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Plan:

• Summary 

• TT flow and sphere partition functions 

• QGR: Wheeler-DeWitt equation 

• It from Qubit physics and TT 

• Open Questions



Take-home (reminder):

AdS/CFT: Tool to understand hol. CFT (QFTs) using Quantum Gravity

QGR in AdS

(Quantum) Gravity is the most efficient way of doing (hol.) QFTs!

Holographic CFT



Summary:

Classically: It can be interpreted as a (TT) flow equation in holographic 
CFTs that reproduces non-trivial features of finite cut-off AdS/CFT.

Quantum: Wheeler-DeWitt equation in minisuperspace becomes a differential 
equation that captures information about finite-N partition functions.

“Radial Hamiltonian” constraint is a powerful tool in AdS/CFT (any dim.)!

This talk: Sphere partition functions and RT formula at finite cut-off.

This talk: ABJM sphere partition function (Airy) that contains all orders 
contributions from perturbative quantum gravity.



“It from GR” (Gauss-Codazzi or quantum WDW)
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A Gauss-Codazzi equation

In this appendix we give a lightning review of the ideas presented in [24, 25] for deriving a

flow equation for the trace of the energy momentum tensor in large N holographic CFTs in d-

dimensions. The main objective of these works is to generalize the T T̄ deformations from 2d

CFTs that result in the finite cut-o↵ in dual holographic geometry (as in [15]). As observed

in [15], in two dimensions, the T T̄ flow equation can be rewritten as the Gauss-Codazzi

equation (Hamiltonian constraint) in gravity. Therefore, the logic to derive analogues in

higher dimensions is to derive a flow starting from Gauss-Codazzi equation and postulate

that it should be realized as a flow in holographic CFT at large N deformed by the TT

operator.

In the Hamiltonian approach to holographic renormalization (see e.g. [6, 44]), it is

convenient to write Einstein’s equations in terms of intrinsic (R̃) and extrinsic (K) curvatures

of the hypersurfaces ⌃r of constant radial direction r with induced metric �ij. In this

formalism, Einstein’s equations are equivalent to Gauss-Codazzi equations. In particular,

in the case of pure gravity, their (r, r) component for d + 1-dimensional spacetime with

d-dimensional ⌃r is given by

K2
�KijK

ij = R̃ +
d(d� 1)

l2
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This equation is just the Hamiltonian constraint namely, with the canonical momentum
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This is the standard ADM Hamiltonian constraint H = 0, introduced in [35]. This becomes

the Wheeler-DeWitt equation H = 0 for the wavefunction  after replacing canonical

momenta with derivatives w.r.t the metric in the quantum theory.

A.1 Gauss-Codazzi as a holographic flow equation

The Gauss-Codazzi equation is also equivalent to the flow equation for the expectation value

of the trace of the holographic energy-momentum tensor. To see that, take a general form of

the holographic stress tensor13
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where 2 = 8⇡GN and ad = l

(d�2)2 is the known coe�cient of the first counterterm above

d = 2. It is convenient to introduce a “bare” stress-tensor
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From these relations, we have
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and again, replacing the LHS with the Gauss-Codazzi equation yields the holographic “flow”

equation for the bare stress-tensor
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We will drop the expectation values for simplicity of the notation
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With canonical momenta

conjugate to the boundary metric

⇡ij =

p
�

2
(K�ij �Kij) , ⇡i

i
=

p
�

2
(d� 1)K, (A.2)

we have

⇡ij⇡ij �
1

d� 1
(⇡i

i
)2 =

�

4
⇥
KijK

ij
�K2

⇤
, (A.3)

and the Gauss-Codazzi equation (after multiplying by 2/
p
�) becomes

2
p
�


⇡ij⇡ij �

1

d� 1
(⇡i

i
)2
�
+

p
�

2


R̃ +

d(d� 1)

l2

�
= 0. (A.4)

This is the standard ADM Hamiltonian constraint H = 0, introduced in [35]. This becomes

the Wheeler-DeWitt equation H = 0 for the wavefunction  after replacing canonical

momenta with derivatives w.r.t the metric in the quantum theory.

