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(Ryu & Takayanagi "06)
Holographic Entanglement Entropy:

AdS boundary n
2 boundary
conformal field
theory
v

Bekenstein-
AdS bulk Hawking
spacetime | A formula
S(A) = min ——
v~y 4G N

* holographic EE is a fruitful forum for bulk-boundary dialogue:
—> new lessons about quantum field theories

—> new lessons about quantum gravity
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En'rr'opy
Susskind: Entanglement”is "not enough!

* “to understand the rich geometric structures that exist behind
the horizon and which are predicted by general relativity.”

o e * recall Sgr only probes the
N\ / eigenvalues of the density matrix

\\ A// Ser = —Tr|palogpa]

! = = Alogh

4 . * would like a new probe which
/ N is “sensitive to phases”

P & |TFD)~ Ze QUSSR
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(cf. Hartman & Maldacena)
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Susskind: Entanglement"isynot enough!

* “to understand the rich geometric structures that exist behind
the horizon and which are predicted by general relativity.”
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Holographic Complexity: A Tale of Two,Dualities

) or more )
e complexity=volume: evaluate proper volume of extremal codim-one

surface connecting Cauchy surfaces in boundary theory (cf holo EE)
(Stanford & Susskind)

Complexity = Volume Complexity = Action
\_—-—/
tL—’\__/‘_tR tr—> «~lp
V(B
vt = v G ea(s) = e
V B N el \.I

e complexity=action: evaluate gravitational action for Wheeler-DeWitt
patch = domain of dependence of bulk time slice connecting

boundary Cauchy slices in CFT  (Brown, Roberts, Swingle, Susskind & Zhao)

* both of these gravitational “observables” probe the black hole
interior (at arbitrarily late times on boundary)
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) or more )
e complexity=volume: evaluate proper volume of extremal codim-one

surface connecting Cauchy surfaces in boundary theory (cf holo EE)
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e complexity=action: evaluate gravitational action for Wheeler-DeWitt
patch = domain of dependence of bulk time slice connecting

boundary Cauchy slices in CFT  (Brown, Roberts, Swingle, Susskind & Zhao)

e complexity=volume?2.0: evaluate spacetime volume of WDW patch

, VA
ey -

(Couch, Fischler & Nguyen)
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Holographic Complexity: A Tale of Two Dualities

Complexity = Volume Complexity = Action

=

() el SN /IR

 connection of complexity=volume to AdS/MERA

* linear growth (at late times) (d = boundary dimension)
dCV & dC 2M
=V — M A — 2=
dt lt—soco d—1 (planar) dt lt—co T

* shockwaves and the “switchback effect”
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Complexity = Volume Complexity = Action
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 connection of complexity=volume to AdS/MERA

* linear gro
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* shockwaves and the “switchback effect”



Complexity:

e computational complexity: how difficult is it to implement a task? eg,
how difficult is it to prepare a particular quantum state?

e quantum circuit model:

) = U |vo)

unitary operator—J L simple reference state

bw-lt from set of €8, |00000 - - - 0)
simple gates
Toffoli gate Hadamard gate
) ) L
) { o) @) —H]— L0+ S
€) & ab)
Phase-shift gate Ancillary gate Erasure gate

|a) P i |a) 0) ——10) o

Tr
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e quantum circuit model:
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unitary operator—J L simple reference state
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simple gates

tolerance: ‘ |7,D> — ‘¢>Target |2 S E

* complexity = minimum number of gates required to prepare
the desired target state (ie, need to find optimal circuit)




Complexity:

e computational complexity: how difficult is it to implement a task? eg,
how difficult is it to prepare a particular state?

e quantum circuit model:

) = U |vo)

unitary operator—J L simple reference state

built from set of €8, |00000 - - - 0)
simple gates

tolerance: ‘ |7,D> — ‘¢>Target |2 S E

* complexity = minimum number of gates required to prepare
the desired target state (ie, need to find optimal circuit)

* How do we apply these ideas in quantum field theory?



