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AdS/CFT after 21 years

String theory (gravity) < field theory (no gravity)
"In bulk”™ = higher dimensions “on boundary” = lower dimensions

describes gravitating systems, e.g. black holes describes experimentally accessible systems

Invaluable tool to:

~ Study strongly interacting field theory (hard, but describes many systems)
by working with higher-dimensional gravity on AdS (easy).

~ Study quantum gravity In AdS (hard, but needed to understand spacetime)
by using the field theory (easy for certain things)



{ Pre-requisite: }

VWe need to understand the AdS/CFT dictionary...

 How does bulk spacetime emerge from the CF 17

o Which CFT quantities give the bulk metric?
» What determines bulk dynamics (Einstein’'s eq.)!
» How does one recover a local bulk operator from CFT quantities!

° What part of bulk can we recover from a restricted CFT info?

o What bulk region does a CFT state (at a given instant in time) encode!
o What bulk region does a spatial subregion of CFI state encode!

* (How) does the CFT “see” inside a black hole?

o Does it unitarily describe black hole formation & evaporation process!
o How does It resolve curvature singularities?

Recent hints / expectations: entanglement plays a crucial role...



[ -ntanglement entropy J

° Entanglement

o Most non-classical manifestation of QM

o Quantum resource for performing tasks which can't be performed
using classical resources

o Plays increasingly central role in Quantum Information, Q. many body
systems, QFT & even QG

° Entanglement entropy
» Natural measure of entanglement of subsystem A w/ H = H 4 @ H 4
o In full state p , the reduced density matrix for A is p4 = 1t 1 p

e Then EE S 4 corresponds to the measure of mixedness of p4,
EREEESeven Neumann entropy: Sy — — g sulllosess

e eg.Inalocal QFT:

o Choose subsystem A to be a local region/ /
NI




[ Holographic Entanglement Entropy }

Proposal [RT=Ryu &Takayanagi,'06] for static configurations:

In the bulk, entanglement entropy S 4 for

a boundary region A is captured by the o

area of a minimal co-dimension-2 bulk A 0A

surface m at constant t anchored on M

entangling surface 9.4 & homologous to A —— /
Area(m) oAl m

S 4 = Gl
Z dii—=a A 4GN

In time-dependent situations, R1T prescription needs to be covariantized:

I:HRT = VH, Rangamani, Takayanagi ‘O7:| minimal surface m N extremal surface ¢
at constant time in the full bulk

This gives a well-defined quantity

¢
In any (arbitrarily time-dependent e &= ==

asymptotically AdS) spacetime.



-ntanglement relations

° Universal:
- Sub-additivity (SA) S(A) + S(B) > S(AB)
. Araki-Lieb (AL) S(A) + S(AB) > S(B)
» Strong sub-additivity (SSA) S(AB) + S(BC) = S(B) + S(ABC)
» Weak monotonicity (WM) S(AB) + S(BC) = S(4) + S(C)

° [rue in holography:
o Monogamy of mutual information (MMI)
S(AB)+ S(BC)+ S(CA) > S(A)+ S(B)+ S(C) + S(ABC)
o 5-party cyclic inequality (C5)
S(ABC)+ S(BCD)+ S(CDE)+ S(DEA) + S(EAB)
> S(AB) -+ S(BC) + S(CD) + S(DE)-E S{EAEES G @

o + four further 5-party relations [Bao, Nezami, Ooguri, Stoica, Sully, Walter '15; Hernandez-Cuenca '19]

o k-region cyclic inequality (Ck) for k=odd is obvious...



