HOLOGRAPHIC ENTROPY ARRANGEMENT

Veronika Hubeny

Physics Department & center for Quantum Mathematics and Physics

Quantum Information and String Theory June 19, 2019

[based mainly on 1808.07871, 1812.08133 w/ Mukund Rangamani & Max Rota + w.i.p. w/ Sergio Hernandez-Cuenca, Mukund Rangamani, Max Rota + in part on 1905.06985 w/ Temple He & Matt Headrick]

AdS/CFT after 21 years

String theory (gravity) ⇔

"in bulk" = higher dimensions

describes gravitating systems, e.g. black holes

field theory (no gravity)
"on boundary" = lower dimensions

describes experimentally accessible systems



Invaluable tool to:

- Study strongly interacting field theory (hard, but describes many systems)
 by working with higher-dimensional gravity on AdS (easy).
- Study quantum gravity in AdS (hard, but needed to understand spacetime)
 by using the field theory (easy for certain things)

Pre-requisite:

We need to understand the AdS/CFT dictionary...

- How does bulk spacetime emerge from the CFT?
 - Which CFT quantities give the bulk metric?
 - What determines bulk dynamics (Einstein's eq.)?
 - How does one recover a local bulk operator from CFT quantities?
- What part of bulk can we recover from a restricted CFT info?
 - What bulk region does a CFT state (at a given instant in time) encode?
 - What bulk region does a spatial subregion of CFT state encode?
- (How) does the CFT "see" inside a black hole?
 - Does it unitarily describe black hole formation & evaporation process?
 - How does it resolve curvature singularities?

Recent hints / expectations: entanglement plays a crucial role...

Entanglement entropy

Entanglement

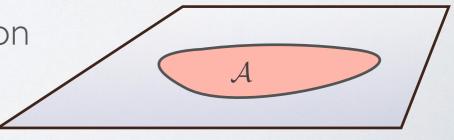
- Most non-classical manifestation of QM
- Quantum resource for performing tasks which can't be performed using classical resources
- Plays increasingly central role in Quantum Information, Q. many body systems, QFT & even QG!

Entanglement entropy

- Natural measure of entanglement of subsystem ${\cal A}~$ w/ ${\cal H}={\cal H}_{\cal A}\otimes{\cal H}_{ar{\cal A}}$
- In full state ho , the reduced density matrix for ${\cal A}$ is $ho_{{\cal A}}={
 m Tr}_{\bar{{\cal A}}}\,
 ho$
- Then EE $S_{\mathcal{A}}$ corresponds to the measure of mixedness of $\rho_{\mathcal{A}}$, i.e. EE = the von Neumann entropy $S_{\mathcal{A}} = -\mathrm{Tr}\rho_{\mathcal{A}}\,\log\rho_{\mathcal{A}}$

• e.g. in a local QFT:

ullet Choose subsystem ${\cal A}$ to be a local region

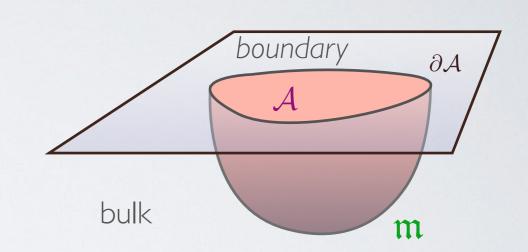


Holographic Entanglement Entropy

Proposal [RT=Ryu & Takayanagi, '06] for static configurations:

In the bulk, entanglement entropy $S_{\mathcal{A}}$ for a boundary region \mathcal{A} is captured by the area of a minimal co-dimension-2 bulk surface \mathfrak{m} at constant t anchored on entangling surface $\partial \mathcal{A}$ & homologous to \mathcal{A}

$$S_{\mathcal{A}} = \min_{\partial \mathfrak{m} = \partial \mathcal{A}} \frac{\operatorname{Area}(\mathfrak{m})}{4 \, G_N}$$



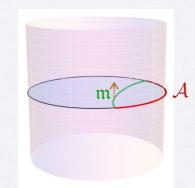
In time-dependent situations, RT prescription needs to be covariantized:

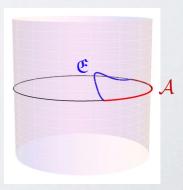
[HRT = VH, Rangamani, Takayanagi '07]

minimal surface m at constant time

extremal surface **E** in the full bulk

This gives a well-defined quantity in any (arbitrarily time-dependent asymptotically AdS) spacetime.





Entanglement relations

Universal:

• Sub-additivity (SA)
$$S(A) + S(B) \ge S(AB)$$

• Araki-Lieb (AL)
$$S(A) + S(AB) \ge S(B)$$

• Strong sub-additivity (SSA)
$$S(AB) + S(BC) \ge S(B) + S(ABC)$$

• Weak monotonicity (WM)
$$S(AB) + S(BC) \ge S(A) + S(C)$$

True in holography:

Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

• 5-party cyclic inequality (C5)

$$S(ABC) + S(BCD) + S(CDE) + S(DEA) + S(EAB)$$

$$\geq S(AB) + S(BC) + S(CD) + S(DE) + S(EA) + S(ABCDE)$$

- + four further 5-party relations [Bao, Nezami, Ooguri, Stoica, Sully, Walter '15; Hernandez-Cuenca '19]
- k-region cyclic inequality (Ck) for k=odd is obvious...

QI interpretation

Universal:

- Sub-additivity (SA)

$$S(A) + S(B) \ge S(AB)$$

 $I(A:B) \equiv S(A) + S(B) - S(AB) \ge 0$

- Strong sub-additivity (SSA) $S(AB) + S(BC) \ge S(B) + S(ABC)$
 - \Rightarrow Conditional mutual information $I(A:C|B) \equiv I(A:BC) I(A:B) \geq 0$

True in holography:

Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

- \Rightarrow Tripartite information $I3(A:B:C) \equiv I(A:B) + I(A:C) I(A:BC) \leq 0$
 - → gives interesting structure information on nature of entanglement in holography cf. [Hayden, Headrick, Maloney]

Our Goal

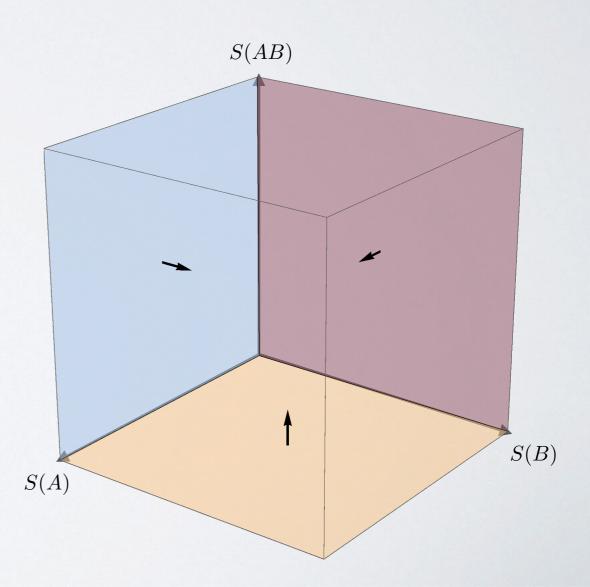
- I) Obtain a full set of information quantities $\{Q(A:B:C:\cdots)\}$ for arbitrary number N of parties ("colors")
 - Want information quantities which:
 - arise as linear combinations of entanglement entropies of subsystems
 - can vanish for some configurations in geometric states in holographic CFTs (we'll call these faithful)
 - are independent of other faithful IQs (we'll call these primitive)
 - These are characterized by holographic entropy arrangement
 - = set of all primitive information quantities Q
 - consists of hyperplanes in entropy space

NB: distinct from Mutual Information Arrangement mentioned by Rota

- 2) Obtain a full set of universal holographic inequalities
 - These generate the holographic entropy polyhedron
 - obtain a candidate list of inequalities by using a sieve on arrangement
 - prove directly?