A.1 Gauss-Codazzi as a holographic flow equation

The Gauss-Codazzi equation is also equivalent to the flow equation for the expectation value

of the trace of the holographic energy-momentum tensor. To see that, take a general form of

the holographic stress tensor13

hTiji = �
1

2


Kij �K�ij �

d� 1

l
�ij

�
� adCij (A.5)

where 2 = 8⇡GN and ad = l

(d�2)2 is the known coe�cient of the first counterterm above

d = 2. It is convenient to introduce a “bare” stress-tensor

T̂ij = Tij + adCij, (A.6)

such that

T̂ij =
1

2


K�ij �Kij +

d� 1

l
�ij

�
, T̂ i

i
=

d� 1

2


d

l
+K

�
. (A.7)

From these relations, we have

K2
�KijK

ij = �
22

l
T̂ i

i
� 4


T̂ijT̂

ij
�

1

d� 1

⇣
T̂ i

i

⌘2
�
+

d(d� 1)

l2
, (A.8)

and again, replacing the LHS with the Gauss-Codazzi equation yields the holographic “flow”

equation for the bare stress-tensor

T̂ i

i
= �

l2

2


T̂ijT̂

ij
�

1

d� 1

⇣
T̂ i

i

⌘2
�
�

l

22
R̃. (A.9)

13
We will drop the expectation values for simplicity of the notation
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In the (radial) ADM decomposition                                                
Einstein equations can be written as ([Skenderis,Papadimitriou’04])

1 EOM

For metric

ds2 = dr2 + �ij(r, x)dx
idxj, (1.1)

we have
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2 The Gauss-Codazzi equation

In this section we give a lightning review of the ideas presented in [] for deriving a flow

equation for the trace of the energy momentum tensor in large N holographic CFTs in d-

dimensions. The main objective of these works is to generalize the T T̄ deformations from 2d

CFTs and give rise to the finite cut-o↵ in holographic geometry (as in [] proposal).

In the Hamiltonian approach to holographic renormalization [], it is convenient to write Ein-

stein’s equations in terms of intrinsic (R̃) and extrinsic (K) curvatures of the hyper-surfaces

⌃r of constant radial direction r. In this formalism, Einstein’s equations are equivalent to

Gauss-Codazzi equations. In particular, their (r, r) component for d+ 1-dimensional space-

time with d-dimensional ⌃r is given by1
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2We will drop the expectation values for simplicity of the notation
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Just pure gravity (cc) the “radial Hamiltonian” constraint

(QGR: WDW eq. see later)

approach. This is due to the fact that the scalar fields are treated differently than in the

standard holographic renormalization. Recall that in the standard approach the equations

are solved by using the distance from the boundary as a small parameter with all sources being

unconstrained. The expansion in the number of scalar fields requires that all scalar fields are

(equally) small and for this to be the case the Dirichlet data (QFT sources) should be tuned

to be (appropriately) small. This is rather unnatural since on the QFT side all sources

are unconstrained and of order one and in general can lead to erroneous results. In simple

examples, such as the ones studied in the literature, there is no obstruction in considering

the sources small and the results so obtained are in agreement with results obtained via the

standard method. An alternative approach that overcomes these issues is to organize the

terms in the HJ equation according to their dilatation weight. This yields equations that are

equivalent to the ones in the standard holographic renormalization method. Solving the HJ

equation for the on-shell action leads to some of the same simplifications we find here. For

instance, the covariant counterterm action is derived easier. On the other hand, the use of an

ansatz for the on-shell action (instead of constructively obtaining the most general solution)

as well as various sign ambiguities make the method less rigorous than the standard approach.

More importantly, focusing on the canonical momenta instead of the on-shell action appears

to be the most economic way to proceed.

