area-law one, without ever reaching it.
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Things to remember
Straight lines emanating from vertices produce logarithmic en-
hancement of entanglement divergences with respect to smooth
regions.

d = 3 corner: log δ← from constant term; a(3)
n (Ω) non-local

nature.
d = 4 cone: log2 δ term ← from log δ term; a(4)

n (Ω) local,
controlled by fb(n), angular dependence fully determined.
d = 4 polyhedral corner: Coefficient of log2 δ term vanishes
⇒ remaining log δ arising from constant term, vn(θ1, . . . , θj)
non-local nature.

Wedge entanglement 6= corner entanglement in general.
MI of regions touching through sufficiently sharp needles does
not diverge.
Corners less sharp than straight corners do not modify structure
of divergences of EE. If sharper than straight corners ⇒ new
non-universal divergences approaching area-law.
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A few questions for the future

Actual computation of v(θ1, θ2, θ3) for free fields requires full
evaluation of spectral function on S3 with boundary conditions
on two-dimensional spherical polyhedron. Challenging, perhaps
not particularly illuminating...

Is there an upper bound for the corner function: a(Ω) ≥ a(3)(Ω)
∀ CFTs?

Does the EMI model correspond to any real CFT in d ≥ 3? If
not, what properties does the EMI fail to satisfy? Are there less
restrictive conditions one can impose on the mutual information
leading to interesting models?
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Thank you
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Vertex-induced universal terms
For a free scalar (analogously for free fermion), Rényi entropy com-
putable as [Casini, Huerta]

Sn(V ) = 1
1− n log(Tr ρnV ) = 1

1− n

n−1∑
k=0

logZ[e2πi k
n ]

where Z[e2πia] Euclidean partition function on Rd for a field which
picks up a phase e2πia when entangling region V is crossed.

One can
exploit relation with Green function:

∂m2 logZ[e2πia] = −1
2

∫
Rd

dd~r Ga(~r, ~r) ,

where

(−∇2
~r1

+m2)Ga(~r1, ~r2) = δ(~r1 − ~r2) ,
lim
ε→0+

Ga(~r1 + ε~η, ~r2) = e2πia lim
ε→0+

Ga(~r1 − ε~η, ~r2) , ~r1 ∈ V ,

and ~η is orthogonal to V .
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Vertex-induced universal terms

When boundary conditions implemented along angular directions, we
can dimensionally reduce along radial direction.

Result (up to non-
universal divergences):

∂m2 logZ[e2πia] = 1
4m2 Tr

√
−∇2

Sd−1 + (d− 2)2

4

Spectral function on Sd−1 with boundary conditions on a cut Sd−1∩V
(very difficult to compute in general).
Example: corner of opening angle Ω in d = 3, cut is angular sector
on equatorial S1. If we use spherical coordinates (θ, ϕ), for each mode
we have

lim
ε→0+

Φ`(π/2 + ε, ϕ) = e2πia lim
ε→0+

Φ`(π/2− ε, ϕ) .

For regions emanating from vertices in d = 4, cut on S3 ⇔ certain
area on the surface of a S2.
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Vertex-induced universal terms
Spectral function can be related to analogous Rényi entropy in (d−1)-
dim. de Sitter space (as long as boundary conditions match).

∂m2 logZ
[
dS(d−1)

]
= 1

2 Tr
[

1
∇2

Sd−1 − d(d− 1)g(d)−m2

]
.

Then

Sn|log = − log(δ/L)
π

∫ ∞
0

dm2m
∂S

dS(d−1)
n

∂m2 .

High-mass expansion (valid for m� LdS ≡ 1, UV cutoff δ hidden in
cn,i)

S
dS(d−1)
n = cn,(d−3)m

d−3 + · · ·+ cn,0 +
cn,−1

m + · · ·

Various possible combinations of m, δ and local integrals over en-
tangling surface. All trace of m in divergent terms involving δ must
disappear asm→ 0⇒ terms involving negative powers ofm combined
with δ forbidden.
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Vertex-induced universal terms
Only possible form of cn,−1 in d = 4:

cn,−1 = αn

∫
γ

k2 ,

where γ ⇔ boundary of the entangling region in dS3 ⇔ boundary of
area on the surface of S2 resulting from S3 ∩ V .

Entangling regions in dS3 ⇔ orange surfaces.
γ ⇔ black curved segments bounding them.
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Vertex-induced universal terms

Local nature of cn,−1 prevents it from feeling the background geometry
curvature ⇒ we can fix αn e.g., using cylinder Rényi entropy in flat
space,

S(dS3)
n |m−1 = fb(n)

8m

∫
γ

k2

Combined with

Sn|log = − log(δ/L)
π

∫ ∞
0

dm2m
∂S

dS(d−1)
n

∂m2 ,

we finally get

Sn|log2 = −fb(n)
8π log2 δ

∫
γ

k2
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Wedge EE vs corner EE
When entangling region takes the form C×RL, dimensional reduction
possible for free fields. d-dim. field ⇔ ∞ (d − 1)-dim. independent
fields of mass M2

k = m2 + (2πk/L)2. [Casini, Huerta]

S
(d)
EE (C × RL) = L

π

∫ 1/ε
dpS

(d−1)
EE (C,

√
m2 + p2)

Let C be a corner region in d−1 =
3. Then,

f(Ω) = a(Ω) [1 + logαUV]αIR

where αUV = ε/δ, αIR = L/H
are ratios of UV and IR regulators
along the two different directions.

z
L

H

Hr

ε
δ

!

Angular dependence agrees. Overall factor of f(Ω) ill-defined, pol-
luted by ambiguous choices of regulators. Agreement with [Klebanov,

Nishioka, Pufu, Safdi]
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possible for free fields. d-dim. field ⇔ ∞ (d − 1)-dim. independent
fields of mass M2

k = m2 + (2πk/L)2. [Casini, Huerta]

S
(d)
EE (C × RL) = L

π

∫ 1/ε
dpS

(d−1)
EE (C,

√
m2 + p2)

Let C be a corner region in d−1 =
3. Then,

f(Ω) = a(Ω) [1 + logαUV]αIR

where αUV = ε/δ, αIR = L/H
are ratios of UV and IR regulators
along the two different directions.
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δ
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Even dimensions

suniv
n ⇔ logarithmic term, linear combination of local integrals on

Σ ≡ ∂V weighted by theory-dependent “charges”.

d = 4, Σ⇐ smooth surface [Solodukhin; Fursaev]

suniv
n = − 1

2π

[
fa(n)

∫
Σ
R+ fb(n)

∫
Σ
k2 − fc(n)

∫
Σ
W

]
log
(
H

δ

)
where fa(1) = a, fb(1) = fc(1) = c trace-anomaly coefficients.
Geometry and theory dependences factorize term by term. Rényi-
index dependence changes from theory to theory.

d = 6, 8, . . . ⇐ similar story (more independent integrals and
charges). [see e.g., Safdi; Miao]
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Odd dimensions

suniv
n ⇔ constant term, no longer controlled by local integral on Σ ≡
∂V . Less robust than logarithmic terms, e.g., one cannot distinguish
H from H + aδ, which pollutes suniv

n ⇒ Use Mutual Information as
regulator [Casini; Casini, Huerta, Myers, Yale]

d = 3
S(3)
n = b1

H

δ
− suniv

n

e.g., Σ = S1, then suniv
1 = free energy F of CFT on S3 [Casini,

Huerta, Myers; Dowker], non-local quantity.

d = 5, 7, . . . ⇐ similar story for suniv
n , analogous connection be-

tween suniv
1 (Sd−2) and F(Sd)
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