Entropy space for 2 parties

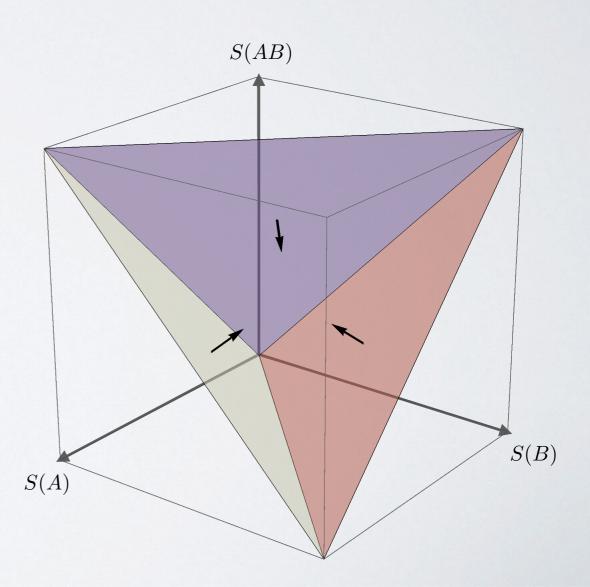
- Define all entanglement entropies
 - Consider partitioning of Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_{\overline{AB}}$
 - Independent EEs \rightarrow entropy vector $\vec{S} = \{S(A), S(B), S(AB)\}$
 - ullet Lives in entropy space \mathbb{R}^3
- Entanglement Relations
 - Positivity of EEs $S(X) \ge 0$



Entropy space for 2 parties

- Define all entanglement entropies
 - Consider partitioning of Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_{\overline{AB}}$
 - Independent EEs \rightarrow entropy vector $\vec{S} = \{S(A), S(B), S(AB)\}$
 - Lives in entropy space \mathbb{R}^3
- Entanglement Relations
 - Positivity of EEs $S(X) \ge 0$

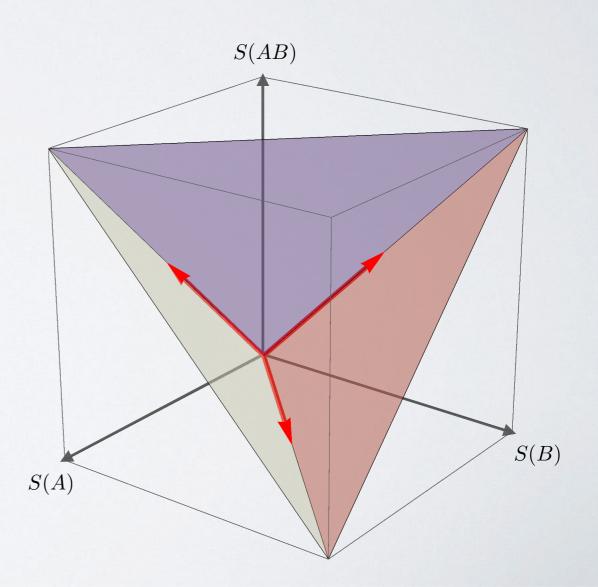
 - SA $S(A) + S(B) \ge S(AB)$ AL_1 $S(A) + S(AB) \ge S(B)$ AL_2 $S(B) + S(AB) \ge S(A)$
 - positivity of EE is redundant...
 - SA+AL₁+AL₂ form entropy cone
 - = holographic entropy polyhedron



Entropy space for 2 parties

- Define all entanglement entropies
 - Consider partitioning of Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_{\overline{AB}}$
 - Independent EEs \rightarrow entropy vector $\vec{S} = \{S(A), S(B), S(AB)\}$
 - Lives in entropy space \mathbb{R}^3
- Entanglement Relations
 - Positivity of EEs $S(X) \ge 0$
 - SA $S(A) + S(B) \ge S(AB)$ AL_1 $S(A) + S(AB) \ge S(B)$ AL_2 $S(B) + S(AB) \ge S(A)$

 - positivity of EE is redundant...
 - SA+AL₁+AL₂ form entropy cone
 - specified by 'extreme rays'



Entropy space for 3 parties

Partition Hilbert space

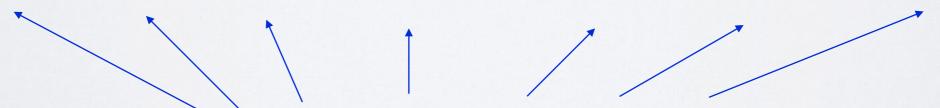
$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C \otimes \mathcal{H}_{\overline{ABC}}$$

- Entropy space is \mathbb{R}^7 :
- Entropy vector:

$$\vec{S} = \{S(A), S(B), S(C), S(AB), S(AC), S(BC), S(ABC)\}$$

• General form of information quantity (= entanglement entropy relation)

$$Q(\vec{S}) = q_A S(A) + q_B S(B) + q_C S(C) + q_{AB} S(AB) + q_{AC} S(AC) + q_{BC} S(BC) + q_{ABC} S(ABC)$$



rational coefficients

Entropy space for 3 parties

Partition Hilbert space

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C \otimes \mathcal{H}_{\overline{ABC}}$$

- Entropy space is \mathbb{R}^7 :
- Entropy vector:

$$\vec{S} = \{S(A), S(B), S(C), S(AB), S(AC), S(BC), S(ABC)\}$$

• General form of information quantity (= entanglement entropy relation)

$$Q(\vec{S}) = q_A S(A) + q_B S(B) + q_C S(C) + q_{AB} S(AB) + q_{AC} S(AC) + q_{BC} S(BC) + q_{ABC} S(ABC)$$

• Entropy relations (equalities) are specified by hyperplanes in entropy space: $Q(\vec{S}) = 0$

Entropy space for N parties

- \bullet Partition Hilbert space into N factors
- Entropy space is \mathbb{R}^D with $D = 2^N 1$
- ullet Entropy vector $ec{S} = \{S(X)\}$ where X is any collection of parties
- General form of information quantity

$$Q(\vec{S}) = \sum_{X} q_X S(X) \qquad (D \text{ terms})$$

• Entropy relations specified by hyperplanes in entropy space:

$$Q(\vec{S}) = 0$$

Set of information quantities

Mathematical framework to study information quantities describing

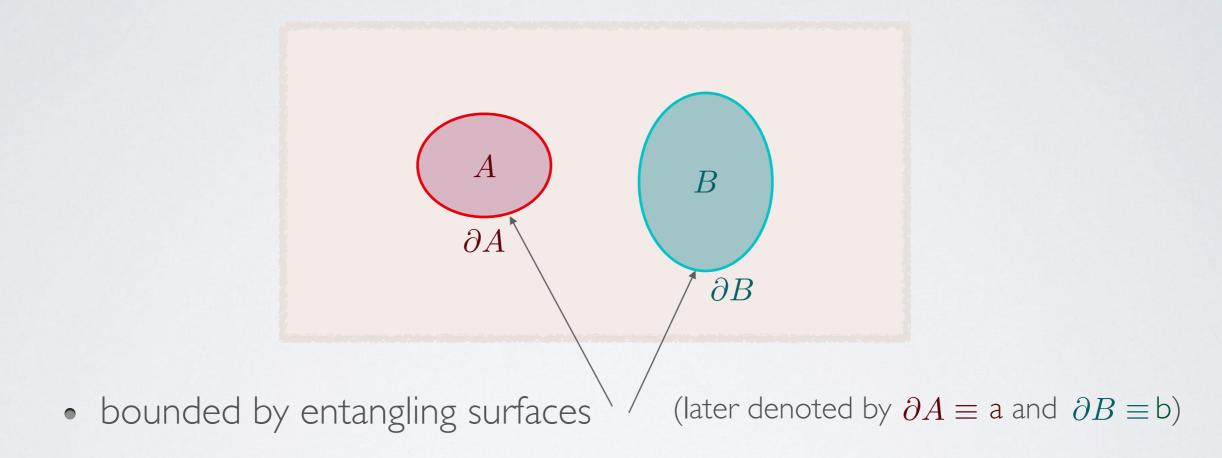
interesting EE relations

- = arrangement of hyperplanes
- In our case the arrangement is:
 - finite (→ consists of finite # of hyperplanes)
 - essential (→ {normal vectors} span the full entropy space)
 - central (→ {hyperplanes} intersect only at the origin)
 - symmetric (under permutations of colors & purifier)
- To obtain holographic entropy polyhedron, we additionally need to specify hyperplane orientation (where possible)

cf. holographic entropy cone of [Bao, Nezami, Ooguri, Stoica, Sully, Walter '15]

Entanglement in QFT

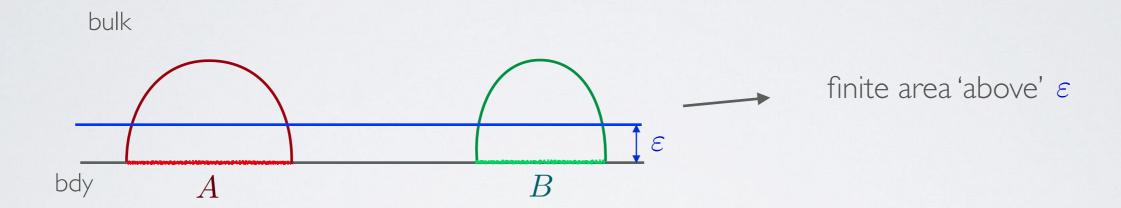
• Natural 'decomposition' of Hilbert space = spatial regions