Quantum Field Theory: (with Jefferson)

* free scalar field theory (in d spacetime dimensions)

H = ;/dd_lzc {W(ZC)Q + V(z)? +m2qb(m)2}
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* free scalar field theory (in d spacetime dimensions)

H = ;/dd_lzc {W(ZC)Q + V(z)? +m2qb(m)2}




Quantum Field Theory: (with Jefferson)

* an infinite family of coupled harmonic oscillators

H = 1/dd_1:c {W(ZC)Q + V(z)? +m2qb(m)2}

2




Reference state: Yr(x;) ~ exp [——M Z ]

e factorized Gaussian: all lattice sites disentangled



Reference state: VYr(;) >~ exp [—;—M Z x?]
e factorized Gaussian: all lattice sites disentangled
Gates/Unitaries:
* natural operators: Ti, Dj [zi, 0] =1 0;;
—> (i =expliex;p;] (¢ F#J) “shift x; by € x;” (entangling)

€
Qii = exp [Z 5(% Di T Di iﬁz)}

L2 “rescale x; to e®x;” (scaling)
= /2 explie z; pi]

infinitesimal parameter: e <1
gates produce small changes
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e ground state



Reference state: Yr(x;) ~ exp [——N Z ]

e factorized Gaussian: all lattice sites disentangled
Gates/Unitaries:
* natural operators: Ti, Dj [zi, 0] =1 0;;
— Qi; =expliex;p;] (1 #J) “shift Xj by € x;” (entangling)
Qii = exp [@g(wz pi + pi -’Ez)}

L2 “rescale x; to e®x;” (scaling)
e¢/? explie z; p;]

Target state: Yr(x;) ~ eXp[ Y wpw ]

e ground state

* have infinite number of possible circuits!!

¢T(xz) — ... ]-Cill,Q 5‘5222,1 20121,1 CVll 1 77DR(:EZ)

How do we find optimal circuit??



How do we find optimal circuit??

» adapt geometric construction of Mike Neilsen
Nielsen [arXiv:0502070]; Neilsen et al [arXiv:0603161]; Neilsen & Dowling [arXiv:0701004]

e circuits distinguish constructions of desired transformation Urr with
sequences of states, ie, paths in space of states between ¥r and ¢

] S

Y1 =Urr¢r

wT(:Cz) — ... 10111,2 ;222,1 20:6121,1 10:6111,1 'QbR(:Ez)
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How do we find optimal circuit??

» adapt geometric construction of Mike Neilsen
Nielsen [arXiv:0502070]; Neilsen et al [arXiv:0603161]; Neilsen & Dowling [arXiv:0701004]

e circuits distinguish constructions of desired transformation Urr with
sequences of states, ie, paths in space of states between ¥r and ¢

* tuning € — 0 allows for smaller “steps” (recall Q;; = expliex; p;])

* as sequences of gates becomes more and more involved with shorter
and shorter steps, paths approach smooth continuous trajectories

YR

Y1 =UrrYr

11,2 o221 o211 o111

Vr(Ts) =+ Qp 22 21 11 Yr(x;)



Nielsen approach:

* in order to optimize circuit easier to work with smooth functions on a
smooth space (rather than with discrete gates)

1
@DT(CI?Z) — UTR wR(CBz) with UTR = Pexp [/ ds YI(S) O_r]
0

)

s=1
Y1 =UrrYr

wT(er) — ... ﬁll,Q 5‘4222,1 2():4l21,1 ﬁll,l ’(ﬁR(iIIz)



Nielsen approach:

* in order to optimize circuit easier to work with smooth functions on a
smooth space (rather than with discrete gates)

As =€ 1 f—— on/off

Yr(w;) = Urp¥r(z;)  with  Upp :@ [/ ds Y'(s) O ]
o R 0 L
right-to-left , s: position label
where  O;; = ;—(ﬂfz‘pj + pj ;)
are “generators” of gates
| ; <=0 YR
s=1
Yr =Urr YR

Oéll ,1 wR(xz)

¢T(xz) . ﬁ11’2 504222,1 54121,1



Nielsen approach:

* in order to optimize circuit easier to work with smooth functions on a
smooth space (rather than with discrete gates)

As =€ 1 f—— on/off

Yr(x;) = Urr Yr(x;) with  Ur ds Y1(5)O
: o right—to—I:ft:-g‘753 UO t ]

, s: position label
1

: . . are “generators” of gates
* consider trajectories: & g

U(s) =Pexp [A dsYI()M]] where U(s=0)=1, U(s=1)=Urgr
Akvelocity: Y'(s) =Tr [8;U(s) U (s) M|

* alternatively, trajectories in space of states: (z;;s) = U(s) Yr(x;)

where (z;;s =0) =vYgr(x;), Y(x;s=1) =p(z;)



Nielsen approach:

* in order to optimize circuit easier to work with smooth functions on a
smooth space (rather than with discrete gates)

As =€ 1 f—— on/off

Yr(x;) = Urr Yr(x;) with  Ur ds Y1(5)O
: o right—to—I:ft:-g‘753 UO t ]

, s: position label
1

: . . are “generators” of gates
* consider trajectories: & g

U(s):Pexp[/OSdsYI()MII where U(s=0)=1, U(s=1)=Urgr

k velocity: Y'(s) = Tr [9,U(s) U "(s) M;]

* alternatively, trajectories in space of states: (z;;s) = U(s) Yr(x;)
where (z;;s =0) =vYgr(x;), Y(x;s=1) =p(z;)

» geometry of “states” versus geometry of “unitaries”
Chapman, Heller, Marrochio & Pastawski



Nielsen approach:

* in order to optimize circuit easier to work with smooth functions on a
smooth space (rather than with discrete gates)

 consider trajectories:
U(s) =Pexp [/OS ds Y1 (3) MI] where U(s=0)=1, U(s=1)=Urg
velocity: Y'(s) = Tr [0,U(s) U *(s) M;]
* analogy with particle motion determined by minimizing classical action

1
—> minimizing the cost function: D_/ dsZ|YI(s)\
0 I
[ Fy ]

—> extremal path U(s) is geodesic in a Finsler geometry
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0
velocity: Y (s) = Tt [8;U(s) U (s) M|
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1
—> minimizing the cost function: D:/ ds ZgUYI(S)YJ(S)
0 J -
| F, - F, - F, |

—> extremal path U(s) is geodesic in a Riemannian geometry



Nielsen approach:

* in order to optimize circuit easier to work with smooth functions on a
smooth space (rather than with discrete gates)

 consider trajectories:

U(s) =Pexp [/OS ds Y1 (3) MI] where U(s=0)=1, U(s=1)=Urgr
velocity: Y (s) = Tt [8;U(s) U (s) M|

* analogy with particle motion determined by minimizing classical action

1
—> minimizing the cost function: D:/ ds Y gy Y'(s)Y/(s)
0 1J

IH

—> extremal path U(s) solves eom for “unusual” classical action



Nielsen approach:

* in order to optimize circuit easier to work with smooth functions on a
smooth space (rather than with discrete gates)

 consider trajectories:

U(s) =Pexp [/OS ds Y1 (3) MI] where U(s=0)=1, U(s=1)=Urgr
velocity: Y (s) = Tt [8;U(s) U (s) M|

* analogy with particle motion determined by minimizing classical action

1
—> minimizing the cost function: D:/ ds Y gy Y'(s)Y/(s)
0 1J

IH

—> extremal path U(s) solves eom for “unusual” classical action

Calculate, Calculate, Calculate, ...
(interesting geometry & interesting geodesics)



Nielsen approach:

* analogy with particle motion determined by minimizing classical action

—— expressed in terms of normal modes, both target state and
reference state are products of decoupled Gaussians!

——>  optimal path/circuit simply consists of squeezing/scaling
each of the normal modes independently!!

’¢R> — |:u7 Ly Ly - >

> UL

Yr) = |wk1, Wk, Wks, * - )

Uk2



Nielsen approach:

* analogy with particle motion determined by minimizing classical action

—— expressed in terms of normal modes, both target state and
reference state are products of decoupled Gaussians!