QI interpretation

° Universal:
. Sub-additivity (SA) S(A) + S(B) > S(AB)
= Mutual Information I(A:B)=S(A)+S(B)—S(AB) >0

o Strong sub-additivity (SSA) S(AB) + S(BC) = 5(B) + S(ABC)
> Conditional mutual information I(A:C|B)=1(A: BC)—1(A:B) >0

° [rue in holography:
o Monogamy of mutual information (MMI)
S(AB) + S(BC)+ S(CA) > S(A)+ S(B)+ S(C)+ S(ABC)
= Tripartite information  I3(A: B:C)=I1(A:B)+I(A:C)—I(A: BC) <0

~ gives Interesting structure information on nature of entanglement in holography
cf. [Hayden, Headrick, Maloney]



Our Goal

1) Obtain a full set of information quantities {Q(A: B:C :---)}
for arbitrary number N of parties ( colors")J\//

* Want information quantrties which:
» arise as linear combinations of entanglement entropies of subsystems

o can vanish for some configurations in geometric states in holographic CFTs (we'll call
these faithful)
o are independent of other farthful 1Qs (we'll call these primitive)

° [hese are characterized by holographic entropy arrangement
NB: distinct from

o = set of all primitive information quantities Q \/v Mutual Information

o consists of hyperplanes in entropy space Arrangement
mentioned by Rota

2) Obtain a full set of universal holographic inequalities
° [hese generate the holographic entropy polyhedron

o obtain a candidate list of inequalities by using a sieve on arrangement

o prove directly?



[ -ntropy space for 2 parties }

* Define all entanglement entropies
o Consider partitioning of Hilbert space 7t = Ha @ Hp ©H 15
* Independent EEs ~ entropy vector S = {S(A),S(B),S(AB)}
o Lives in entropy space R*

° Entanglement Relations
sReclvity ot EEs - S(X) =0




* Define all entanglement entropies
» Consider partitioning of Hilbert space H = Ha @ Hp OH 15
* Independent EEs ~ entropy vector S = {S(A),S(B),S(AB)}

[ -ntropy space for 2 parties

Lives in entropy space R?®

° Entanglement Relations

4

Reslin er EEs ' S(X) > 0

S ) (B 5(AB)

AL  S(A)+ S(AB) > S(B)

Al  S(B)+ S(AB) > S(4)
positivity of EE Is redundant...
SA+ALI+AL, form entropy cone

= holographic entropy polyhedron

5(4)




[ —ntropy space for 2 parties }

* Define all entanglement entropies
o Consider partitioning of Hilbert space 7t = Ha @ Hp ©H 15

* Independent EEs ~ entropy vector S = {S(A),S(B),S(AB)}
o Lives in entropy space R*

° Entanglement Relations
sReclvity ot EEs - S(X) =0
B (B S (4B)
AL  S(A)+ S(AB) > S(B)

Q e ALy S(B)+ S(4AB) > S(A)
o positivity of EE Is redundant. ..
e SA+ALI+AL, form entropy cone

o specified by ‘extreme rays’




-ntropy space for 3 parties

* Partition Hilbert space
H=HaQHpHc

* Entropy space is R”:
e Entropy vector:
S ={S(A),S(B),S(C),S(AB),S(AC), S(BC), S(ABC)}
* (eneral form of information quantity (= entanglement entropy relation)

Q(S) = A) + g5 S(B) + gc S(C) + gap S(AB) + gac S(AC) + ggc S(BC) + ganc S(ABC)

\\\ e -

rational coefficients



-ntropy space for 3 parties

* Partition Hilbert space
H=HaQHpHc

* Entropy space is R”:
e Entropy vector:
S ={S(A),S(B),S(C),S(AB),S(AC), S(BC), S(ABC)}
* (General form of information quantity (= entanglement entropy relation)

Q(S) = qa S(A) + g5 S(B) + qgc S(C) + gas S(AB) + gac S(AC) + ggc S(BC) + qapc S(ABC)

° Entropy relations (equalities) are specified by hyperplanes
N entropy space: =
Q(5) =0



-ntropy space for N parties

Partrtion Hilbert space into N factors
Entropy space is BRY with D =2"% —1
EHJEI”OPY vector 5 = {S(X)} where X is any collection of parties

General form of information quantity

Q(g) :qu S(X) (D terms)
X

Entropy relations specified by hyperplanes in entropy space:

-

Q(5) =0



{ Set of Information quantities }

° Mathematical framework to study information quantities describing
interesting EE relations

= arrangement of hyperplanes

° |n our case the arrangement Is:

o finite (— consists of finite # of hyperplanes)

o essential (— {normal vectors} span the full entropy space)
o central (— {hyperplanes} intersect only at the origin)
° symmetric (under permutations of colors & purifier)