- Entanglement entropy has a UV divergence
 - ~ area of entangling surface

Position in entropy space

- Two options to 'localize' a configuration in entropy space:
- 1) Introduce a UV regulator:



But position (& even direction) in entropy space is cutoff-dependent:



Position in entropy space

- Two options to 'localize' a configuration in entropy space:
- 2) Consider multi-boundary wormholes:

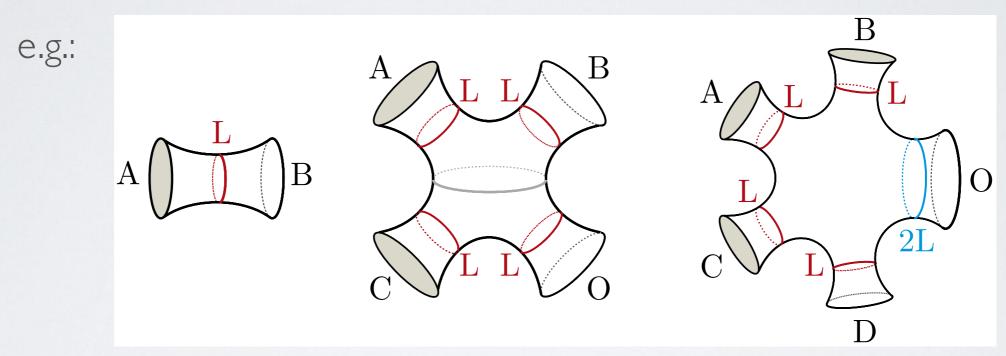


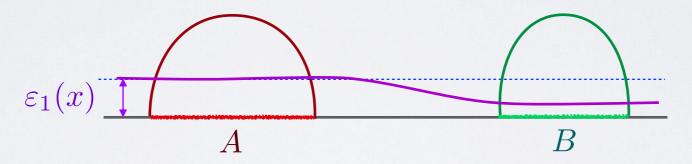
Fig. from [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

Each region covers one entire bdy (so # entangling surfs)

• But requires multiple CFTs...

Proto-entropy

- However, certain combinations of EEs (information quantities) are UV-finite
 - e.g. for disjoint regions, any "balanced" IQ is UV-finite
 - Ex.: saturation of SA: S(A) + S(B) = S(AB)



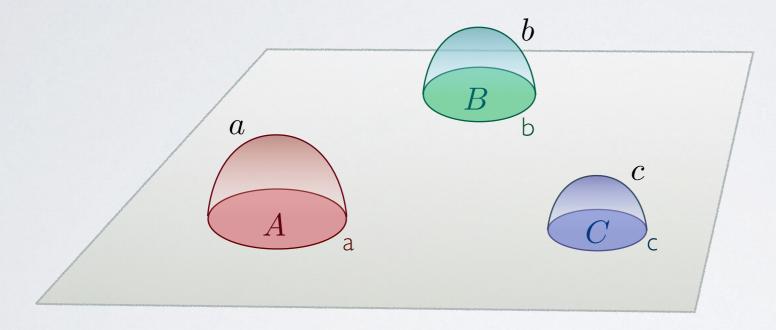
same parts of surfaces appear on both sides of the equality ⇒ cancel out independently of the cutoff

- \Rightarrow under varying cutoff, vectors $\vec{S}_{\varepsilon(x)}$ span lower-dimensional subspace of entropy space.
- Suggests hyperplanes are the natural / fundamental constructs
 - Think of QI relations as combinations of surfaces (= proto-entropy), rather than their areas...

Strategy

- Work in space of bulk extremal (HRT) surfaces
 - Consider proto-entropy rather than entropy itself
- This recasts the geometric problem into an algebraic one
 - Shapes & areas of surfaces irrelevant, only their 'existence' (i.e. being invoked by HRT) matters
 - (NB: complementary viewpoint to bit thread picture)
 - A-priori still hard problem: scan over all configurations in all geometric states for all holographic CFTs
- Simplification
 - Suffices to consider vacuum state of CFT on $\mathbb{R}^{2,1}$
 - Suffices to consider equivalence classes of configurations (generating the same information quantities)

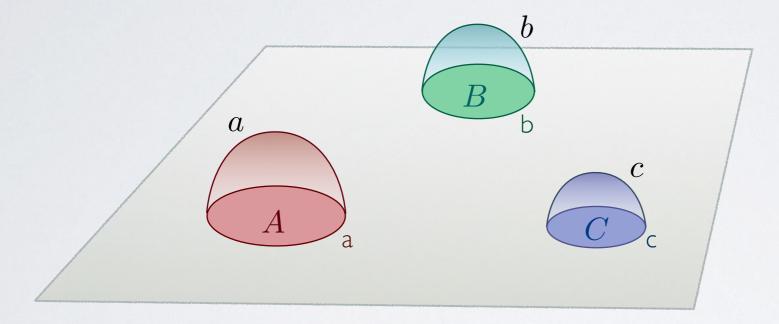
- Consider simplest configuration w/ 3 uncorrelated regions
 - 3 entangling surfaces: a,b,c
 - ullet 3 bulk surfaces, called correspondingly a,b,c



Construct entropy vector

S(.)	Α	В	С	AB	AC	ВС	ABC
a							
b							
c							
	(S(A):	1	A r	rea[a]	

- Consider simplest configuration w/ 3 uncorrelated regions
 - 3 entangling surfaces: a,b,c
 - 3 bulk surfaces, called correspondingly a,b,c



 \bullet Construct entropy vector & read off corresponding q relations:

S(.)	Α	В	С	AB	AC	BC	ABC	
a								\rightarrow $q_A + q_A$
b								
c							I	all te

$$\Rightarrow q_A + q_{AB} + q_{AC} + q_{ABC} = 0$$
all terms involving $A := \alpha$

Why? Recall:

$$Q(\vec{S}) = q_A S(A) + q_B S(B) + q_C S(C) + q_{AB} S(AB) + q_{AC} S(AC) + q_{BC} S(BC) + q_{ABC} S(ABC)$$

$$= q_A a + q_B b + q_C c + q_{AB} (a + b) + q_{AC} (a + c) + q_{BC} (b + c) + q_{ABC} (a + b + c)$$

$$= a (q_A + q_{AB} + q_{AC} + q_{ABC}) + b (q_B + q_{AB} + q_{BC} + q_{ABC}) + c (q_C + q_{AC} + q_{BC} + q_{ABC})$$

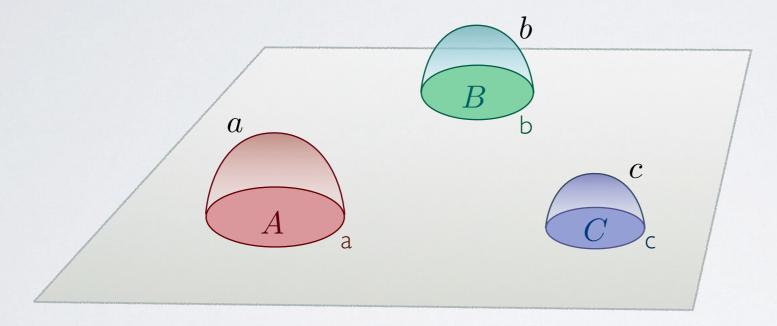
$$= 0$$

ullet Construct entropy vector & read off corresponding q relations:

S(.)	Α	В	С	AB	AC	ВС	ABC
a							
b							I
c							T

all terms involving A

- Consider simplest configuration w/ 3 uncorrelated regions
 - 3 entangling surfaces: a,b,c
 - ullet 3 bulk surfaces, called correspondingly a,b,c

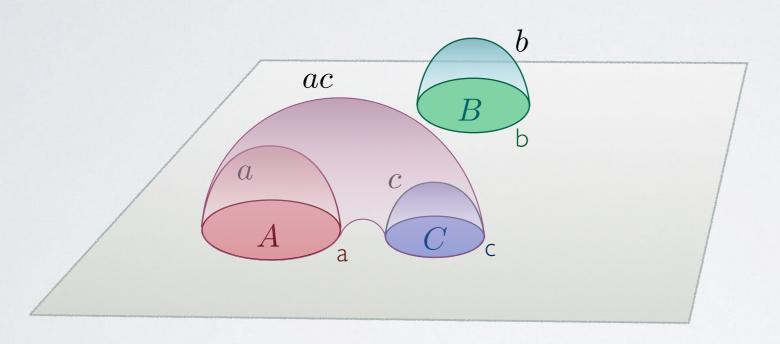


 \bullet Construct entropy vector & read off corresponding q relations:

S(.)	Α	В	С	AB	AC	ВС	ABC		
a								-	$q_A + q_{AB} + q_{AC} + q_{ABC} = 0$
b								-	$q_B + q_{AB} + q_{BC} + q_{ABC} = 0$
c							I	-	$q_C + q_{AC} + q_{BC} + q_{ABC} = 0$

3 eqns for 7 unknowns ⇒ not sufficient to get a hyperplane...