——>  optimal path/circuit simply consists of squeezing/scaling
each of the normal modes independently!!

’¢R> — |:u7 Ly Ly - >

> UL

Yr) = |wk1, Wk, Wks, * - )
Uk2

1
e using cost function: D= / ds Y 0rs Y ()Y (s)
0 IJ

1
— > Coac = §Z log® [w/p]  ~ 5;2 log®[d 1
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e state of unentangled quantum gravity dof? no spacetime geometry?
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* recall Nielsen approach:

CFT dual
* state of unentangled eruemteme=gnawity dof? no"spacetlme geometry?

* what are gates, cost function, trajectory for quantum gravity states?

—> Virasoro generators? primary operators? coadjoint orbits?
eg, Caputa & Magan
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Neilsen meets Holography?

* recall Nielsen approach:

CFT dual
* state of unentangled eruemteme=gnawity dof? no"spacetlme geometry?

CFT
* what are gates, cost function, trajectory for erererrer=grerity states?

—> Virasoro generators? primary operators? coadjoint orbits?
eg, Caputa & Magan

e we are interested in target states with (semiclassical) bulk geometry!!

—> good place to focus our attention!
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First Law of Complexity:
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1
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 analog of particle action evaluated on-shell: 0 = — 0 ( oF ) + OF

Os \ 042 ) = 6x9
* apply analog of Hamilton-Jacobi equations to variation:
OF
56 — 5xa Pa’|S:1 — 5330' 6_01
L s=1

* endpoint contribution at s = 1 —> bulk variation vanishes by eq. of
motion and chose to fix 0y, = 0ats =0
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Bernamonti, Galli, Hernandez, RCM, Ruan & Simon

VR

First Law of Complexity:

 consider small variations of target state:

1
rE Y5y C= /O ds F(z%,8%) |, o~

. . O (oF OF
* analog of particle action evaluated on-shell: 0 = —— | — | +
Os \ 0z 0x?

* apply analog of Hamilton-Jacobi equations to variation:

o 1.,
6C = 822yl + 5 5:751%\81
2 F

6P, = 6x°

* keep 2" order term for 6z L P,

6°F
. . S
—> still a boundary contribution! ox

dxloze At

—> informs us about cost function in vicinity of “geometric” states



First Law of Complexity:

 consider small variations of target state in free scalar theory:

—> squeezed state: apply stronger scaling
for some modes

’¢R> — ’:ua Loy [y = >

> Uk

[Yr) = |wk1, wie, Wks, - - -

®
|¢f/1"'> — |u)k1,Wk2—|—_€, Wg3, " "



First Law of Complexity:

 consider small variations of target state in free scalar theory:

—> squeezed state: apply stronger scaling
for some modes

’¢R> — ’:ua Loy [y = >

> Uk

[Yr) = |wr1, W2, Wk, -+ - +)

®
[Yr) = |wi1, w2 + & wWia, )

* using cost function:

D:/o ds Z(SIJYI(S)YJ(S) —> §C = £ X log[wkZ/’u]

W2
(| ) | Y J

ox P‘Szl




First Law of Complexity:

 consider small variations of target state in free scalar theory:

u
\tr2) g W) = |wi1, wee + & wis, -+ -5 (Uke) = @)

’¢R> — ’:ua Loy [y = >

> Uk

[Yr) = |wr1, W2, Wk, -+ - +)

uo  —> coherent state: apply “translation” gate

Qoi = explie xg p;] for some modes
(Guo, Hernandez, RM & Ruan)

* new directions orthogonal to previous geometry: 8C ~ a?