* Jo obtain holographic entropy polyhedron, we addrtionally need to specify
hyperplane orientation (where possible)

cf. holographic entropy cone of [Bao, Nezami, Ooguri, Stoica, Sully, Walter ' | 5]



[ ~ntanglement in QFT }

* Natural ‘'decomposition’ of Hilbert space = spatial regions

()

0A
0B

o bounded by entangling surfaces (later denoted by dA = aand JB =b)

* Entanglement entropy has a UV divergence

e ~ area of entangling surface



[ Position In entropy space }

* Jwo options to ‘localize’ a configuration in entropy space:

|) Introduce a UV regulator:

bulk
/\ SRS 1o [{SRET e ElDcis £
[ \ :
bdy A B

o But position (& even direction) In entropy space Is cutoff-dependent:

AN

£1 (Qj) 1 e I 52(:5)

l ; 5

S(B) increases at const. S(A) S(A) increases at const. S(B)




Position In entropy space

° [wo options to ‘localize’ a configuration in entropy space:

2) Consider multi-boundary wormholes:

Elo

Fig. from [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

Fach region covers one entire bdy (so # entangling surfs)

o But requires multiple CFTs...



—_—
» Proto-entropy W

° However, certain combinations of EEs (information quantities)

are UV-finite
o e.g for disjoint regions, any “balanced” 1Q i1s UV-finite

» Ex. saturation of SA: S(A)+ S(B) = S(AB)

e1(x) |

same parts of surfaces appear on both sides of the equality
= cancel out iIndependently of the cutoff

= under varying cutoff, vectors gg(x) span lower-dimensional subspace of entropy space.

° Suggests hyperplanes are the natural / fundamental constructs

» Think of Ql relations as combinations of surfaces (= proto-entropy),
rather than their areas. ..



{ Strategy }

° Work in space of bulk extremal (HRT) surfaces

» (Consider proto-entropy rather than entropy itself

° [his recasts the geometric problem into an algebraic one

o Shapes & areas of surfaces irrelevant, only their ‘existence’ (1.e. being
invoked by HRT) matters

o (NB: complementary viewpoint to bit thread picture)

o A-priori still hard problem: scan over all configurations in all geometric
states for all holographic CFTs

° Simplification
o Suffices to consider vacuum state of CFT on R2!

o Suffices to consider equivalence classes of configurations (generating
the same information quantities)
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Building up hyperplanes for N=3

» Consider simplest configuration w/ 3 uncorrelated regions
o 3 entangling surfaces: a,b,c

» 3 bulk surfaces, called correspondingly a, b, ¢

» (Construct entropy vector

SO)| A | B | C|AB|AC]|BC|ABC
a | |

b

C

K-y S(A) : Areala]

T



Building up hyperplanes for N=3

» Consider simplest configuration w/ 3 uncorrelated regions
o 3 entangling surfaces: a,b,c

» 3 bulk surfaces, called correspondingly a, b, ¢

» (Construct entropy vector & read off corresponding ¢ relations:

S()

B

C

AB

AC

BC

ABC

a

b

C

- (A +39aB +4qac +qaBc =0
\_/\/\/

all terms involving A =«



Building up hyperplanes for N=3

Why ¢ Recall:

Q(g) =qaS(A)+qg S(B) + qc S(C) + gqap S(AB) 4+ qac S(AC) + qc S(BC) + qapc S(ABC)

=qaa+qgpb+gcc+qgap(a+b)+qgac(a+c)+qgpec(b+c)+ gapec (a+ b+ c)

= a(ga +94B + gac + qaBc) +b(gB + 9aB + gBC +qaBC) + c(9c + gac + aBc + qaBC)

e
\

=0

\/v\/

\/v\/

T .

must = 0 individually
since we can vary a, b, and ¢ independently

» (Construct entropy vector & read off corresponding ¢ relations:

S()

B

C

AB

AC

BC

ABC

a

b

C

- (A +39aB +4qac +qaBc =0
W\/

all terms involving A



Building up hyperplanes for N=3

» Consider simplest configuration w/ 3 uncorrelated regions
o 3 entangling surfaces: a,b,c

» 3 bulk surfaces, called correspondingly a, b, ¢

» (Construct entropy vector & read off corresponding ¢ relations:

S()

A

B

C

AB

AC

BC

ABC

a

b

C

- gA +9gaB +qac +qapc =0
= gB +gaB +qBCc + qapc =0
= (gc +494ac +9Bc + gac =0

o 3 egns for / unknowns = not sufficient to get a hyperplane...