- Add more surfaces by correlating regions (e.g. A & C)
 - still 3 entangling surfaces: a,b,c
 - but now 4 bulk surfaces, a,b,c and extra one, called ac



label by all entangling surfaces the bulk surf. is anchored on

Gives extra row to entanglement table:

Still insufficient for hyperplane...

S(.)	Α	В	С	AB	AC	ВС	ABC
a					0		0
b							
c					0		0
ac							

$$\rightarrow q_B + q_{AB} + q_{BC} + q_{ABC} = 0$$

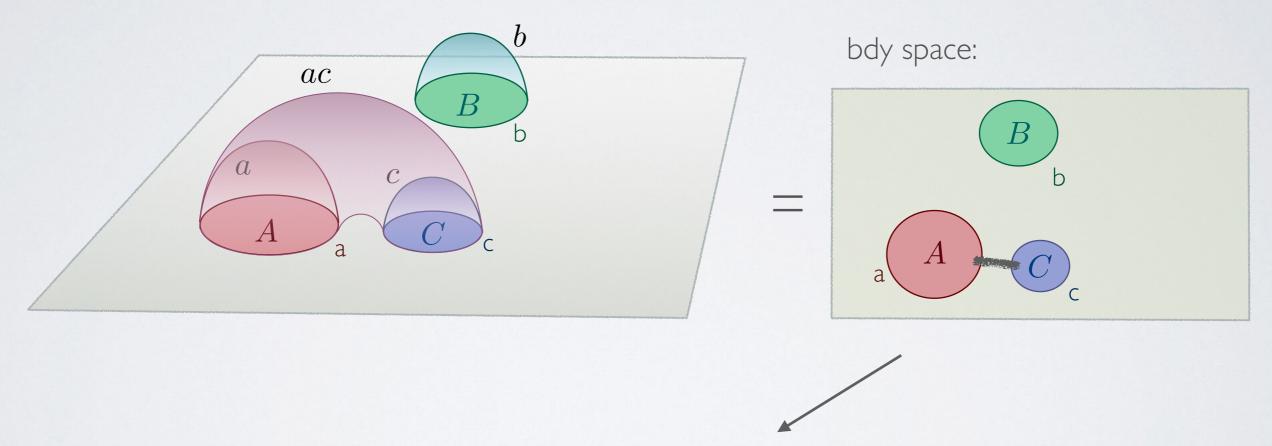
$$\rightarrow q_C + q_{BC} = 0$$

$$\rightarrow q_{AC} + q_{ABC} = 0$$

$$\rightarrow$$
 $q_C + q_{BC} = 0$

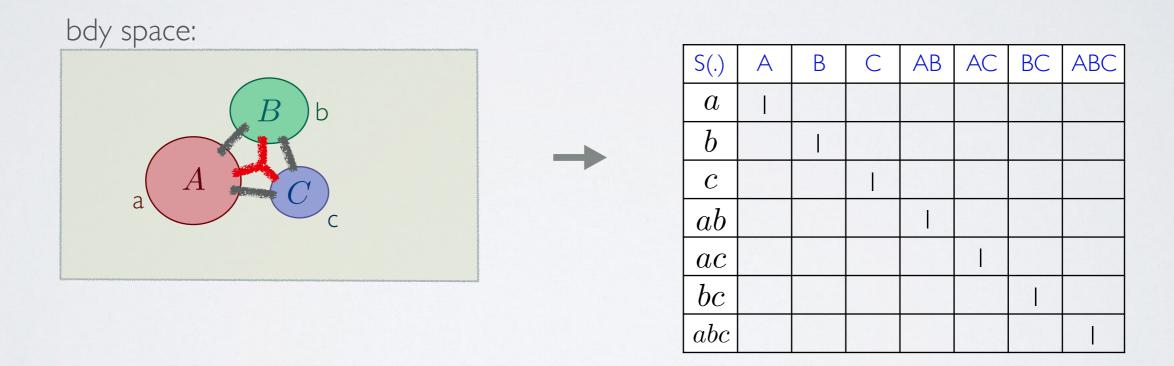
Introduce notation to denote correlation:

bulk



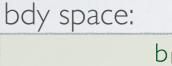
• Depicts a configuration in the CFT

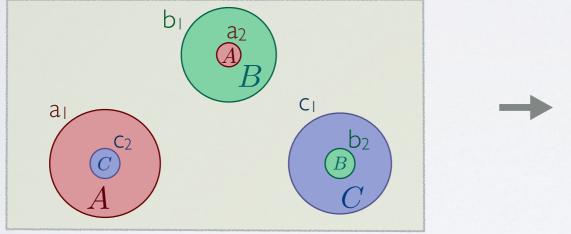
- Consider fully correlated configuration
 - still 3 entangling surfaces: a,b,c
 - but now 7 bulk surfaces: a,b,c,ab,ac,bc, and abc



• now 7 eqns for 7 unknowns \Rightarrow all q_X 's trivially vanish...

- Try correlated configuration w/ I less bulk surface:
 - now 6 entangling surfaces: a₁, b₁, c₁, a₂, b₂, and c₂
 - and also 6 bulk surfaces:



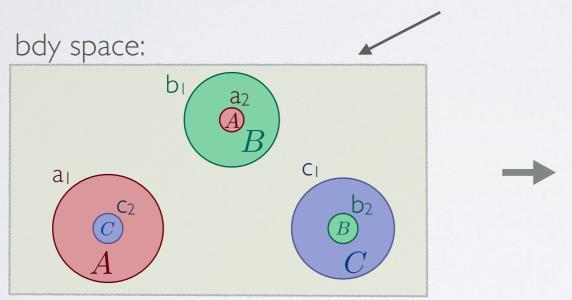


S(.)	Α	В	С	AB	AC	ВС	ABC
a_1				Ι			
a_2							
b_1							
b_2							
c_1							
c_2							

now we DO get a hyperplane:

- Try correlated configuration w/ I less bulk surface:
 - now 6 entangling surfaces: a₁, b₁, c₁, a₂, b₂, and c₂
 - and now 6 bulk surfaces:

But we used enveloped regions, i.e. $\mathcal{L}=1$



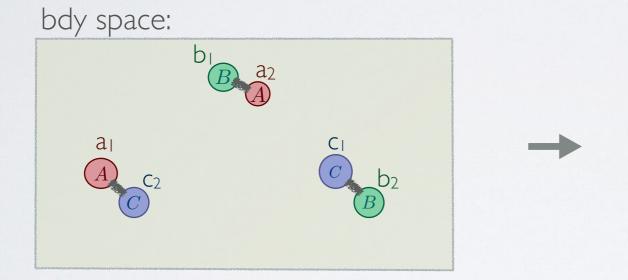
S(.)	Α	В	С	AB	AC	ВС	ABC
a_1				I			
a_2							
b_1							
b_2							
c_1							
c_2							
	+	+	+	1		1	+

now we DO get a hyperplane:

soln. for q's:

• Gives precisely $I_3(A:B:C)=0 \rightarrow MMI$

- We can also do it at $\mathcal{L}=0$, i.e. without enveloping:
 - still 6 entangling surfaces: a₁, b₁, c₁, a₂, b₂, and c₂
 - and 9 bulk surfaces: $a_1, b_1, c_1, a_2, b_2, c_2, a_1c_2, b_1a_2, c_1b_2$



S(.)	Α	В	\cup	AB	AC	ВС	ABC
a_1				1			
a_2							
b_1		I					
b_2		1					
c_1							
c_2							
a_1c_2					I		1
b_1a_2							
c_1b_2							
	+	+	+		-	-	+

- despite 9 (=#relations) > 7 (=#unknowns),
 we still DO get a hyperplane:
- Again gives precisely $I_3(A:B:C)=0 \rightarrow \text{MMI}$