First Law of Complexity:

 consider small variations of target state in free scalar theory:

u
\tr2) g W) = |wi1, wee + & wis, -+ -5 (Uke) = @)

’¢R> — ’:ua Loy [y = >

> Uk

[Yr) = |wr1, W2, Wk, -+ - +)

uo  —> coherent state: apply “translation” gate

Qoi = explie xg p;] for some modes
(Guo, Hernandez, RM & Ruan)

* new directions orthogonal to previous geometry: 8C ~ a?
* using cost function: —>  §5C = 1 o X 2 loglwra/ ] O;
D:/ ds Z§IJYI(S)YJ(S> ‘_l_’ \ Y J
0 1J 1
50X 5P}S:1



. . Bernamonti, Galli, Hernandez, RCM, Ruan & Simon
First Law of Complexity:

 consider small variations of target state in holography:
coherent state: turn on classical scalar in AdS (with small amplitude)
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First Law of Complexity:

 consider small variations of target state in holography:
coherent state: turn on classical scalar in AdS (with small amplitude)

* quantum field operator: & = Z et (1,0;) an + e“mtul (r, 0;) al)]

—> a;:i/ dr d* 1 /=gg® [e Wntuﬁié} . [an, al,] = 6nm
t

const.

e coherent state: | an) = GEZD(Q”) 0)  with D(ay,) = ana;rz — Ay,
(e 1)

—> <5 an‘ ¢ |5 O‘n> —¢& Z [an e_iwntun + 05:; eiwntun] =ePy

_ <7 4
Note: 52D(an) :z'5/ dr d* 10 /=gg" [(IDCl Oy CID}

t=const.



. . Bernamonti, Galli, Hernandez, RCM, Ruan & Simon
First Law of Complexity:

 consider small variations of target state in holography:
coherent state: turn on classical scalar in AdS (with small amplitude)

* quantum field operator: & =) " [e™“"uy(r, 6;) an + *'uj; (r,6;) af]
_ o

—> o = z/ dr d* 10 /=gg®° [e=rtu, 0; @] ; [an, al,] = 6um

t

const.

e coherent state: | an) = GEZD(Q”) 0)  with D(ay,) = Oénaib — Ay,
(e 1)

—> (cay,|Plea,) =¢ Z o, ey, + o) ertul | = e @y

_ <7 4
Note: 52D(an) :z'ef dr d* 10 /=gg" [(IDCl Oy CID}

t=const.

e “guantum circuit” builds “guantum gravity” state, with semi-classical
description: quantum fields/strings in a classical spacetime geometry
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t=const.

* but we wanted to examine complexity of states in boundary theory??
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First Law of Complexity:

 consider small variations of target state in holography:

coherent state: turn on classical scalar in AdS (with small amplitude)
—> remains coherent state in boundary theory!

* quantum field operator: & =) " [e™“"uy(r, 6;) an + *'uj; (r,6;) af]
_ o

—> o = z/ dr d* 10 /=gg®° [e=rtu, 0; @] ; [an, al,] = 6um

t

const.

« coherent state: |€an) = e 2 Dlen) 0)  with D(a) = anal —otay,
ek 1)
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. . Bernamonti, Galli, Hernandez, RCM, Ruan & Simon
First Law of Complexity:

 consider small variations of target state in holography:

coherent state: turn on classical scalar in AdS (with small amplitude)
—> remains coherent state in boundary theory!

n

e generalized free field: Ox = Z e, (0;) ap, + €' (0;) al]

; i [ d—1(y [ —iwnt~ o A t
—_— a":/\T/ dt/d Q[e "un(?t(’)A] : [an,a }z&nm
n Jo

« coherent state: |€an) = e 2 Dlen) 0)  with D(a) = anal —otay,
ek 1)

—> <5 O‘n| @A |5 O‘n> — & Z [an 6—iwnt,&n + Of;; eiwnt,&*] = OA,cl

n

Note: @A(t, 0;) ~ lim (7, 6:)

r—00 ’l"A

AdS/CFT correspondence is a dictionary providing two languages
describing a single set of physical phenomenal!



