Energy Positivity from Holographic Volume Susceptibility

Zachary Fisher

with R. Myers, A. Speranza, W. Wieland

June 18, 2019

Energy conditions from geometry and causality

From bulk causality to boundary energy conditions:

- Average Null Energy Condition
 - ▶ Holographically, from Gao-Wald
- Strong Subadditivity of Entanglement Entropy
 - ▶ From extremality of HRT
 - ▶ Also implies boundary energy conditions
- Quantum Null Energy Condition
 - Holographically, from nesting of entanglement wedges near boundary

Bulk geometry, causality \rightarrow energy positivity relations.

Diagonal and off-diagonal variations

Quantum Null Energy Condition

$$\langle T_{kk}(p) \rangle \ge \frac{\hbar}{2\pi\sqrt{h}} S_{\text{out}}''$$

 $S_{\text{out}} = S_{\text{out}}[X^a]$ is a functional of the coordinates X^a of the entangling surface.

What does S''_{out} mean?

Diagonal and off-diagonal variations

Quantum Null Energy Condition

$$\langle T_{kk}(p) \rangle \ge \frac{\hbar}{2\pi\sqrt{h}} S_{\text{out}}''$$

 $\Sigma_{\text{out}}(\lambda)$

 $S_{\text{out}} = S_{\text{out}}[X^a]$ is a functional of the coordinates X^a of the entangling surface.

What does S''_{out} mean? The second (variational) derivative of S_{out} is a matrix; use a local basis for variations.

- Off-diagonal variations: $\sup(\delta_1 X^a) \cap \sup(\delta_2 X^a) = \emptyset$.
- Diagonal variations: $\delta_1 X^a, \delta_2 X^a \propto \delta(X^a y^a)$ (at same pt).
- S''_{out} means a diagonal variation (in a null direction).

Off-diagonal variations of entanglement entropy

Off-diagonal variations (*entanglement density* or *entanglement susceptibility*) are also interesting:

Entanglement Susceptibility

$$S_{\text{off-diagonal}}''(y_1, y_2) := s^a s^b \left. \frac{\delta^2 S}{\delta X^a(y_1) \delta X^b(y_2)} \right|_{y_1 \neq y_2}$$

Why? Every off-diagonal matrix element is non-positive, because of strong-subadditivity.

Off-diagonal variations of entanglement entropy

Off-diagonal variations (*entanglement density* or *entanglement susceptibility*) are also interesting:

Entanglement Susceptibility

$$S_{\text{off-diagonal}}''(y_1, y_2) := s^a s^b \left. \frac{\delta^2 S}{\delta X^a(y_1) \delta X^b(y_2)} \right|_{y_1 \neq y_2}$$

Why? Every off-diagonal matrix element is non-positive, because of strong-subadditivity.

This can be enough to prove energy conditions in some perturbative cases (involving shockwaves) [Khandker, Kundu, Li].

The famous holographic argument for SSA

[Headrick, Takayanagi]

 $S(AB) + S(BC) \ge S(B) + S(ABC)$

$$\begin{split} S(AB) + S(BC) &\geq S(B) + S(ABC) \\ 0 &\geq S(ABC) - S(AB) - S(BC) + S(B) \\ A, C \text{ tiny perturbations of } B \implies s^a s^b \left. \frac{\delta^2 S}{\delta X^a(y_1) \delta X^b(y_2)} \right|_{y_1 \neq y_2} \leq 0 \end{split}$$

Maximal volume slices

Maximal volume slices are also believed to play an important role in holography, e.g. CV conjecture:

$$\mathcal{C} \sim \frac{V_{\max}}{G_N \ell}$$

Some similar properties to entanglement entropy:

- Leading divergences are local, geometrical
- Obeys nesting
- Strong **super**additivity relation

[Carmi, Myers, Rath; Carmi; Couch, Eccles, Jacobson, Nguyen]

Off-diagonal variations of volume

Perform a similar variation of boundary conditions for maximal volume surfaces.

Holographic Volume Susceptibility

The non-local contribution to the volume at one point, due to variations at another point, as we did for entropy.

$$V_{\text{off-diagonal}}''(y_1, y_2) := t^a t^b \left. \frac{\delta^2 V_{\text{max}}}{\delta X^a_{\partial}(y_1) \delta X^b_{\partial}(y_2)} \right|_{y_1 \neq y_2}$$

Now the maximal volume susceptibility is **positive**, by strong **super**additivity.

Start in AdS vacuum, and inject some energy, perturbatively.

Start in AdS vacuum, and inject some energy, perturbatively. In Fefferman-Graham coordinates,

$$ds^2 = \frac{dz^2 - dt^2 + d\vec{y}^2}{z^2} + h_{\alpha\beta} dx^{\alpha} dx^{\beta}$$

where we will work to first order in $h_{\alpha\beta} = \frac{16\pi G_N}{d} \langle T_{tt} \rangle z^{d-2} + \dots$

Start in AdS vacuum, and inject some energy, perturbatively. In Fefferman-Graham coordinates,

$$ds^2 = \frac{dz^2 - dt^2 + d\vec{y}^2}{z^2} + h_{\alpha\beta} dx^{\alpha} dx^{\beta}$$

where we will work to first order in $h_{\alpha\beta} = \frac{16\pi G_N}{d} \langle T_{tt} \rangle z^{d-2} + \dots$

- Let the maximal volume surface σ be given by $t = T(\vec{y}, z)$.
- Assume time reflection symmetry: T = 0 is our initial maximal volume surface.