7. Apart from an elegant framework for the general asymptotic analysis, this formalism provides

a most efficient way to calculate correlation functions of the boundary field theory holograph-

ically. As we have just seen this amounts to determining the renormalized canonical momenta

as functionals of arbitrary bulk fields - i.e. as functionals of arbitrary sources. To determine

2-point functions we only need to determine the momenta in terms of the source at linearized

level. Furthermore, the contribution of the counterterms to 2-point functions can also be de-

termined directly from the linearized analysis, following the discussion in the previous point.

A similar discussion applies also to n-point functions (n > 2). This leads to a significant

simplification of the computation of correlation functions. Details will appear elsewhere [26].

Gauge fixing

Before we carry out the near boundary analysis for pure AdS gravity and gravity coupled to

scalars following the above prescription, let us fix the gauge freedom associated with the shift and

lapse functions by setting Nµ = 0 and N = 1. The bulk metric then takes the form12

ds2 = dr2 + γij(r, x)dx
idxj , (50)

12All tensors are transverse and so we drop the hats form now on.
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the Wheeler-DeWitt equation H = 0 for the wavefunction  after replacing canonical

momenta with derivatives w.r.t the metric in the quantum theory.
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and again, replacing the LHS with the Gauss-Codazzi equation yields the holographic “flow”

equation for the bare stress-tensor
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GC can be rewritten as a “flow equation”

And translated/interpreted as a large N QFT flow (                 etc.) 
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We can now also write this equation in terms of the “renormalized” stress tensor by inserting

(A.6) such that we get [25]
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Note that this is still purely phrased in terms of gravitational quantities but we can use the

holographic dictionary to turn it into a flow in dual CFTs deformed by a generalized TT

operator [24, 25].

A.2 A dual flow in deformed holographic CFTs

Formally, in holographic large N CFTs, we can translate the flow equation (A.10) to the

boundary theory on a unit sphere Sd by introducing boundary quantities related by powers

of the bulk radial cut-o↵ rc. The bulk quantities are translated into the boundary (with

superscript b) as [25]
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If we want to interpret this as a QFT flow, we should have
Z

ddx
p
�h(T b)i

i
i = �d�hXi, (A.13)

and we need in total two relations to replace l and GN with boundary data. We can write

� =
l2

2drd
c

,
↵d

�
d�2
d

⌘
lrd�2

c

(d� 2)2
, (A.14)

where ↵d is a QFT parameter (see the main text). Using these, we can then write the bare

QFT flow as
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and similarly for the renormalized stress-tensor14
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)ij ! (T b
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c Cij . Note that when translating Cij into field theory, in di↵erent

dimensiosn, its di↵erent components can have a di↵erent scaling with rc. Namely, in our examples, in

4d we have Cij = Gij = Gb
ij but the extra term in 6 and 7 dimensions has a scaling r�2

c .
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equation for the bare stress-tensor
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We will drop the expectation values for simplicity of the notation
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and the Gauss-Codazzi equation (after multiplying by 2/
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This is the standard ADM Hamiltonian constraint H = 0, introduced in [35]. This becomes

the Wheeler-DeWitt equation H = 0 for the wavefunction  after replacing canonical

momenta with derivatives w.r.t the metric in the quantum theory.

A.1 Gauss-Codazzi as a holographic flow equation

The Gauss-Codazzi equation is also equivalent to the flow equation for the expectation value

of the trace of the holographic energy-momentum tensor. To see that, take a general form of

the holographic stress tensor13
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We will drop the expectation values for simplicity of the notation
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AdS/CFT flow equation from Gauss-Codazzi

Pure gravity

[Balasubramanian,Kraus’99]

[Taylor’18] [Hartman et al.’18]

[McGough’18]

hT i
i i = �d�hXdi

[Kraus,Liu,Marolf’18]



Large N Flow equation

The expression can be expanded further (for simplicity we drop the superscript b) and we

get the equation used in the main text
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where (up to 6d) in field theory we have
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where all the ingredients are of those of the unit metric on the sphere �ij.

One last comment is that, naively, it appears that this formula is wrong for d = 2 because it

would kill the anomaly. However, for consistency we must have
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where we used the Brown-Henneaux relation, and this precisely gives the anomaly piece when

Cij = 0 in d = 2.