Building up hyperplanes for N=3

* Add more surfaces by correlating regions (eg A & C)
o still 3 entangling surfaces: a,b,c

o but now 4 bulk surfaces, a, b, ¢ and extra one, called ac

=
- a

o Gives extra row to entanglement table:

SO)| A | B | C|AB|AC]|BC|ABC
a | | | 0 0
b | | | |
C | 0 | 0
ac | |

VYV

|

label by all entangling surfaces
the bulk surf. is anchored on

Still insufficient for hyperplane...

s
ga +qap =0
4B - JAB FaBc T UAEc =1
gc + gqc =0
gac +9apc =0



[ Building up hyperplanes for N=3 }

* |Introduce notation to denote correlation:

bulk

b bdy space:

& a

BRI blcts a confiouration n the CRT



Building up hyperplanes for N=3

» Consider fully correlated configuration
o still 3 entangling surfaces: a,b,c

o but now / bulk surfaces: a,b, ¢, ab, ac,be, and abc

bdy space:

SOl A | B | C|AB|AC|BC|ABC

a
b |
c

ab |

ac |

bc |

abc

o now / egns for / unknowns = all ¢x s trivially vanish...



Building up hyperplanes for N=3

° [ry correlated configuration w/ | less bulk surface:
e now 6 entangling surfaces: a, by, ci, a2, by, and ¢

o and also 6 bulk surfaces:

bdy — b - SO | A B | C | AB|AC| BC |ABC
@B ay| | | | |
. c g as | | | | |
& o} AEEENEEREE.
A C Cq | | |
Co| | | | |

» now we DO get a hyperplane:



Building up hyperplanes for N=3

° [ry correlated configuration w/ | less bulk surface:
e now 6 entangling surfaces: a, by, ci, a2, by, and ¢

e and now 6 bulk surfaces:
But we used enveloped regions, i.e. /= |

bdy space: /
b, SO A | B | C|AB]|AC]|BC|ABC
d2
a| | = |
1

al C » a/2 | | | |

o b by | | |
bo FL
A ¢ c1 | e
|

+ | + | + | - = E +

» now we DO get a hyperplane: )
soln. for g's:

e Gives precisely I3(A: B:C)=0 ~ MM




Building up hyperplanes for N=3

° We can also do it at /=0, i.e. without enveloping:

o still 6 entangling surfaces: ai, by, ci, a2, by, and ¢
o and 9 bulk surfaces: a1, b1, c1, az, b2, c2, aice, braz, c1bs

AB

AC

BC

ABC

bdy space:

o despite 9 (=#relations) > / (=#unknowns),

=}

=}

we still DO get a hyperplane:

* Again gives precisely I3(A: B: C)=0 -~ MM




{ Systematizing the search }

|. Scan over all configuration classes

» Consider disjoint regions (can generalize to adjoining as a limit...)
o (Can abstract any configuration to a graph & identification of non-zero Mls)

» Organize by enveloping level

2. Find the basic configuration “building blocks”™

o Start w/ simplest configuration (e.g. minimal # of entangling surfaces)
and show when adding complications gives redundant relations

3. Combine building blocks in all possible ways to get hyperplanes

o Need to build up D — 1 independent relations between the g's (can
be realized by a single configuration)