Systematizing the search

- 1. Scan over all configuration classes
 - Consider disjoint regions (can generalize to adjoining as a limit...)
 - (Can abstract any configuration to a graph & identification of non-zero Mls)
 - Organize by enveloping level \$\mathcal{L}\$
- 2. Find the basic configuration "building blocks"
 - Start w/ simplest configuration (e.g. minimal # of entangling surfaces)
 and show when adding complications gives redundant relations
- 3. Combine building blocks in all possible ways to get hyperplanes
 - Need to build up D-1 independent relations between the q's (can be realized by a single configuration)

Canonical form of relations

• e.g. for N=4, $\mathcal{L}=0$: all relations can be rendered into a canonical form

Notation:

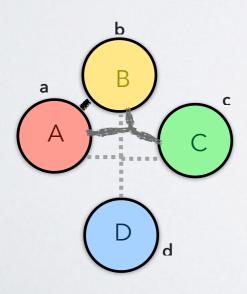
 $\alpha := \text{vanishing sum of all terms } q_x \text{ w/} \times \text{including all occurrences of } A$,

i.e.
$$q_A + q_{AB} + q_{AC} + q_{AD} + q_{ABC} + q_{ABD} + q_{ACD} + q_{ABCD} = 0$$

 $\alpha\beta$:= vanishing sum of all terms q_x w/ x including all occurrences of A and simultaneously B

 $\underline{\alpha}$:= vanishing sum of all terms q_x w/ x NOT including any occurrence of A

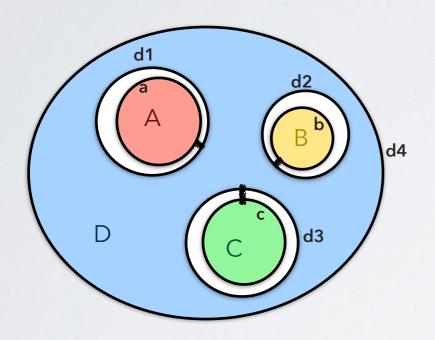
Canonical form is e.g.: α , $\alpha\beta$, $\beta\gamma\delta$, etc. but no exclusions like $\alpha\underline{\beta}$



	Α	В	С	D	АВ	AC	AD	вс	BD	CD	ABC	ABD	ACD	BCD	ABCD	raw relations	reln operation	new relations
а	1					1	1						1			α <u>β</u>	+αβ	α
b		1						1	1					1		β <u>α</u>	+αβ	β
С			1			1		1		1			1	1		γ <u>(αβ)</u>	+αβγ	γ
d				1			1		1	1		1	1	1		δ <u>(αβγ)</u>	+αβγδ	δ
ab					1							1				αβ <u>γ</u>	$+\alpha\beta\gamma$	αβ
abc											1					αβγ <u>δ</u>	+αβγδ	αβγ
abcd															1	αβγδ		αβγδ

Canonical form of relations

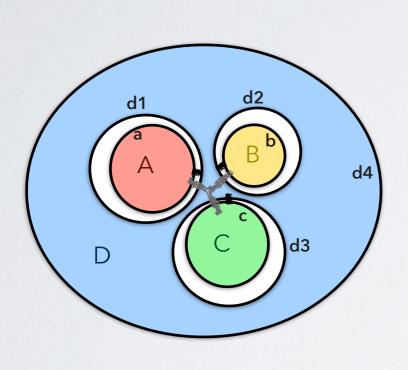
• e.g. for N=4, $\mathcal{L}=1$: i.e. w/ enveloped regions all relations can still be rendered into a canonical form



	A	В	С	D	AB	AC	AD	вс	BD	CD	ABC	ABD	ACD	BCD	ABCD	raw relations	operation	new relns
а	1				1	1					1					α <u>δ</u>	+αδ	α
b		1			1			1			1					β <u>δ</u>		β
С			1			1		1			1						$+\gamma\delta$	γ
d1				1					1	1				1		$\delta \underline{lpha}$		δ
d2				1			1			1			1				_	δ
d3				1			1		1			1				δχ		δ
d4				1			1		1	1		1	1	1	1	δ		δ
ad1							1					1	1		1	αδ		αδ
bd2									1			1		1	1	βδ		βδ
cd3										1			1	1	1	γδ		γδ

Non-canonical form of relations

• e.g. for N=4, \(\mathcal{L} = 1 \):
enveloped regions w/ tripartite correlation:



	Α	В	С	D	AB	AC	AD	ВС	BD	CD	ABC	ABD	ACD	BCD	ABCD	new relations
а	1				1	1										α
b		1			1			1								β
С			1			1		1								γ
d1									1	1				1		δ
d2							1			1			1			δ
d3							1		1			1				δ
d4				1			1		1	1		1	1	1	1	δ
ad1							1					1	1		1	αδ
bd2									1			1		1	1	βδ
cd3										1			1	1		γδ
abc											1					αβγ <u>δ</u> δ <u>α</u> βγ
d1d2d3				1												δαβχ

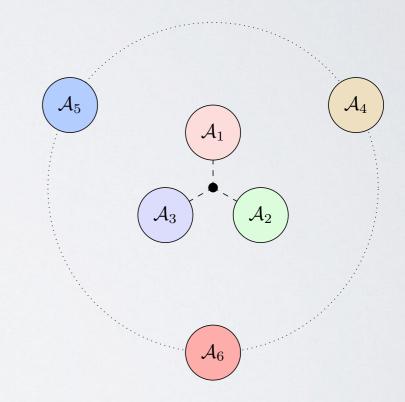
• the last two terms cannot be converted to canonical form...

Canonical building blocks

- Consider CFT in vacuum state on \mathbb{R}^2
 - Take single disk per color (disjoint from all others)
 - Change position of disks to change pattern of mutual information

Example:

- N=6
- canonical building block $\mathfrak{C}_6^{\circ}[\mathcal{A}_1\mathcal{A}_2\mathcal{A}_3]$
- → N+1=7 bulk surfaces
- gives canonical relations $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_1\alpha_2\alpha_3\}$



- Composing building blocks:
 - Take several widely-separated configurations
 - Resulting q-relations = union of the sets of relations for each block

Classification results for N=3

- Complete N=3 classification
 - I_3 (\rightarrow MMI) follows easily (from simple no-enveloping $\mathcal{L}=0$ configuration)

$$I_3(A:B:C) = S_A + S_B + S_C - S_{AB} - S_{AC} - S_{BC} + S_{ABC}$$

No additional inequalities can exist (by eqn counting argument)

- \rightarrow N = 3 holographic entropy polyhedron (=holographic entropy cone):
 - 3 permutations of SA(I,I) $S_A + S_B \ge S_{AB}$
 - 3 permutations of AL(1,3) $S_A + S_{ABC} \ge S_{BC}$
 - I (permutation symmetric) MMI $S_{AB} + S_{BC} + S_{AC} \ge S_A + S_B + S_C + S_{ABC}$ $\Rightarrow 7 \text{ facets}$

Classification results for N=4

- New N = 4 information quantities (all sign-indefinite)
 - At $\mathcal{L}=0$:

$$I_4^{ABCD} = S_A + S_B + S_C + S_D - S_{AB} - S_{AC} - S_{AD} - S_{BC} - S_{BD} - S_{CD} + S_{ABC} + S_{ABC} + S_{ABD} + S_{ACD} + S_{BCD} - S_{ABCD}$$