B Generating R in the flow equation

The specific ✏ scaling of the coe�cients in the expression (4.18) are chosen such that in the

limit ✏ ! 0, the following terms vanish15
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The second functional derivative however will remain finite, provided we smear it against the

heat kernel. This means that if we distribute the limit, we have
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15
Note that the order of limits here is to first take ✏ ! 0 with N fixed and then taking N ! 1 at the end.
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In terms of the “renormalized” EM tensor

We can now also write this equation in terms of the “renormalized” stress tensor by inserting

(A.6) such that we get [25]
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Note that this is still purely phrased in terms of gravitational quantities but we can use the

holographic dictionary to turn it into a flow in dual CFTs deformed by a generalized TT

operator [24, 25].

A.2 A dual flow in deformed holographic CFTs

Formally, in holographic large N CFTs, we can translate the flow equation (A.10) to the

boundary theory on a unit sphere Sd by introducing boundary quantities related by powers

of the bulk radial cut-o↵ rc. The bulk quantities are translated into the boundary (with

superscript b) as [25]
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such that the bare flow equation in QFT becomes
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If we want to interpret this as a QFT flow, we should have
Z
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and we need in total two relations to replace l and GN with boundary data. We can write
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where ↵d is a QFT parameter (see the main text). Using these, we can then write the bare

QFT flow as

(T̂ b)i
i
= �d�


T̂ b

ij
(T̂ b)ij �

1

d� 1

⇣
(T̂ b)i

i

⌘2
+

1

d�

↵d

�
d�2
d

d� 2

2
R̃b

�
, (A.15)

and similarly for the renormalized stress-tensor14
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Using (T̂ b

)ij ! (T b
)ij + adrd�2

c Cij . Note that when translating Cij into field theory, in di↵erent

dimensiosn, its di↵erent components can have a di↵erent scaling with rc. Namely, in our examples, in

4d we have Cij = Gij = Gb
ij but the extra term in 6 and 7 dimensions has a scaling r�2

c .
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with “dictionary” for �,↵d

Matching with anomalies and known holographic setups we have e.g.

Now for 3  d  6, the parameter ↵d is related to gravitational quantities via the relation6
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This quantity can be related to the rank of gauge groups of conventional CFTd duals of

AdSd+1 as follows
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24⇡
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where, we used the relations for the ratio ld�1/GN for ABJM, N = 4 super-Yang-Mills and

the 6d (2,0) theory respectively. Moreover, the following relation between ↵d, l and � can be

verified using (3.20) and (3.23)
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Once we use (3.25), !(�)
d

is in precise agreement with bulk ![rc] in the bulk stress tensor

(2.10).

The behavior of !(+)
d

in the � ! 0 limit is divergent and, similar to 2d, this branch is

ruled out since this does not reproduce the trace anomaly appropriately in the CFT limit.

The situation here should be contrasted with that of the torus partition function, wherein

non-perturbative ambiguities exist for the negative values of the coupling [13]. In a sense, the

CFT trace anomaly provides an additional constraint for partition functions on the sphere.

Finally, we have added appropriate counterterms to obtain the holographic stress tensor

and while defining the TT operator. Therefore, the � ! 0 limit of the deformed Sd stress

tensor (3.22), for !(�)
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These values are perfectly consistent with trace anomalies of the undeformed holographic

theory [38].

6
This can be derived using the relation adrd�2

c = ↵d�
2�d
d and ad =

1
8⇡GN (d�2) of [25]. Note that [25]

works with l = 1 and therefore powers of l need to be appropriately reinstated.

7
These additional counterterms have not been considered in [25].
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This is the standard ADM Hamiltonian constraint H = 0, introduced in [35]. This becomes

the Wheeler-DeWitt equation H = 0 for the wavefunction  after replacing canonical

momenta with derivatives w.r.t the metric in the quantum theory.