. . Bernamonti, Galli, Hernandez, RCM, Ruan & Simon
First Law of Complexity:

 consider small variations of target state in holography:
coherent state: turn on classical scalar in AdS (with small amplitude)

» working perturbatively in amplitude (or Newton’s constant Gy)

0 2 4
Gab :gc(w,b) + gc(zb) + gC(Lb) +

~N AdS ~ first back-reaction

¢:¢(1) + ¢(3) + ¢<5) + ...
N initial configuration
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. . Bernamonti, Galli, Hernandez, RCM, Ruan & Simon
First Law of Complexity:

 consider small variations of target state in holography:
coherent state: turn on classical scalar in AdS (with small amplitude)

» working perturbatively in amplitude (or Newton’s constant Gy)

0 2 4
Gab = gc(w,b) + gc(zb) ab

~N AdS ~ first back-reaction

Q5: ¢(1) .,_¢.(.3)_,_¢@_,__

N initial configuration

* choose, eg, AdS, (d=3), m=0 (A = 3), and profile is eigenmode:
o) = ¢ Z Qe €xp(—iwnet) Unem (T, 0, ¢) + c.c. |

mode amplitude
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First Law of Complexity:

 consider small variations of target state in holography:
coherent state: turn on classical scalar in AdS (with small amplitude)

» working perturbatively in amplitude (or Newton’s constant Gy)
_ (0) (2)
Gab = Yap + ab ab
~ AdS S~ first back-reaction

N initial configuration

* choose, eg, AdS, (d=3), m=0 (A = 3), and profile is eigenmode:

¢(1) — 52 anw exp( zw%t) UW(T 0,) + c.c. }

mode amphtude 00 00 spherical symmetry



. . Bernamonti, Galli, Hernandez, RCM, Ruan & Simon
First Law of Complexity:

 consider small variations of target state in holography:
coherent state: turn on classical scalar in AdS (with small amplitude)

» working perturbatively in amplitude (or Newton’s constant Gy)
_ (0) (2)
Gab = Yap + ab ab
~ AdS S~ first back-reaction

N initial configuration

* choose, eg, AdS, (d=3), m=0 (A = 3), and profile is eigenmode:

o) = 52 0y, exp(—iwnt) un(r) + c.c. |

mode amphtude spherical symmetry

* evaluate g( ) and, eg, evaluate change in gravitational action

Calculate, Calculate, Calculate,



. . Bernamonti, Galli, Hernandez, RCM, Ruan & Simon
First Law of Complexity:

2
. . 9
* change in complexity: ~ 6C4 = — > a5, Ch g
jlan
_ (1 +3)02+ 3)
Core = \/ol DG +2) Go+ 00+ o g T ey oy =i g Moy m2 4082

2 2 : 2
3e“a® log(271) Lo <a )

J1

7

J1=7J2 = 00 )

0.45' \
0.40'
[ J2 = 40
0.35
[ J2 = 50
5 0.30°
3 [ J2 = 60
0.25'
[ J2 = 70
0.20
J2 = 80
0.15!
0.10". == J2 =1
0 20 40 60 80 100 120



. . Bernamonti, Galli, Hernandez, RCM, Ruan & Simon
First Law of Complexity:

2
. . 9
* change in complexity:  dCa = — E a;, o, )
e =
J1,J2

GGt
Cirgz = \/(]1 T 1) (]1 T 2) (]2 T 1) (j2 T 2) Hj1+;—+Hj1+%+Hj2+%+Hj2+%_Hjl+j2+g—_Hj1—j2—%_2—'_4 log 2

2,2 loo(27 2
| 3a og(..h)+0(o_z_)
J1 J1

J1 =7J2 — 00
e variation is 2"4 order —> §z* | P,
* independent of scales, eg, AdS scale, volume or cut-off 6
« for cost function F(2%, &%) = gap 2° 2%, then Cj, i, ~ Gj s |s=1

e compare to coherent state in free scalar theory in AdS
2 .
a‘ uR 271
k=2 : C; ., — 0; i log | —
J1,J2 j — 00 J1J2 jl ng(z) g (,UR>

e compares well(?) to holographic result but in holography, scales must
conspire,eg, U xg ~1~uR
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First Law of Complexity:

* change in holographic complexity: ’QbR

e variation is a boundary term that
comes from the end of the circuit

* 0C 4 comes only from boundary of
WDW patch —>

(build up spacetime with null cone layers)




First Law of Complexity:

 consider small variations of target state in free scalar theory:

—> squeezed state: apply stronger scaling
for some modes

’¢R> — ’:ua Loy [y = >

> Uk

[Yr) = |wr1, W2, Wk, -+ - +)

®
[Yr) = |wi1, w2 + & wWia, )

* using cost function:

D:/o ds Z(SIJYI(S)YJ(S) —> §C = £ X log[wkZ/’u]

W2
(| ) | Y J

ox P‘Szl




: : Belin, Chen & RCM
First Law of Complexity: b

 consider small variations of target state in holography:

squeezed state: introduce small “squeezing” of modes of bulk scalar

* quantum field operator: & = " [e™“""u,(r,6;) ay + €, (r,6;) af]

—> al = z/ dr d¥1Q /=gg™ [e_iw”tunb_z <i>] ; [an, a;fn] = dpm
t

=const.

——> remains squeezed state in boundary theory



: : Belin, Chen & RCM
First Law of Complexity: b

 consider small variations of target state in holography:

squeezed state: introduce small “squeezing” of modes of hulk=seatar
boundar-y
X | ~ Operator

* generalized free field: Oa = Z e i, (0;) ay, + e (0;) al]

n n

i i [ d—1() [o—iwnt~ S5 A t
— an:AT/O dt/d Q[e ”unﬁt(’)A] : [an,am]=5nm




) ) Belin, Chen & RCM
First Law of Complexity: =i, =hen

 consider small variations of target state in holography:

squeezed state: introduce small “squeezing” of modes of bulk scalar
» working perturbatively in squeezing parameter (or Gy or 1/N?)

—> determine leading backreaction from semiclassical Einstein eq.

1

Rab — §gabR 87TCTYN <5€n‘ ab |5§n>
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First Law of Complexity: =i, Nen

 consider small variations of target state in holography:

squeezed state: introduce small “squeezing” of modes of bulk scalar

» working perturbatively in squeezing parameter (or Gy or 1/N?)

—> determine leading backreaction from semiclassical Einstein eq.

1

Rab — §gabR 87TCTYN <5€n| ab |5€n>

* focus on spherical symmetry, as well as m=0 (A = 3)

» evaluate change in gravitational action including (€&,| : 1% : |g€,)
—> 5C ~ &,



) ) Belin, Chen & RCM
First Law of Complexity: =i, Nen

 consider small variations of target state in holography:

squeezed state: introduce small “squeezing” of modes of bulk scalar

» working perturbatively in squeezing parameter (or Gy or 1/N?)

—> determine leading backreaction from semiclassical Einstein eq.

1

Rab — §gabR 87TGN <5€n| ab |5€n>

* focus on spherical symmetry, as well as m=0 (A = 3)

» evaluate change in gravitational action including (€&,| : 1% : |g€,)
—> §C ~ &,

* to maintain semiclassical state (cf. double trace operators),
restrict &, ~ 0(1) in large N expansion producing §C ~ 0(1)
—> quantum corrections to C4 or Cy,?

e justification to ignore quantum corrections for coherent state?



Conclusions/Questions/Outlook:

e complexity model for free scalar shows surprising similarities to
holographic proposals for complexity of boundary CFT states

* first Law may provide avenue to concrete connection between
“Neilsen’s circuit complexity” and “holographic complexity”?

» higher dimensions; other fields; other quantum states

» insight into quantum corrections to C, or Cy,?

» beyond spherical symmetry (tension with Fleury poster??)

» similar extremization for Fubini-Study and path integral
optimization procedures ——> can apply analogous 15t law

* QFT/path integral description of “complexity” in boundary CFT?
 what is boundary dual of these gravitational observables?

—> preliminary suggestions:

Caputa et al (1703.00456; 1706.07056;1804.01999); Czech (1706.00965);
Takayanagi (1808.09072); Camargo, Heller, Jefferson & Knaute (1904.02713)
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