@ henlcal form of telElilehe

o eg for N=4,/=0: all relations can be rendered into a canonical form

Notation:
a := vanishing sum of all terms gx w/ x including all occurrences of A,
.e. 4a +q4aB +94ac + 94D +9aBc + 9aBD + qacp + gaBecp =0
af ;= vanishing sum of all terms gx w/ x including all occurrences of A and simultaneously B

a = vanishing sum of all terms gx w/ x NOT including any occurrence of A

o

Canonical form is e.g.: a, af, fyo, etc. but no exclusions like af

A B |C D AB AC AD BC BD  CD | ABC ABD ACD BCD | ABCD 'a:”
e ® relations

reln ) new

a 1 IR 1 . ap | +ap ire
b 1 101 1 ' fa o p
c 1 1 1 1 IS E v(ef) E +afy E y
d 1 1 11 1 1 1 : 8(apy) Viapys ) 5
ab 1 1 vafy v g
d g g :
abc 1 safys vt afy
abcd 1apys | : afyod i




o e.o for N=4, /=I: i.e.w/ enveloped regions
all relations can still be rendered into a canonical form

@ henlcal lorm ol relaliels

A B C D AB AC AD BC BD CD ABC ABD ACD BCD | ABCD ::}’:tions operation | new
relns
a 1 1 a5 146 ig
: | o g
£ 1 : iyé {416 i)/
o N oo i 1
d2 ! 55,@ PR
&2 1 oy 1 15
o I IR
TP
bd2 1 1 56 5
cd3 1 1 57’5 ' 70 E




o e for N=4, /=1

Non-canonical form of relations

enveloped regions w/ tripartite correlation:

A B | C D AB AC

AD BC BD CD | ABC ABD ACD BCD | ABCD It

relations

a 1 S 505
b 1 1 Eﬂ
d1 11 1 55
d2 1 1 1 55
d3 1 1 1 55
d4 1 (Bl 1 1 1 155
ad1 1 1 1 150{5
bd2 1 1 1 1§ﬂ5
cd3 1 1 1 1.7/5
abc 1 E“ﬂyéi
d1d2d3 iégﬁzi

o the last two terms cannot be converted to canonical form...




[ Canonical building blocks J

* Consider CFT In vacuum state on RZ

o Jake single disk per color (disjoint from all others)
o (Change position of disks to change pattern of mutual information

* Example:

.

o canonical buillding block €§[A;A2.A3]

e = N+ |[=/ bulk surfaces "\

o glves canonical relations
{01, 02,03, a4, a5, a6, a1a203 }

» Composing building blocks:
» Jake several widely-separated configurations
o Resulting g-relations = union of the sets of relations for each block




@ lassilication results e =S

R emplete N = 3 classification

o [3(~ MMI) follows easily (from simple no-enveloping /=0 configuration)

Ig(A:B:C):SA-I-SB—|—SC—SAB—SAC—SBC-I-SABC

o No additional inequalities can exist (by egn counting argument)

~ N = 3 holographic entropy polyhedron (=holographic entropy cone):

S Rocimitanens of SA(L, [ S4+ S = Sug
o 3 permutations of AL(1,3)  Sa+ Sasc = Snc
se(permutation symmetnic) MMl Sas + Spe 4 Sag = 5.4 F0p ROCEESEE

R dets



Classification results for N=4

* New N =4 information quantities (all sign-indefinite)
~ A_t,j/:O

1359 = Sx+ Sp+ Sc + Sp — Sap — Sac — Sap — Spc — Sep — Scp+

+SaBc +5aBp +Sacp + SBep — SaBeb

e At /=1 written more compactly in terms of I,’s:
511) =54—58—Sac — Sap + Spc+ Sep + Sacp — Spep _ IéACD B I?CD

514) =254+ S — 25458 — Sac — Sap + Sep + Sanc + Sasp — Ssep
_ [ABC | TABD _ {BCD
= L7+ 13 I3

Qf) =S4+ Spec + Spp + Sep — Sapec — Sap — Sacp — 258ep + 2S5 aBcp
_ I.ABC 4+ IABD + IACD . IABCD
- =3 3 3 4

516) =354 — 2548 — 254¢c — 25 4p + Spc + Sp + Sep + Sape + Sapp + Sacp — 2Ssep
- _ I;\BC 4+ I.éélBD + I?CD o 21?CD
2 =548+ Sac+ Sap + Spc + Spp + Sep