A.1 Gauss-Codazzi as a holographic flow equation

The Gauss-Codazzi equation is also equivalent to the flow equation for the expectation value

of the trace of the holographic energy-momentum tensor. To see that, take a general form of

the holographic stress tensor13
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where 2 = 8⇡GN and ad = l
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d = 2. It is convenient to introduce a “bare” stress-tensor
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From these relations, we have
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and again, replacing the LHS with the Gauss-Codazzi equation yields the holographic “flow”

equation for the bare stress-tensor
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13
We will drop the expectation values for simplicity of the notation
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IDEA: We can define (effective) “TT-deformed” hol. CFTs dual to AdS with finite 
cut-off by the above flow equation. 



Holographic sphere partition functions in cut-off AdS

One of the oldest and very interesting holographic probes 

Even-d: sensitive to a-type holographic anomalies

Closely related to entanglement entropy

“Good” holographic measure of degrees of freedom 

See also applications in dS/dS [Gorbenko,Silverstein,Torroba’18]

Precision tests of AdS/CFT (localization)



Holographic sphere partition functions and EM tensor
More precisely, we consider regularized gravity action given by the Einstein-Hilbert (EH)

and Gibbons-Hawking (GH) terms supplemented by local counterterms
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where 2
⌘ 8⇡GN , R̃ and R̃ij are the Ricci scalar and Ricci tensor of the cut-o↵ surface. To

keep track of di↵erent contributions, we introduce c(1)
d

= 1 for d � 2, c(2)
d

= 1 for d � 3 and

c(3)
d

= 1 is non-zero from d � 5.

We now consider a Euclidean AdS solution
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such that for a fixed value of r = rc the induced metric, �ij(rc, x) = r2
c
�b

ij
(x), describes a

sphere with radius rc. Metric �b

ij
(x) of the unit sphere will later be identified with the metric

of the boundary QFT theory.

The full on-shell action corresponding to this solution can be used to compute the energy-

momentum tensor (Brown-York) and the holographic sphere partition function
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Note that both quantities explicitly depend on the radius r at which we cut o↵ spacetime. In

standard holography, we take r to infinity and the counterterm action yields finite answers

(modulo logarithmic divergences that correspond to anomalies). However, in the context of

finite cut-o↵ holography, we keep the radial dependence finite – this can be holographically

interpreted as a deformation by a generalization of the T T̄ operator to arbitrary dimensions.

In what follows, we evaluate both quantities in (2.4) from the on-shell action with a finite

radial cut-o↵. From the symmetry of the problem, they are determined by a single function of

the radius ![r] that we extract from both computations, with exact agreement. We will later

demonstrate that this function solves the algebraic flow equation that defines the deformed

theory.

2.1 Holographic stress-tensors

The holographic stress-tensor [3, 36] is obtained by variation of the on-shell action with

respect to the induced metric on the surface of constant r = rc. We first compute the general
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Gravity Action

Holographic counter-terms (up to d=6)

More precisely, we consider regularized gravity action given by the Einstein-Hilbert (EH)
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such that for a fixed value of r = rc the induced metric, �ij(rc, x) = r2
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(x), describes a

sphere with radius rc. Metric �b
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(x) of the unit sphere will later be identified with the metric

of the boundary QFT theory.

The full on-shell action corresponding to this solution can be used to compute the energy-

momentum tensor (Brown-York) and the holographic sphere partition function
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Note that both quantities explicitly depend on the radius r at which we cut o↵ spacetime. In

standard holography, we take r to infinity and the counterterm action yields finite answers

(modulo logarithmic divergences that correspond to anomalies). However, in the context of

finite cut-o↵ holography, we keep the radial dependence finite – this can be holographically

interpreted as a deformation by a generalization of the T T̄ operator to arbitrary dimensions.

