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Energy conditions from geometry and causality

From bulk causality to boundary energy conditions:
• Average Null Energy Condition

◮ Holographically, from Gao-Wald
• Strong Subadditivity of Entanglement Entropy

◮ From extremality of HRT
◮ Also implies boundary energy conditions

• Quantum Null Energy Condition
◮ Holographically, from nesting of entanglement wedges near

boundary
Bulk geometry, causality → energy positivity relations.



Diagonal and off-diagonal variations

Quantum Null Energy Condition

〈Tkk(p)〉 ≥
󰄁

2π
√

h
S ′′

out

Sout = Sout[Xa] is a functional of the
coordinates Xa of the entangling surface.

What does S ′′
out mean?

The second (variational) derivative of
Sout is a matrix; use a local basis for variations.

• Off-diagonal variations: sup(δ1Xa) ∩ sup(δ2Xa) = ∅.
• Diagonal variations: δ1Xa, δ2Xa ∝ δ(Xa − ya) (at same pt).
• S′′

out means a diagonal variation (in a null direction).
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Off-diagonal variations of entanglement entropy

Off-diagonal variations (entanglement density or entanglement
susceptibility) are also interesting:

Entanglement Susceptibility

S ′′
off-diagonal(y1, y2) := sasb δ2S

δXa(y1)δXb(y2)

󰀏󰀏󰀏󰀏
y1 ∕=y2

Why? Every off-diagonal matrix element is non-positive,
because of strong-subadditivity.

This can be enough to prove energy conditions in some
perturbative cases (involving shockwaves) [Khandker, Kundu,
Li].



Off-diagonal variations of entanglement entropy

Off-diagonal variations (entanglement density or entanglement
susceptibility) are also interesting:

Entanglement Susceptibility

S ′′
off-diagonal(y1, y2) := sasb δ2S

δXa(y1)δXb(y2)

󰀏󰀏󰀏󰀏
y1 ∕=y2

Why? Every off-diagonal matrix element is non-positive,
because of strong-subadditivity.

This can be enough to prove energy conditions in some
perturbative cases (involving shockwaves) [Khandker, Kundu,
Li].



The famous holographic argument for SSA
[Headrick, Takayanagi]

= +

≥ +

S (AB ) + S (BC ) ≥ S (B ) + S (ABC )

0 ≥ S (ABC )− S (AB )− S (BC ) + S (B )

A,C tiny perturbations of B =⇒ sasb δ2S
δXa(y1)δXb(y2)
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y1 ∕=y2

≤ 0
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Maximal volume slices

Maximal volume slices are also believed to play an important
role in holography, e.g. CV conjecture:

C ∼ Vmax
GNℓ

Some similar properties to entanglement entropy:
• Leading divergences are local, geometrical
• Obeys nesting
• Strong superadditivity relation

[Carmi, Myers, Rath; Carmi; Couch, Eccles, Jacobson, Nguyen]



Holographic Volume Superadditivity

= +

= +

≤ +

V1 + V2 ≤ V1+2 + V0

tiny perturbations =⇒ tatb δ2Vmax

δXa(y1)δXb(y2)
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y1 ∕=y2

≥ 0
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Off-diagonal variations of volume

Perform a similar variation of boundary conditions for maximal
volume surfaces.

Holographic Volume Susceptibility
The non-local contribution to the volume at one point, due to
variations at another point, as we did for entropy.

V ′′
off-diagonal(y1, y2) := tatb δ2Vmax

δXa
∂(y1)δXb

∂(y2)

󰀏󰀏󰀏󰀏
y1 ∕=y2

Now the maximal volume susceptibility is positive, by strong
superadditivity.



Example: Perturbations around vacuum
Start in AdS vacuum, and inject some energy, perturbatively.

In Fefferman-Graham coordinates,

ds2 = dz2 − dt2 + d󰂓y2

z2
+ hαβdxαdxβ

where we will work to first order in hαβ = 16πGN
d 〈Ttt〉 zd−2 + . . . .

• Let the maximal volume surface σ be given by t = T(󰂓y, z).
• Assume time reflection symmetry: T = 0 is our initial

maximal volume surface.
• Perturb the boundary conditions δT(󰂓y, z = 0) ≡ δt(󰂓y), and

expand volume functional around 0:

δV[δt] =
󰁝

σ[δt]
δ
√

H =

󰁝

σ[δt]
(· · · ) δT +

󰁝

σ[δt]
(· · · ) δT δT + . . .

• Impose e.o.m.: δT drops out, δTδT term localizes to
boundary (Hamilton-Jacobi).
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Perturbations around vacuum

Result: Susceptibility in perturbed space

δ2V
δt(y1)δt(y2)

=
1

2

󰀕
1− 8πGN

d
ρ(y1)zd

0

󰀖
g(y1, z|y2)

+
1

4

󰁝
dd−1y dz z2−d (δabhtt + 2δacδbehce)×

×∂aG(y, z|y1, z0) ∂bG(y, z|y2, z0)

(g = bulk-bd'y prop; G = bulk-bulk; ρ = 〈Ttt 〉, z0 = cutoff.)

First term: diagonal (δ in the limit z0 → 0).
Second term: off-diagonal, =⇒ ≥ 0.
Integrate second term over y1 to obtain

0 ≤
󰁝

dd−1y1
󰀕

δ2V
δt(y1)δt(y2)

󰀖

off-diag
= zd

0

8πGN
d

ρ(y2) + (subleading)



How did we get 〈Ttt 〉 ≥ 0?

• Famously, in all QFTs, ∃ states that violate 〈Ttt 〉 ≥ 0.
◮ Reflections off moving mirrors
◮ Hawking radiation
◮ Casimir effect

• In many cases, violations involve dynamics, so nontrivial to
check if WEC is violated in sense of this calculation.

• Casimir effect?
◮ Solution: conformal anomaly is subtracted from boundary

stress tensor in the Fefferman-Graham expansion
◮ This bound concerns additional excitations above the

anomalous (Casimir) energy.
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Summary
Holographic volume susceptibility

• A new quantity to study in field theory and holography.
• Strong superadditivity =⇒ Positivity of susceptibility
• Leads to a geometrical proof of weak energy condition in

symmetric cases.

To do
• Relation to [Lashkari, Lin, Ooguri, Stoica, Raamsdonk]?
• Study diagonal terms, à la QNEC. (Complexity density?)

Definite sign, related to nesting near boundary, like QNEC?
• Relation to boundary symplectic form?
• Braneworld: bounds on energy density in weak gravity?

Thank you!
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