— 25 48¢c — 2Sa8D — 2S4cp — 2SBep + 3Sasep = TABC 4 TABP | TACD | 1BCD _ gTABCD



Classification results for N=4

* New N =4 information quantities (all sign-indefinite)
o A_t < :O:
159D = S, + Sp+ Sc+Sp — Sap — Sac — Sap — Spc — Sep — Scp+
+SaBc +SaBp +Sacp +SBcp — SaBch
e At /=1I:
S — S+ Sse - Sep - S Acn — Seep — JACD _ 15CD
S = B e — S — e e S S ey S — s — L LT

514) =254+ S — 25458 — Sac — Sap + Sep + Sanc + Sasp — Ssep
_ [ABC | TABD _ {BCD
= L7+ 13 I3

Qf) =S4+ Spec + Spp + Sep — Sapec — Sap — Sacp — 258ep + 2S5 aBcp
= I.ABC T IABD = I.ACD = IABCD
IRAC TS 3 3 4

516) =354 — 2548 — 254¢c — 25 4p + Spc + Sp + Sep + Sape + Sapp + Sacp — 2Ssep
- _ I;\BC 4+ I.éélBD + I?CD . 2I?CD
2 =548+ Sac+ Sap + Spc + Spp + Sep

— 25 48¢c — 2S48D — 2Sacp — 2SBep + 3Sascp = TABC 4 TABP | TACD 4 1BCD _ gTABCD



@ lacsification results e sk

o Complete classification for disjoint /=0 configurations, v N:
» The I,-Theorem:

the only information quantities we can get for disjoint /=0
configurations are the 1I,s.

o = the only genuinely N-partite information quantity is Iy

Tn(Ag, : Ag, i ... i Ap ) =8¢, +Sp, +---+ S,
ST 55152 B 55153 P an—lfn
+ Sprgzes + -+ (=1)" T Sp 0, 0,

o Using /=1 building block w/ single non-canonical constraint

o We obtain another infinite family of information quantities:

Jn(Agl : AgQ o pk Agn) = Sglg2 -+ Sglgg + .- 4 Sgn_lgn
= 280 050, = o (G0 NB RS A S



( Nicer representations for relations }

\\

—

[He, Headrick VH '19]
° S-basis
o Specify individual entropies of all composite subsystems
o e.g for N=3 entropy vector = § = {51, S2, S3, S12, S13, S23, S123}

° |-basis
o Specify multipartite information for all sets of single-color subsystems
O for N:3,GDJEI”O|D>/ Vaalaii= §: {Il, IQ, [3, 112, 1137123, 1123}[1-]

notational shorthand: (z S(Aq) (z I)(A; : As) [z I3(Aq : Ay : A3)
o K-basls
o Specify perfect tensor V even sets of single-color subsystems + purifier
e e.g for N=3, ({Al,AQ,Ag} (A4
S = {Ki2, K13, K14, Ko3, Koa, K34, K234} g
( ‘ (s
K's = coefficients of e A4._l_. 0



Nicer representations for N<4 relations

N Relation S-basis I-basis K-basis
N
2,3 SA1,1) S1+S9 — 519 1o Kg2)
3 3 3
3 SA(12) | 81+ 823 — 8103 Ligt 113 — Lo Kiy +Kiy +Kigss
2
R s s, s, 21, — I, K{3
3 3 3
3 AL(1’2) S1 + S19 — Sg 2]:1 — Iy Kgg) + K§4> + Kg2)34
3
3 AL 3y | 81+ Si23 — So 21, — Tip — Tiz+ L1y | KE)
211 + 215 — 2135 — I3 3 3 3
3 AL(2,3) 812 S 3123 - S3 K§4) + Ké4) + Kg2)34
—Io3 + Iio3
3 3
3 SSA(22) | Si2+ 823 — 83 — 8193 | 13— I3 Kgg) + Kg2)34
3 3
3 WM(Q,Q) 512 e 823 = Sl TF SS 2]:2 T I12 o I23 Kg4) + K§2>34
—S51 —S3 — 53+ 519 3
3 MMI(l,l,l) _I123 K§2)34
1513 + Sa3 — S123

e (Observations:

o K-basis representation is more (or as) compact than S-basis one

o K-basis representation is most compact for primitive quantities

o K-basis representation for all Q = 0 has all coefficients = O

primrtive:

=
_—



Nicer representations for N=5 relations

Relation | Basis | Primitive Information Quantity (all univ. holographic inequalities)
SA1,1) S (3) S1+S2 —Sq9
I(1) Ii2
K@ | &3
MMI(q 1,1) S (7) —81 — 89 — 53 +S12 + 513 +S23 — Sq23
I(1) —Ij03
K (3) Kgg)zm + K§52)35 + K§52)36
MMI 12 2) S (7) —S3 — 823 — 845 + 5123 + 5145 + S2345 — S12345
I(9) —Iy94 —I125 — I134 — I135 + L1234 + L1235 + I1245 + I1345 — I12345
K (5) | Ki%ie +Kipse + Kioie + Kl + Kl phase
ng S (11) | —Sy2 —S23 — 834 — S45 — S5 + S123 + S234 + S345 + S145 + S125 — S12345
I (11) | —Iy94 —Ti34 — I135 — Io35 — Togs + I1234 + T1235 + T1245 + 1345 + I2345 — T12345

5 5 5 5 5 5
K (6) K§2)46 + KZ(LB)46 + K§3)56 + Kg3)56 + K;4)56 + 2K§2)3456

(2 S (16) —S12 — 813 — S14 — S23 — S25 — S45 + 25123 + S124 + S125 + 5134 + S145 + S235 + So4s
2
—S1234 — 51235 — S1245
I(7) —I124 — I125 — I135 — 1234 + L1234 + L1235 + 11245

5 5 5 5 5 5 5
K (7) | KOs + Kok + K5 + K\ 5h6 + Koous + Kogus + 3K\ ahase

(5) S (19) —S19 — 813 — 814 — 895 — S35 — Sy5 + S123 + S124 + S125 + 5134 + S135 + S145 + Sa35
3
+So45 + 5345 — S234 — S1235 — 51245 — S1345
I (7) —I105 — I135 — I145 — I234 + I1235 + L1245 + 11345

5 5 5 5 5 5 5
K (7) K§2)34 + K§2)56 + K§3)56 + Kg4)56 + Ké3)45 + Ké3)46 + 3Kg2)3456

) S (16) —S2 =83 =84 — 85 —S12 — 513 + 523 + 545 + 5123 + 5124 + 5125 + 5134 + 5135 — S145
4
—S51234 — 81235
I(6) —Iy193 — L145 — Io34 — I235 + 11234 + L1235

5 5 5 5 5 5 5 5
K (8) K§2)36 + K§2)45 + K§3)45 + K(14)56 + 2Kg3)45 + Kg3)46 + K;3)56 + 2KZ(LQ)3456

Q(5) S (22) —2S19 —2S13 — 814 — S5 — Sg3 — 2894 — 2835 — Sy5 + 35193 + 35124 + S195 + S134
5
+3S135 + S145 + S234 + Sa35 + Saus + S345 — 281234 — 281235 — S1245 — S1345
I (10) | —I393 —2I395 —2T334 — I145 — Io3q — Iog5 + 211034 + 211035 + I1045 + I1345

5 5 5 5 5 5 5 5 5 5
K (10) K§2)36 + K§2)45 + 2K(12)56 + K§3)45 + 2K§3)46 + K§4)56 + 2K§3)45 + Ké3)46 + K§3)56 + 6K§2)3456




Nicer representations for N=4 relations

Relation | Basis Primitive Information Quantity

Iy S (15) | Sy + Sy +8S3+8S4 —S12 —S13 — S14 — Sa3 — Sg4 — S34 + S123 + S124 + S134 + Sa34 — S1234
I(1) | Iyo34
K@) | -2k,

§4) S (8) | Sy —Sz — 813 — 814+ 823 + 894 + 5134 — Saay
1(2) | Ii34—Tg34
K (2) | —Ki3hs +Kighs