In what follows, we evaluate both quantities in (2.4) from the on-shell action with a finite

radial cut-o↵. From the symmetry of the problem, they are determined by a single function of

the radius ![r] that we extract from both computations, with exact agreement. We will later

demonstrate that this function solves the algebraic flow equation that defines the deformed

theory.
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The holographic stress-tensor [3, 36] is obtained by variation of the on-shell action with
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The large N sphere partition function in finite cut-off holography

(2⇡
d+1
2 )/�

�
d+1
2

�
. Moreover, the first two terms i.e. the EH and GH terms, can be written

under one integral as

SEH + SGH = �
d(d� 1)Sd

22l

Z
q

0

p
l2qd�3 + qd�2dq, (2.13)

where we introduced q = r2
c
and this expression will be important in the Wheeler-DeWitt

analysis (Section 5). Performing this integral yields the hypergeometric function and writing

the answer in terms of rc gives the full holographic sphere partition function (up to d = 6)
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#
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This is the main result of this section and in Section 5 we will see how this expression is

related to the solution of the Wheeler-DeWitt equation.

The on-shell action (2.14), also allows us to extract ![rc]. Namely, in general dimensions,

the derivative of the sphere partition function with respect to the radius is related to the

expectation value of the trace of the energy-momentum tensor. Therefore, we have
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This is precisely the proportionality function derived in the previous subsection. In the next

section, we show that it is the solution of the flow equations (with inclusion of anomalies) in

all dimensions that we analyze.

3 Field theory analysis

3.1 T T̄ deformation in general dimensions

As alluded to in the introduction the T T̄ operator was initially introduced in 2d by Zamolod-

chikov [8]. This bi-local operator is defined as the following quadratic combination of the

components of the stress-tensor

T T̄ (z, z0) = Tzz(z)Tz̄z̄(z
0)� Tzz̄(z)Tzz̄(z

0). (3.1)
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Then, the contraction of the Riemann tensor with Ricci tensor is also proportional to the
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Finally, the last line (2.5) vanishes for the sphere (constant curvature) and we get the holo-

graphic energy momentum-tensor (2.5) for the d-dimensional sphere at r = rc in Euclidean
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Indeed, we see that it is proportional to the metric and we define the proportionality function

as
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Clearly, we see that di↵erent counterterms in various dimensions contribute with polynomial

terms whereas the EH and GH terms yield the square-root part. As we shall show in Section

3, this function can be obtained by solving the QFT flow equation that becomes an algebraic

equation for ![rc].

2.2 Sphere partition functions

The next step involves evaluation of the regularized gravity actions and the holographic

sphere partition functions with finite cut-o↵. We evaluate the action (2.1) in AdS with a

cut-o↵ or wall at r = rc where we also take into account the counterterms (2.2).

Our metric (2.3) has a constant negative curvature R = �d(d + 1)/l2 and is a solution

of the vacuum Einstein equations with negative cosmological constant ⇤ = �d(d� 1)/(2l2).

With these ingredients and the formulae of the previous subsection, we can evaluate the

on-shell action
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The first term comes from the EH action, the second from the GH boundary term and

second line from the counterterms. There is an overall factor of the sphere area, Sd =

7

⌘ ![rc]�ij

Holographic energy-momentum tensor
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The term with third order in curvature precisely matches the (negative of) the 6d anomaly

[38] provided ↵6 = N/24⇡. Moreover, the terms quartic in curvature can be compactly

written as

O(R4) = (Cij �Gij)
2
�

1

5
(2R + C i

i
)2, (3.15)

and they come as important part of the operator needed for the correct solution of the flow

equation.

The operator (3.5) was arrived at by using the form of the holographic stress tensor [25]

(see also Appendix A). In section 4, we will also provide an independent procedure to derive

Xd by using a point-splitting procedure. However, for the rest of this section we assume

that this is a correct flow equation in large N holographic CFTs and employ in a concrete

example.