• At $\mathcal{L}=1$:

written more compactly in terms of \mathbf{I}_n 's:

$$\mathbf{Q}_{4}^{(1)} = S_{\mathcal{A}} - S_{\mathcal{B}} - S_{\mathcal{AC}} - S_{\mathcal{AD}} + S_{\mathcal{BC}} + S_{\mathcal{BD}} + S_{\mathcal{ACD}} - S_{\mathcal{BCD}} = \mathbf{I}_{3}^{\mathcal{ACD}} - \mathbf{I}_{3}^{\mathcal{BCD}}$$

$$\mathbf{Q}_{4}^{(2)} = S_{\mathcal{A}} - S_{\mathcal{AB}} - S_{\mathcal{AC}} - S_{\mathcal{AD}} + S_{\mathcal{ABC}} + S_{\mathcal{ABD}} + S_{\mathcal{ACD}} - S_{\mathcal{ABCD}} = -\mathbf{I}_{3}^{\mathcal{BCD}} + \mathbf{I}_{4}^{\mathcal{ABCD}}$$

$$\mathbf{Q}_{4}^{(4)} = 2S_{\mathcal{A}} + S_{\mathcal{B}} - 2S_{\mathcal{AB}} - S_{\mathcal{AC}} - S_{\mathcal{AD}} + S_{\mathcal{CD}} + S_{\mathcal{ABC}} + S_{\mathcal{ABC}} + S_{\mathcal{ABD}} - S_{\mathcal{BCD}}$$

$$= \mathbf{I}_{3}^{\mathcal{ABC}} + \mathbf{I}_{3}^{\mathcal{ABD}} - \mathbf{I}_{3}^{\mathcal{BCD}}$$

$$\mathbf{Q}_{4}^{(5)} = S_{\mathcal{A}} + S_{\mathcal{BC}} + S_{\mathcal{BD}} + S_{\mathcal{CD}} - S_{\mathcal{ABC}} - S_{\mathcal{ABD}} - S_{\mathcal{ACD}} - 2S_{\mathcal{BCD}} + 2S_{\mathcal{ABCD}}$$

$$= \mathbf{I}_{3}^{\mathcal{ABC}} + \mathbf{I}_{3}^{\mathcal{ABD}} + \mathbf{I}_{3}^{\mathcal{ACD}} - \mathbf{I}_{4}^{\mathcal{ABCD}}$$

$$\mathbf{Q}_{4}^{(6)} = 3S_{\mathcal{A}} - 2S_{\mathcal{A}\mathcal{B}} - 2S_{\mathcal{A}\mathcal{C}} - 2S_{\mathcal{A}\mathcal{D}} + S_{\mathcal{B}\mathcal{C}} + S_{\mathcal{B}\mathcal{D}} + S_{\mathcal{C}\mathcal{D}} + S_{\mathcal{A}\mathcal{B}\mathcal{C}} + S_{\mathcal{A}\mathcal{B}\mathcal{D}} + S_{\mathcal{A}\mathcal{C}\mathcal{D}} - 2S_{\mathcal{B}\mathcal{C}\mathcal{D}}$$

$$= \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{D}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{C}\mathcal{D}} - 2\mathbf{I}_{3}^{\mathcal{B}\mathcal{C}\mathcal{D}}$$

$$\mathbf{Q}_{4}^{(7)} = S_{\mathcal{A}\mathcal{B}} + S_{\mathcal{A}\mathcal{C}} + S_{\mathcal{A}\mathcal{D}} + S_{\mathcal{B}\mathcal{C}} + S_{\mathcal{B}\mathcal{D}} + S_{\mathcal{C}\mathcal{D}}$$
$$-2S_{\mathcal{A}\mathcal{B}\mathcal{C}} - 2S_{\mathcal{A}\mathcal{B}\mathcal{D}} - 2S_{\mathcal{A}\mathcal{C}\mathcal{D}} - 2S_{\mathcal{B}\mathcal{C}\mathcal{D}} + 3S_{\mathcal{A}\mathcal{B}\mathcal{C}\mathcal{D}} = \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{C}\mathcal{D}} + \mathbf{I}_{3}^{\mathcal{B}\mathcal{C}\mathcal{D}} + 3\mathbf{I}_{4}^{\mathcal{A}\mathcal{B}\mathcal{C}\mathcal{D}}$$

Classification results for N=4

- New N = 4 information quantities (all sign-indefinite)
 - At $\mathcal{L}=0$:

$$I_4^{ABCD} = S_A + S_B + S_C + S_D - S_{AB} - S_{AC} - S_{AD} - S_{BC} - S_{BD} - S_{CD} + S_{ABC} + S_{ABC} + S_{ABD} + S_{ACD} + S_{BCD} - S_{ABCD}$$

• At $\mathcal{L}=1$: (pairwise related by purifications)

$$\mathbf{Q}_{4}^{(1)} = S_{\mathcal{A}} - S_{\mathcal{B}} - S_{\mathcal{AC}} - S_{\mathcal{AD}} + S_{\mathcal{BC}} + S_{\mathcal{BD}} + S_{\mathcal{ACD}} - S_{\mathcal{BCD}} = \mathbf{I}_{3}^{\mathcal{ACD}} - \mathbf{I}_{3}^{\mathcal{BCD}}$$

$$= \mathbf{Q}_{4}^{(2)} = S_{\mathcal{A}} - S_{\mathcal{AB}} - S_{\mathcal{AC}} - S_{\mathcal{AD}} + S_{\mathcal{ABC}} + S_{\mathcal{ABD}} + S_{\mathcal{ACD}} - S_{\mathcal{ABCD}} = -\mathbf{I}_{3}^{\mathcal{BCD}} + \mathbf{I}_{4}^{\mathcal{ABCD}}$$

$$= -\mathbf{I}_{3}^{\mathcal{BCD}} + \mathbf{I}_{4}^{\mathcal{ABCD}}$$

$$\mathbf{Q}_{4}^{(4)} = 2S_{\mathcal{A}} + S_{\mathcal{B}} - 2S_{\mathcal{A}\mathcal{B}} - S_{\mathcal{A}\mathcal{C}} - S_{\mathcal{A}\mathcal{D}} + S_{\mathcal{C}\mathcal{D}} + S_{\mathcal{A}\mathcal{B}\mathcal{C}} + S_{\mathcal{A}\mathcal{B}\mathcal{D}} - S_{\mathcal{B}\mathcal{C}\mathcal{D}}$$

$$= \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{D}} - \mathbf{I}_{3}^{\mathcal{B}\mathcal{C}\mathcal{D}}$$

$$\mathbf{Q}_{4}^{(5)} = S_{\mathcal{A}} + S_{\mathcal{BC}} + S_{\mathcal{BD}} + S_{\mathcal{CD}} - S_{\mathcal{ABC}} - S_{\mathcal{ABD}} - S_{\mathcal{ACD}} - 2S_{\mathcal{BCD}} + 2S_{\mathcal{ABCD}}$$

$$= \mathbf{I}_{3}^{\mathcal{ABC}} + \mathbf{I}_{3}^{\mathcal{ABCD}} + \mathbf{I}_{3}^{\mathcal{ACD}} - \mathbf{I}_{4}^{\mathcal{ABCD}}$$

$$\mathbf{Q}_{4}^{(6)} = 3S_{\mathcal{A}} - 2S_{\mathcal{A}\mathcal{B}} - 2S_{\mathcal{A}\mathcal{C}} - 2S_{\mathcal{A}\mathcal{D}} + S_{\mathcal{B}\mathcal{C}} + S_{\mathcal{B}\mathcal{D}} + S_{\mathcal{C}\mathcal{D}} + S_{\mathcal{A}\mathcal{B}\mathcal{C}} + S_{\mathcal{A}\mathcal{B}\mathcal{D}} + S_{\mathcal{A}\mathcal{C}\mathcal{D}} - 2S_{\mathcal{B}\mathcal{C}\mathcal{D}}$$

$$= \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{D}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{C}\mathcal{D}} - 2\mathbf{I}_{3}^{\mathcal{B}\mathcal{C}\mathcal{D}}$$

$$= \mathbf{Q}_{4}^{(7)} = S_{\mathcal{A}\mathcal{B}} + S_{\mathcal{A}\mathcal{C}} + S_{\mathcal{A}\mathcal{D}} + S_{\mathcal{B}\mathcal{C}} + S_{\mathcal{B}\mathcal{D}} + S_{\mathcal{C}\mathcal{D}}$$

$$\mathbf{Q}_{4}^{(\prime)} = S_{\mathcal{A}\mathcal{B}} + S_{\mathcal{A}\mathcal{C}} + S_{\mathcal{A}\mathcal{D}} + S_{\mathcal{B}\mathcal{C}} + S_{\mathcal{B}\mathcal{D}} + S_{\mathcal{C}\mathcal{D}}$$

$$-2S_{\mathcal{A}\mathcal{B}\mathcal{C}} - 2S_{\mathcal{A}\mathcal{B}\mathcal{D}} - 2S_{\mathcal{A}\mathcal{C}\mathcal{D}} - 2S_{\mathcal{B}\mathcal{C}\mathcal{D}} + 3S_{\mathcal{A}\mathcal{B}\mathcal{C}\mathcal{D}} = \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}\mathcal{D} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{C}\mathcal{D}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}\mathcal{D}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{B}\mathcal{C}\mathcal{D}\mathcal{C} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{C}\mathcal{D}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{C}\mathcal{D}\mathcal{C} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{C}\mathcal{D}\mathcal{C}} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{C}\mathcal{D}\mathcal{C}\mathcal{D}\mathcal{C} + \mathbf{I}_{3}^{\mathcal{A}\mathcal{C}\mathcal{D}\mathcal{C}$$