;4) S (8) | 81 —812 — 813 —S14+ 8123 + 8124 + 8134 — S1234
I(2) —Ig34 + 11234
K (2) _K%):M + K%)zm

514) S(9) | 281 +85 — 2815 —S13 — S14 + 834 + S123 + S124 — Sa3y
1(3) | Ii23+TI124 —Ioay
K (4) _K%)?A - K%)35 — K%)45 + K%)45

Qg(;l) S (9) | 81+ 823+ 824+ 834 —S123 —S124 — S134 — 28234 + 281934

I(4) I123 + T104 + T134 — 2T1234
K (4) | Kighy —Kighs — Kicys —Kigss

é4) S (11) | 38y — 2813 — 2813 — 2514 + Sg3 + So4 + S34 + S123 + S124 + S134 — 289234
I(4) I123 + I104 + T134 — 21234
K (5) | —Kizhs — Kizhs — Kious — Kiss + ZKous

Q(74) S (11) | S12 + 813+ 814 +S23 + 824 + 834 — 28153 — 28194 — 28134 — 28934 + 381234

I(5) | Ii23+T124 + T334 + In34 — 31934
K (5) 2K§42)34 — K%)35 - K%)45 - K%)% - K%)zm

o All these are sign-indefinite.

o K-basis expressions now (mostly) have mixes signs...




{ Advantages of K basis: }

[He, Headrick,VH "1 9]

K-basis manifests larger symmetry (Sn+1) than the S and | bases.

Any non-negative information quantity necessarily has non-negative
coefficients when expressed In the K-basis.

All (even-party) perfect tensors are extremal rays of holographic entropy
cone — and In fact also the full guantum entropy cone.

Q: Is the K-basis the best we can do!?



[ Sieve

* Original purpose

o Constrain holographic entropy polyhedron by ruling out information
quantities which can have erther sign (depending on configuration)

e Basic Idea

o Determine sign of the information quantity for canonical building block
o Determine sign for local purification of canonical building block

o |f signs differ; reject the quantity from holographic entropy polyhedron
o Remaining quantities give us candidates for hol. ent. polyhedron

* In practice

o The sieve Is actually far more powerful!

o Start abstractly by constraints on coefficients so as to avoid rejection
o Consider extremal rays of the coefficient space cone

o [hese give candidate universal holographic inequalities



[ Summary }

o Utility of proto-entropy & hyperplane arrangement

o Saturation of universal holographic inequalities by 'cancelling surfaces’
o = cutoff-independent (even for single CFT)

o Logic of construction is independent of N

o Automatically avoids generating redundant relations (such as SSA)

o Utility of sieve
o Surprisingly powerful in constraining holographic entropy polyhedron

e provides an inner bound, even without any knowledge of the arrangement

o We can recover the entropy polyhedron for N=5 without evoking the
building blocks

g aonjccture: Rl cone = HRI cone’
e Since cancelation of surfaces works equally well for time-dependence



( Summary . _ }

e Results so far:

o Recovers holographic entropy cone for N=2 and N=3
o At N=4, no new universal holographic inequalities, but 4 extra Qs

o At N=5, sieve recovers all proven inequalities for holographic entropy
cone (along with candidate — = > ( which is not a true inequality);
explicit construction [Hernandez-Cuenca] confirms only 5 new Iinequalities.

e For general N
o Complete classification for /=0 simple configurations:
= the I,,-Thm:the only IQs we can get are I,,'s forn < N

o New infinite family of information quantities for /=

e QOutlook
o Seems promising: expect only few new inequalities at each N...



Open Questions

* Efficiency of generating holographic entropy arrangement v N

o Obtaining/characterizing complete set of building blocks
o Relating arrangements for different N

* Obtaining the holographic entropy polyhedron v N

o Efficiency of the sieve

o Proving candidate inequalities

° |nterpreting iInformation quantities and universal holographic
inequalities
» Structure of density matrix

» Role of hyperplane arrangement beyond holography (in general QFT)

» New Insights into the entanglement structures of holographic CFTs w/
geometric states

» Relation to Mutual Information Arrangement




Stay Tuned. ..
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