3.2 The deformation on Sd

We now consider the TT deformation of a CFT on the unit sphere Sd. Since the sphere is

a maximally symmetric space, the stress-tensor expectation values are proportional to the

metric4 hTiji = !d�ij. We can solve for !d by using the trace equation in higher dimensions

hT i

i
i = �d�hXi. (3.16)

Inserting the explicit form of the operators, this equation becomes an algebraic equation for

!d which can be compactly written as

d!d = d�


d

d� 1
!2
d
+

2↵d

�
d�2
d

1

d� 1
C i

i
!d �

1

d�

↵d

�
d�2
d

fd(R)

�
. (3.17)

where Cij is defined in (3.6) and the last term only depends on the curvature via
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The quadratic equation (3.17) can be solved for !d in d = 2, 3, 4, 5, 6 and we get a general

formula
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where the � sign is taken in order to reproduce the anomalies in even dimensions as � ! 0.

4
Here �ij refers to the metric on a unit sphere and all geometric quantities are computed using this metric.
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For the spheres the symmetry fixes
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The two solutions are (- to match anomalies)

with explicit form of        and holographic dictionary we reproduce the gravity bulk 
computation from the TT flow equation! 
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Wheeler-DeWitt equation in mini-superspace

4.3 Limitations of this method

Despite the promise, we find that in d = 4, this method allows us to readily obtain (4.1)

where as in d = 3, 5, we automatically obtain (4.3). The reason for this distinction is that the

absorbing the anomaly into the improvement of the energy momentum tensor occurs only in

d = 4. In d = 3 and d = 5, the absence of the anomaly leaves us only with the bare flow

equation. The inclusion of the counterterms, especially as involved as in d = 6, should arise

from a further improvement of the energy momentum tensor.

In other words, the counterterms are accounted for automatically in d = 4 whereas must

be thought of as an additional input in odd dimensions. Perhaps a di↵erent method or

scheme would directly give us the renormalized flow equation no matter what dimension we

are working in, starting from the local CS equation.

5 The Wheeler-DeWitt equation

In this section, we comment on the role played by the Wheeler-DeWitt equation in deriving

the deformed partition function. We shall see that the WKB solution of the (minisuperspace)

Wheeler-DeWitt equation perfectly reproduces the bulk and boundary on-shell action without

counterterms.

Let us briefly review the Wheeler-DeWitt equation that arises in the minisuperspace

approximation (we closely follow [40]). The minisuperspace ansatz for the Euclidean asymp-

totically AdS metric is defined as

ds2 = N
2(r)dr2 + a2(r)d⌦2

d
, (5.1)

where N(r) is the lapse function and a(r) is the scale factor.

We first evaluate the EH and GH actions on this metric and then, in the Euclidean gravity

path integral, we redefine the lapse N ! Nad�4 and introduce a variable10 q = a2 such that

the action takes the form (see [40] and references therein)

SEH + SGH = �
d(d� 1)Sd

22

Z
dr


q02

4N
+N

�
qd�3 + l�2qd�2

��
, (5.2)

where Sd is the sphere area.

To derive the Hamiltonian we compute the canonical momentum conjugate to q(r)

p =
@L

@q0
= �

Sd

2

d(d� 1)

4N
q0, (5.3)

10
The main advantage of the q variable here is the canonical kinetic term.
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and a Legendre’s transform yields

H = NĤ = �
22

Sdd(d� 1)
N

"
p2 �

✓
d(d� 1)Sd

22l

◆2 �
l2qd�3 + qd�2

�
#
. (5.4)

Inserting p = ~ d

dq
, we derive the Hamiltonian constraint, or the Wheeler-DeWitt equation

for the wavefunction  [q] [40]

Ĥ [q] =

"
~2 d2

dq2
�

✓
d(d� 1)Sd

22l

◆2 �
l2qd�3 + qd�2

�
#
 [q] = 0. (5.5)

This equation can be solved exactly in terms of special functions for d = 2, 3, 4 (e.g. in

d = 3 the solution is the Airy function that reproduces the ABJM partition function [28, 29]

with perturbative 1/N corrections). However, let us focus just on the semi-classical limit,
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be used to compute entanglement entropy and matched with the Ryu-Takayanagi prescription

[41] applied to a spacetime with finite cut-o↵. The details of this computation will be
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illustrates the known fact that the Wheeler-DeWitt wavefunction should be related to the
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that turns this equation into a powerful tool. Secondly, the counterterms (for the full