Classification results for all N

- Complete classification for disjoint Z=0 configurations, ∀ N:
 - The \mathbf{I}_n -Theorem: the only information quantities we can get for disjoint $\mathcal{L}=0$ configurations are the \mathbf{I}_n 's.
 - ullet the only genuinely N-partite information quantity is ${f I}_{f N}$

$$I_{n}(A_{\ell_{1}}: A_{\ell_{2}}: \dots : A_{\ell_{n}}) = S_{\ell_{1}} + S_{\ell_{2}} + \dots + S_{\ell_{n}}$$
$$- S_{\ell_{1}\ell_{2}} - S_{\ell_{1}\ell_{3}} - \dots - S_{\ell_{n-1}\ell_{n}}$$
$$+ S_{\ell_{1}\ell_{2}\ell_{3}} + \dots + (-1)^{n+1} S_{\ell_{1}\ell_{2}\dots\ell_{n}}$$

- Using L= I building block w/ single non-canonical constraint
 - We obtain another infinite family of information quantities:

$$J_{\mathsf{n}}(A_{\ell_1} : A_{\ell_2} : \dots : A_{\ell_{\mathsf{n}}}) = S_{\ell_1 \ell_2} + S_{\ell_1 \ell_3} + \dots + S_{\ell_{\mathsf{n}-1} \ell_{\mathsf{n}}}$$
$$-2S_{\ell_1 \ell_2 \ell_3} - \dots + (-1)^{\mathsf{n}} (\mathsf{n} - 1) S_{\ell_1 \ell_2 \dots \ell_{\mathsf{n}}}$$

Nicer representations for relations

[He, Headrick, VH '19]

S-basis

- Specify individual entropies of all composite subsystems
 - e.g. for N=3, entropy vector = $\vec{S} = \{S_1, S_2, S_3, S_{12}, S_{13}, S_{23}, S_{123}\}$

I-basis

Specify multipartite information for all sets of single-color subsystems

• e.g. for N=3, entropy vector
$$= \vec{S} = \{I_1,\ I_2,\ I_3,\ I_{12},\ I_{13},I_{23},\ I_{123}\}_{[I]}$$
 notational shorthand: $= S(A_1)$ $= I_2(A_1:A_2)$ $= I_3(A_1:A_2:A_3)$

K-basis

Specify perfect tensor ∀ even sets of single-color subsystems + purifier

• e.g. for N=3,
$$\vec{S} = \{K_{12}, \ K_{13}, \ K_{14}, \ K_{23}, \ K_{24}, \ K_{34}, \ K_{1234}\}_{[K]}$$
 K's = coefficients of
$$A_4 \bullet \int_{A_3}^{A_1} \bullet_{A_2}$$

Nicer representations for N<4 relations

N	Relation	S-basis	I-basis	K-basis	primitive:
2,3	$SA_{(1,1)}$	$\mathtt{S}_1 + \mathtt{S}_2 - \mathtt{S}_{12}$	I_{12}	$K_{12}^{(N)}$	+
3	$SA_{(1,2)}$	$S_1 + S_{23} - S_{123}$	$I_{12} + I_{13} - I_{123}$	$\mathbb{K}_{12}^{(3)} + \mathbb{K}_{13}^{(3)} + \mathbb{K}_{1234}^{(3)}$	
2	$AL_{(1,2)}$	$\mathtt{S}_1 + \mathtt{S}_{12} - \mathtt{S}_2$	$2I_1 - I_{12}$	$K_{13}^{(2)}$	+
3	$AL_{(1,2)}$	$\mathtt{S}_1 + \mathtt{S}_{12} - \mathtt{S}_2$	$2I_1 - I_{12}$	$\mathbb{K}_{13}^{(3)} + \mathbb{K}_{14}^{(3)} + \mathbb{K}_{1234}^{(3)}$	
3	$AL_{(1,3)}$	$S_1 + S_{123} - S_{23}$	$2I_1 - I_{12} - I_{13} + I_{123}$	$K_{14}^{(3)}$	-
3	$\mathrm{AL}_{(2,3)}$	$S_{12} + S_{123} - S_3$	$2I_{1} + 2I_{2} - 2I_{12} - I_{13}$ $-I_{23} + I_{123}$	$K_{14}^{(3)} + K_{24}^{(3)} + K_{1234}^{(3)}$	
3	$SSA_{(2,2)}$	$S_{12} + S_{23} - S_2 - S_{123}$	$I_{13} - I_{123}$	$K_{13}^{(3)} + K_{1234}^{(3)}$	
3	$WM_{(2,2)}$	$S_{12} + S_{23} - S_1 - S_3$	$2I_2 - I_{12} - I_{23}$	$K_{24}^{(3)} + K_{1234}^{(3)}$	
3	$MMI_{(1,1,1)}$	$-S_1 - S_2 - S_3 + S_{12} + S_{13} + S_{23} - S_{123}$	$-I_{123}$	$K_{1234}^{(3)}$	←

Observations:

- K-basis representation is more (or as) compact than S-basis one
- K-basis representation is most compact for primitive quantities
- K-basis representation for all Q ≥ 0 has all coefficients ≥ 0

Nicer representations for N=5 relations

Relation	Basis	Primitive Information Quantity (all univ. holographic inequalities)		
$SA_{(1,1)}$	S (3)	$\mathbf{S}_1 + \mathbf{S}_2 - \mathbf{S}_{12}$		
	I (1)	I_{12}		
	K (1)	$\mid K_{12}^{(5)} \mid$		
$MMI_{(1,1,1)}$	S (7)	$-S_1 - S_2 - S_3 + S_{12} + S_{13} + S_{23} - S_{123}$		
	I (1)	$-I_{123}$		
	K (3)	$K_{1234}^{(5)} + K_{1235}^{(5)} + K_{1236}^{(5)}$		
$MMI_{(1,2,2)}$	S (7)	$-S_1 - S_{23} - S_{45} + S_{123} + S_{145} + S_{2345} - S_{12345}$		
	I (9)	$-I_{124} - I_{125} - I_{134} - I_{135} + I_{1234} + I_{1235} + I_{1245} + I_{1345} - I_{12345}$		
	K (5)	$\mathbf{K}_{1246}^{(5)} + \mathbf{K}_{1256}^{(5)} + \mathbf{K}_{1346}^{(5)} + \mathbf{K}_{1356}^{(5)} + \mathbf{K}_{123456}^{(5)}$		
$Q_1^{(5)}$	S (11)	$-S_{12}-S_{23}-S_{34}-S_{45}-S_{15}+S_{123}+S_{234}+S_{345}+S_{145}+S_{125}-S_{12345}$		
	I (11)			
	K (6)	$ \left \begin{array}{l} \mathbf{K}_{1246}^{(5)} + \mathbf{K}_{1346}^{(5)} + \mathbf{K}_{1356}^{(5)} + \mathbf{K}_{2356}^{(5)} + \mathbf{K}_{2456}^{(5)} + 2\mathbf{K}_{123456}^{(5)} \end{array} \right $		
$Q_2^{(5)}$	S (16)			
& 2		$-\mathtt{S}_{1234} - \mathtt{S}_{1235} - \mathtt{S}_{1245}$		
	I (7)	$-I_{124} - I_{125} - I_{135} - I_{234} + I_{1234} + I_{1235} + I_{1245}$		
	K (7)	$ K_{1246}^{(5)} + K_{1256}^{(5)} + K_{1345}^{(5)} + K_{1356}^{(5)} + K_{2345}^{(5)} + K_{2346}^{(5)} + 3K_{123456}^{(5)} $		
$Q_3^{(5)}$	S (19)			
43		$+S_{245} + S_{345} - S_{234} - S_{1235} - S_{1245} - S_{1345}$		
	I (7)	$-I_{125} - I_{135} - I_{145} - I_{234} + I_{1235} + I_{1245} + I_{1345}$		
	K (7)	$\mathtt{K}_{1234}^{(5)} + \mathtt{K}_{1256}^{(5)} + \mathtt{K}_{1356}^{(5)} + \mathtt{K}_{1456}^{(5)} + \mathtt{K}_{2345}^{(5)} + \mathtt{K}_{2346}^{(5)} + 3\mathtt{K}_{123456}^{(5)}$		
$Q_4^{(5)}$	S (16)	$ \left \begin{array}{c} - \mathbb{S}_2 - \mathbb{S}_3 - \mathbb{S}_4 - \mathbb{S}_5 - \mathbb{S}_{12} - \mathbb{S}_{13} + \mathbb{S}_{23} + \mathbb{S}_{45} + \mathbb{S}_{123} + \mathbb{S}_{124} + \mathbb{S}_{125} + \mathbb{S}_{134} + \mathbb{S}_{135} - \mathbb{S}_{145} \end{array} \right $		
4	~ (10)	$-S_{1234} - S_{1235}$		
	I (6)	$-I_{123} - I_{145} - I_{234} - I_{235} + I_{1234} + I_{1235}$		
	K (8)	$\mathtt{K}_{1236}^{(5)} + \mathtt{K}_{1245}^{(5)} + \mathtt{K}_{1345}^{(5)} + \mathtt{K}_{1456}^{(5)} + 2\mathtt{K}_{2345}^{(5)} + \mathtt{K}_{2346}^{(5)} + \mathtt{K}_{2356}^{(5)} + 2\mathtt{K}_{123456}^{(5)}$		
$Q_5^{(5)}$	S (22)	$-2S_{12} - 2S_{13} - S_{14} - S_{15} - S_{23} - 2S_{24} - 2S_{35} - S_{45} + 3S_{123} + 3S_{124} + S_{125} + S_{134}$		
4 5		$+3 S_{135} + S_{145} + S_{234} + S_{235} + S_{245} + S_{345} - 2 S_{1234} - 2 S_{1235} - S_{1245} - S_{1345}$		
	I (10)	$ - \mathbf{I}_{123} - 2\mathbf{I}_{125} - 2\mathbf{I}_{134} - \mathbf{I}_{145} - \mathbf{I}_{234} - \mathbf{I}_{235} + 2\mathbf{I}_{1234} + 2\mathbf{I}_{1235} + \mathbf{I}_{1245} + \mathbf{I}_{1345} $		
	K (10)	$ \left[\begin{array}{c} \mathbf{K}_{1236}^{(5)} + \mathbf{K}_{1245}^{(5)} + 2\mathbf{K}_{1256}^{(5)} + \mathbf{K}_{1345}^{(5)} + 2\mathbf{K}_{1346}^{(5)} + \mathbf{K}_{1456}^{(5)} + 2\mathbf{K}_{2345}^{(5)} + \mathbf{K}_{2346}^{(5)} + \mathbf{K}_{2356}^{(5)} + 6\mathbf{K}_{123456}^{(5)} \end{array} \right] $		

