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• both of these gravitational “observables” probe the black hole 
   interior (at arbitrarily late times on boundary) 

Holographic Complexity: A Tale of Two  Dualities 
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• complexity=volume: evaluate proper volume of extremal codim-one 
   surface connecting Cauchy surfaces in boundary theory (cf holo EE) 
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• complexity=action: evaluate gravitational action for Wheeler-DeWitt 
   patch = domain of dependence of bulk time slice connecting  
   boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind & Zhao) 
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(Stanford & Susskind) 

• complexity=action: evaluate gravitational action for Wheeler-DeWitt 
   patch = domain of dependence of bulk time slice connecting  
   boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind & Zhao) 

• complexity=volume2.0:  evaluate spacetime volume of WDW patch    

(Couch, Fischler & Nguyen) C0V(§) =
VWDW

GN `2
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Quantum Field Theory: (with Jefferson) 

• an infinite family of coupled harmonic oscillators 
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Target state: 

• ground state 

• have infinite number of possible circuits!! 

How do we find optimal circuit?? 
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Nielsen approach: 
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solves eom for “unusual” classical action  

Nielsen approach: 

(interesting geometry & interesting geodesics) 

D =

Z 1

0

ds
X

IJ

gIJ Y
I(s)Y J(s)



• analogy with particle motion determined by minimizing classical action 

Nielsen approach: 

● 

● 
jÃRi = j¹;¹;¹; ¢ ¢ ¢i

jÃT i = j!k1; !k2; !k3; ¢ ¢ ¢i

uk1

uk2

expressed in terms of normal modes, both target state and  
reference state are products of decoupled Gaussians! 

optimal path/circuit simply consists of squeezing/scaling 
each of the normal modes independently!! 
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• recall Nielsen approach: 

??? ??? 

??? 

• state of unentangled quantum gravity dof? no  spacetime geometry? 
CFT 

• what are gates, cost function, trajectory for quantum gravity states? 
CFT 

Virasoro generators? primary operators? coadjoint orbits? 
eg, Caputa & Magan 

• we are interested in target states with (semiclassical) bulk geometry!! 

good place to focus our attention! 

V  
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Note: 

• consider small variations of target state in holography: 

coherent state: turn on classical scalar in AdS (with small amplitude) 
remains coherent state in boundary theory! 
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• working perturbatively in amplitude (or Newton’s constant 𝐺𝑁) 

gab = g
(0)

ab + g
(2)

ab + g
(4)

ab + ¢ ¢ ¢
first back-reaction AdS 

• choose, eg, AdS4 (d=3), m=0 (Δ = 3), and profile is eigenmode: 

mode amplitude 

• evaluate         and, eg, evaluate change in gravitational action g
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• compare to coherent state in free scalar theory in AdS 
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• compares well(?) to holographic result but in holography, scales must  
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• variation is a boundary term that 
   comes from the end of the circuit 

•          comes only from boundary of 
   WDW patch                 

          is this the end of the circuit? 

±CA

(build up spacetime with null cone layers) 

First Law of Complexity: 
Bernamonti, Galli, Hernandez, RCM, Ruan & Simon 

• change in holographic complexity: 
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First Law of Complexity: 

• consider small variations of target state in free scalar theory: 
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for some modes  
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remains squeezed state in boundary theory 
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• working perturbatively in squeezing parameter (or 𝐺𝑁 or 1/𝑁2) 

Rab ¡
1

2
gabR = 8¼GN h"»nj :Tab : j"»ni

First Law of Complexity: 

• consider small variations of target state in holography: 

squeezed state: introduce small “squeezing” of modes of bulk scalar 

Belin, Chen & RCM 

determine leading backreaction from semiclassical Einstein eq.  
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• working perturbatively in squeezing parameter (or 𝐺𝑁 or 1/𝑁2) 

• focus on spherical symmetry, as well as m=0 (Δ = 3)    
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• evaluate change in gravitational action including  

First Law of Complexity: 

• consider small variations of target state in holography: 

squeezed state: introduce small “squeezing” of modes of bulk scalar 

Belin, Chen & RCM 

determine leading backreaction from semiclassical Einstein eq.  

h"»nj :I© : j"»ni
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• to maintain semiclassical state (cf. double trace operators), 
     restrict 𝜉𝑛 ∼ 𝑂 1  in large N expansion producing 𝛿𝐶 ∼ 𝑂(1)  
                                      quantum corrections to 𝐶𝐴 or 𝐶𝑉?  

• justification to ignore quantum corrections for coherent state?  



Conclusions/Questions/Outlook: 
• complexity model for free scalar shows surprising similarities to 
   holographic proposals for complexity of boundary CFT states  

• first Law may provide avenue to concrete connection between  
      “Neilsen’s circuit complexity” and “holographic complexity”? 

• QFT/path integral description of “complexity” in boundary CFT? 
• what is boundary dual of these gravitational observables? 

preliminary suggestions: 
Caputa et al (1703.00456; 1706.07056;1804.01999); Czech (1706.00965);   
Takayanagi (1808.09072); Camargo, Heller, Jefferson & Knaute (1904.02713) 

 higher dimensions; other fields; other quantum states 
 insight into quantum corrections to 𝐶𝐴 or 𝐶𝑉? 
 beyond spherical symmetry (tension with Fleury poster??) 
 similar extremization for Fubini-Study and path integral  
     optimization procedures               can apply analogous 1st law 
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