TT partition function that is obtained from the flow equation) are included by additional

canonical transformation as explained, for instance, in [6]. Thirdly, in the large N limit, it
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Quantum Wheeler-DeWitt equation

Quantum Gravity action (q=a^2 for a canonical kinetic term)

Hamiltonian

[PC,S.Hirano’18]
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H = NĤ = �
22

Sdd(d� 1)
N

"
p2 �

✓
d(d� 1)Sd

22l

◆2 �
l2qd�3 + qd�2

�
#
. (5.4)

Inserting p = ~ d

dq
, we derive the Hamiltonian constraint, or the Wheeler-DeWitt equation

for the wavefunction  [q] [40]
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Extra canonical transformation to include the counter-terms needed [Freidel’08]

[PC,S.Datta,V.Shyam’19]

Quantum Gravity “radial Hamiltonian” yields the WDW equation (q=a^2)

[deBoer,Verlinde,Verlinde’99]

Which is precisely the “bare” gravity on-shell action with finite cut-off



ABJM and the Airy function

ZABJM (S3) ⇠ Ai
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[Bhattacharyya,Grassi,Marino,Sen’12]

x�3/2 ⇠ N�3/2 ⇠ GN

[Marino,Putrov’12]

[Bergman,Hirano’09]

[Hatsuda,Moriyama,Okuyama’12]

[Klebanov,Tseytlin’96]

[Fuji,Hirano,Moriyama’11]

Classical GR

1 loop QGR
2 loop QGR 3 loop QGR

[Dabholkar,Drukker,Gomes’14]Localization in SUGRA



WDW and Airy

WdW equation in AdS in 4 dim. => Airy equation!

General (quantum) solution

!14

Wheeler DeWitt equation & Holographic RG

• The WDW equation is an Airy equation

[ d2

dq2 − 9π2

16G2
Nℓ2 (q + ℓ2)] Ψ(q) = 0

• How is the S3 partition function related to the “wavefunction of the universe”?

Z(S3) ∝ Ψ(0)

* with the boundary condition, no Bi component

Ψ(q) = C1Ai ( 3πℓ2

4GN )
2
3

(ℓ−2q + 1) + C2Bi ( 3πℓ2

4GN )
2
3

(ℓ−2q + 1)
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3
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Holographic dictionary (ABJM) and the decaying part for larger N (Ai, C2=0)

3S3l2

2
=

⇡N2

p
2�

We find the relation (Pure Gravity!)

ZABJM (S3) ⇠ Ai(x) =  WDW (q ! 0)

[PC,S.Hirano’18]

! ?

Works for 1/2 BPS Wilson Loops!



Is bulk really a Tensor Network?

Surface/state-correspondence? [Miyaji&Takayanagi’15]

?

Is TT-bar one realization of this correspondence? 



Finite cut-of RT from Sphere Partition Functions 

1 General Formulas

Holographic stress-tensor up to 6d at large N
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relation with the flow

r@r logZSd [r] = �
Z

d
d
x
p
�hT µ

µ i = �d![r]rdSd. (1.3)

Now the ”bare” partition function (without counter-terms) is given by the first line of (1.2)

and is equal to the bulk action with GH term evaluated on the geometry with finite cut-o↵

r.

2 Entanglement

We want to compute the entanglement entropy for a CFT on a d-sphere using
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3 Holographic EE

Holographic entropy is given by
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So using “bare” partition functions at scale r
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This matches RT for (finite cut-off) surface with induced metric 

 RT no c.t.!
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Is it related to EE in TT deformed theory? Meaning on EE in TT?



Some open questions:

Meaning of entanglement in TT deformed CFTs?

Better understanding of the flow equation from QFT side? 

Deforming ABJM or N=4 SYM ?

1/N and quantum gravity? Lessons from WDW?

What are the “bulk” (universal GR) constraints on Holographic TN?



Thank You!

Stay Tuned!