Nicer representations for N=4 relations

Relation	Basis	Primitive Information Quantity		
\mathtt{I}_4	S (15)	$ S_1 + S_2 + S_3 + S_4 - S_{12} - S_{13} - S_{14} - S_{23} - S_{24} - S_{34} + S_{123} + S_{124} + S_{134} + S_{234} - S_{1234} $		
	I (1)	I_{1234}		
	K (1)	$-2\mathtt{K}^{(4)}_{1234}$		
$Q_1^{(4)}$	S (8)	$S_1 - S_2 - S_{13} - S_{14} + S_{23} + S_{24} + S_{134} - S_{234}$		
	I (2)	$I_{134} - I_{234}$		
	K (2)	$-\mathtt{K}_{1345}^{(4)}+\mathtt{K}_{2345}^{(4)}$		
$Q_2^{(4)}$	S (8)	$S_1 - S_{12} - S_{13} - S_{14} + S_{123} + S_{124} + S_{134} - S_{1234}$		
	I (2)	$-I_{234} + I_{1234}$		
	K (2)	$-\mathtt{K}_{1234}^{(4)}+\mathtt{K}_{2345}^{(4)}$		
$Q_4^{(4)}$	S (9)	$2S_1 + S_2 - 2S_{12} - S_{13} - S_{14} + S_{34} + S_{123} + S_{124} - S_{234}$		
	I (3)	$I_{123} + I_{124} - I_{234}$		
	K (4)	$-\mathtt{K}_{1234}^{(4)}-\mathtt{K}_{1235}^{(4)}-\mathtt{K}_{1245}^{(4)}+\mathtt{K}_{2345}^{(4)}$		
$Q_5^{(4)}$	S (9)	$S_1 + S_{23} + S_{24} + S_{34} - S_{123} - S_{124} - S_{134} - 2S_{234} + 2S_{1234}$		
	I (4)	$I_{123} + I_{124} + I_{134} - 2I_{1234}$		
(4)	K (4)	$\mathtt{K}_{1234}^{(4)} - \mathtt{K}_{1235}^{(4)} - \mathtt{K}_{1245}^{(4)} - \mathtt{K}_{1345}^{(4)}$		
$Q_6^{(4)}$	S (11)	$3\mathtt{S}_{1} - 2\mathtt{S}_{12} - 2\mathtt{S}_{13} - 2\mathtt{S}_{14} + \mathtt{S}_{23} + \mathtt{S}_{24} + \mathtt{S}_{34} + \mathtt{S}_{123} + \mathtt{S}_{124} + \mathtt{S}_{134} - 2\mathtt{S}_{234}$		
	I (4)	$I_{123} + I_{124} + I_{134} - 2I_{234}$		
	K (5)	$-\mathtt{K}_{1234}^{(4)}-\mathtt{K}_{1235}^{(4)}-\mathtt{K}_{1245}^{(4)}-\mathtt{K}_{1345}^{(4)}+2\mathtt{K}_{2345}^{(4)}$		
$Q_7^{(4)}$	S (11)			
	I (5)	$I_{123} + I_{124} + I_{134} + I_{234} - 3I_{1234}$		
	K (5)	$2\mathtt{K}_{1234}^{(4)} - \mathtt{K}_{1235}^{(4)} - \mathtt{K}_{1245}^{(4)} - \mathtt{K}_{1345}^{(4)} - \mathtt{K}_{2345}^{(4)}$		

- All these are sign-indefinite.
- K-basis expressions now (mostly) have mixes signs...

Advantages of K basis:

[He, Headrick, VH '19]

- K-basis manifests larger symmetry (S_{N+1}) than the S and I bases.
- Any non-negative information quantity necessarily has non-negative coefficients when expressed in the K-basis.
- All (even-party) perfect tensors are extremal rays of holographic entropy cone and in fact also the full quantum entropy cone.
- Q: Is the K-basis the best we can do?

Sieve

Original purpose

 Constrain holographic entropy polyhedron by ruling out information quantities which can have either sign (depending on configuration)

Basic idea

- Determine sign of the information quantity for canonical building block
- Determine sign for local purification of canonical building block
- If signs differ, reject the quantity from holographic entropy polyhedron
- Remaining quantities give us candidates for hol. ent. polyhedron

In practice

- The sieve is actually far more powerful!
- Start abstractly by constraints on coefficients so as to avoid rejection
- Consider extremal rays of the coefficient space cone
- These give candidate universal holographic inequalities

Summary

- Utility of proto-entropy & hyperplane arrangement
 - Saturation of universal holographic inequalities by 'cancelling surfaces'
 - ⇒ cutoff-independent (even for single CFT)
 - Logic of construction is independent of N
 - Automatically avoids generating redundant relations (such as SSA)
- Utility of sieve
 - Surprisingly powerful in constraining holographic entropy polyhedron
 - provides an inner bound, even without any knowledge of the arrangement
 - We can recover the entropy polyhedron for N=5 without evoking the building blocks
- Conjecture: "RT cone = HRT cone"
 - Since cancelation of surfaces works equally well for time-dependence

Summary

Results so far:

- Recovers holographic entropy cone for N=2 and N=3
- At N=4, no new universal holographic inequalities, but 4 extra IQs
- At N=5, sieve recovers all proven inequalities for holographic entropy cone (along with candidate $-I_5 \geq 0$ which is not a true inequality); explicit construction [Hernandez-Cuenca] confirms only 5 new inequalities.

For general N:

- Complete classification for $\mathcal{L}=0$ simple configurations: \Rightarrow the I_n -Thm: the only IQs we can get are I_n 's for $n \leq N$
- New infinite family of information quantities for $\mathcal{L}=1$

Outlook

• Seems promising: expect only few new inequalities at each N...

Open Questions

- Efficiency of generating holographic entropy arrangement ∀ N
 - Obtaining/characterizing complete set of building blocks
 - Relating arrangements for different N
- Obtaining the holographic entropy polyhedron ▼ N
 - Efficiency of the sieve
 - Proving candidate inequalities
- Interpreting information quantities and universal holographic inequalities
 - Structure of density matrix
 - Role of hyperplane arrangement beyond holography (in general QFT)
 - New insights into the entanglement structures of holographic CFTs w/ geometric states
 - Relation to Mutual Information Arrangement

Stay Tuned...