Start in AdS vacuum, and inject some energy, perturbatively. In Fefferman-Graham coordinates,

$$ds^2 = \frac{dz^2 - dt^2 + d\vec{y}^2}{z^2} + h_{\alpha\beta} dx^{\alpha} dx^{\beta}$$

where we will work to first order in $h_{\alpha\beta} = \frac{16\pi G_N}{d} \langle T_{tt} \rangle z^{d-2} + \dots$

- Let the maximal volume surface σ be given by $t = T(\vec{y}, z)$.
- Assume time reflection symmetry: T = 0 is our initial maximal volume surface.
- Perturb the boundary conditions $\delta T(\vec{y}, z = 0) \equiv \delta t(\vec{y})$, and expand volume functional around 0:

$$\delta V[\delta t] = \int_{\sigma[\delta t]} \delta \sqrt{H} = \int_{\sigma[\delta t]} (\cdots) \, \delta \, T + \int_{\sigma[\delta t]} (\cdots) \, \delta \, T \, \delta \, T + \dots$$

• Impose e.o.m.: δT drops out, $\delta T \delta T$ term localizes to boundary (Hamilton-Jacobi).

Perturbations around vacuum

Result: Susceptibility in perturbed space

$$\begin{split} \frac{\delta^2 V}{\delta t(y_1) \delta t(y_2)} &= \frac{1}{2} \left(1 - \frac{8\pi G_N}{d} \rho(y_1) z_0^d \right) g(y_1, z | y_2) \\ &+ \frac{1}{4} \int d^{d-1} y \, dz \, z^{2-d} \left(\delta^{ab} h_{tt} + 2 \delta^{ac} \delta^{be} h_{ce} \right) \times \\ &\times \partial_a G(y, z | y_1, z_0) \, \partial_b G(y, z | y_2, z_0) \end{split}$$

(g = bulk-bd'y prop; G = bulk-bulk; $\rho = \langle T_{tt} \rangle, z_0 = \text{cutoff.}$)

First term: diagonal (δ in the limit $z_0 \to 0$). Second term: off-diagonal, $\Longrightarrow \geq 0$. Integrate second term over y_1 to obtain

$$0 \leq \int d^{d-1} y_1 \left(\frac{\delta^2 V}{\delta t(y_1) \delta t(y_2)} \right)_{\text{off-diag}} = z_0^d \frac{8\pi G_N}{d} \rho(y_2) + (\text{subleading})$$

How did we get $\langle T_{tt} \rangle \geq 0$?

• Famously, in all QFTs, \exists states that violate $\langle T_{tt} \rangle \ge 0$.

- ▶ Reflections off moving mirrors
- Hawking radiation
- ▶ Casimir effect

How did we get $\langle T_{tt} \rangle \geq 0$?

• Famously, in all QFTs, \exists states that violate $\langle T_{tt} \rangle \geq 0$.

- ► Reflections off moving mirrors
- ▶ Hawking radiation
- ▶ Casimir effect

• In many cases, violations involve dynamics, so nontrivial to check if WEC is violated in sense of this calculation.

How did we get $\langle T_{tt} \rangle \ge 0$?

- Famously, in all QFTs, \exists states that violate $\langle T_{tt} \rangle \geq 0$.
 - ► Reflections off moving mirrors
 - ▶ Hawking radiation
 - ▶ Casimir effect
- In many cases, violations involve dynamics, so nontrivial to check if WEC is violated in sense of this calculation.
- Casimir effect?
 - Solution: conformal anomaly is subtracted from boundary stress tensor in the Fefferman-Graham expansion
 - ▶ This bound concerns additional excitations above the anomalous (Casimir) energy.

Summary

Holographic volume susceptibility

- A new quantity to study in field theory and holography.
- Strong superadditivity \implies Positivity of susceptibility
- Leads to a geometrical proof of weak energy condition in symmetric cases.

Summary

Holographic volume susceptibility

- A new quantity to study in field theory and holography.
- Strong superadditivity \implies Positivity of susceptibility
- Leads to a geometrical proof of weak energy condition in symmetric cases.

To do

- Relation to [Lashkari, Lin, Ooguri, Stoica, Raamsdonk]?
- Study diagonal terms, à la QNEC. (Complexity density?) Definite sign, related to nesting near boundary, like QNEC?
- Relation to boundary symplectic form?
- Braneworld: bounds on energy density in weak gravity?

Summary

Holographic volume susceptibility

- A new quantity to study in field theory and holography.
- Strong superadditivity \implies Positivity of susceptibility
- Leads to a geometrical proof of weak energy condition in symmetric cases.

To do

- Relation to [Lashkari, Lin, Ooguri, Stoica, Raamsdonk]?
- Study diagonal terms, à la QNEC. (Complexity density?) Definite sign, related to nesting near boundary, like QNEC?
- Relation to boundary symplectic form?
- Braneworld: bounds on energy density in weak gravity?

Thank you!