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Based on:

work in progress with Richard Kueng, Wissam Chemissany, Fernando
Brandao, John Preskill

Cs(e™ MM w))

[Richard Kueng]

as well as [NHJ, “Unitary designs from statistical mechanics in random
quantum circuits,” arXiv:1905.12053)]
(talk at the QI workshop 2 weeks ago)
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We are interested in understanding universal aspects of
strongly-interacting systems
— specifically in their real-time dynamics

Thermalization Quantum chaos Complexity Transport

understanding these has implications in high-energy, condensed matter,
and quantum information

we'll focus on complexity in quantum mechanical systems



Complexity

some intuition

Complexity is a somewhat intuitive notion

The traditional definition involves building a circuit with gates
drawn from a universal gate set, which implements the state or
unitary to within some tolerance

o) ()

We are interested in the minimal size of a circuit that achieves this



Complexity

a panoply of references

we've heard a lot about complexity growth already in this workshop

e.g. talks by Rob Myers, Vijay Balasubramanian, and Thom Bohdanowicz;
in talks later today/this week by Bartek Czech, Gabor Sarosi, Shira Chapman; and in many posters

and much progress has been made in studying complexity growth

in holographic systems

[Susskind], [Stanford, Susskind], [Brown, Roberts, Susskind, Swingle, Zhao], [Susskind, Zhao], [Couch, Fischler,
Nguyen], [Carmi, Myers, Rath], [Brown, Susskind], [Caputa, Magan], [Alishahiha], [Chapman, Marrochio, Myers],
[Carmi, Chapman, Marrochio, Myers, Sugishita], [Caputa, Kundu, Miyaji, Takayanagi, Watanabe], [Brown,
Susskind, Zhao], [Agén, Headrick, Swingle], ...

as well as extending definitions to understand a notion of
complexity in QFT

[Chapman, Heller, Marrochio, Pastawski], [Jefferson, Myers], [Hackl, Myers], [Yang], [Chapman, Eisert, Hackl,

Heller, Jefferson, Marrochio, Myers], [Guo, Hernandez, Myers, Ruan], ...



Complexity

some expectations

it is believed(/expected/conjectured) that the complexity of a simple initial state
grows (possibly linearly) under the time-evolution by a chaotic
Hamiltonian

Cs(e™""y))

saturating after an exponential time

computing the quantum complexity analytically is very hard (especially
for a fixed chaotic H and |¢))

— we'll focus on ensembles of time-evolutions (RQCs)



Our goal

Consider random quantum circuits, a solvable model of chaotic dynamics

we take local RQCs on n qudits of local dimension ¢, with gates drawn
randomly from a universal gate set G

and try to derive exact results for the growth of complexity



Overview

v

Define complexity

v

Complexity by design

v

Complexity in local random circuits

v

Solving random circuits

v

(complexity from measurements)



State complexity

more serious version

Consider a system of n qudits with local dimension ¢, where d = ¢™

Complexity of a state: the minimal size of a circuit that builds the state
) from [0)

We assume the circuits are built from elementary 2-local gates chosen
from a universal gate set G. Let GG, denote the set of all circuits of size r.

Definition (d-state complexity)

Fix 6 € [0, 1], we say that a state |¢)) has d-complexity of at most 7 if
there exists a circuit V' € G, such that

o[ rexer = vioxort| <,

which we denote as Cs(|¢)) < r.



Unitary complexity

more serious version

Consider a system of n qudits with local dimension ¢, where d = ¢™

Complexity of a unitary: the minimal size of a circuit, built from a 2-local
gates from G, that approximates the unitary U

Definition (d-unitary complexity)

We say that a unitary U € U(d) has -complexity of at most 7 if there
exists a circuit V' € G, such that

1
Sl=vl, <o,
where U = U(p)UT and V =V (p)V'T,

which we denote as Cs(U) < r.



Complexity by design

We start with some general statements about the complexity of
unitary k-designs

related ideas were presented in [Roberts, Yoshida] relating the frame potential
to the average complexity of an ensemble

But first, we need to define the notion of a unitary design



Unitary k-designs

Haar: (unique L/R invariant) measure on the unitary group U(d)

The k-fold channel, with respect to the Haar measure, of an operator O
acting on H®" is

o

Haar

(0) = / dU UCk(O)UT®*
Haar

For an ensemble of unitaries £ = {p;, U;}, the k-fold channel of an
operator O acting on H®" is

o (0) =Y pUPkO) Ul

An ensemble of unitaries £ is an exact k-design if

oM (0) = &y, (0)

Haar

e.g. k=1 and Paulis, £k = 2,3 and the Clifford group



Unitary k-designs

Haar: (unique L/R invariant) measure on the unitary group U(d)
k-fold channel: @) (0) = =, p,UEH(O) U@k

exact k-design: <I>(gk)((9) 1

Haar

(0)

but for general k, few exact constructions are known

Definition (Approximate k-design)

For e > 0, an ensemble £ is an e-approximate k-design if the k-fold
channel obeys

o - ot

Haar
S

<e€

— designs are powerful



Intuition for k-designs

(eschewing rigor)

How random is the time-evolution of a system compared to the full
unitary group U(d)?

Consider an ensemble of time-evolutions at a fixed time t: & = {U;}
e.g. RQCs, Brownian circuits, or {e*#* H € £y} generated by
disordered Hamiltonians

quantify randomness:
when does &; form a k-design?
(approximating moments of U(d))



Complexity by design

an exercise in enumeration
Consider a discrete approximate unitary design € = {p;, U;}.
Can we say anything about the complexity of U;'s?

The structure of a design is sufficiently restrictive, can count the
number of unitaries of a specific complexity

Theorem (Complexity for unitary designs)

For 6 > 0, an e-approximate unitary k-design contains at least

>d_2k 1 oG
TR (4e) (1-0%)F

unitaries U with Cs(U) > r.

This is essentially =~ (d?/k)* for 7 < kn (exp growth in design k)



Random quantum circuits

Consider G-local RQCs on n qudits of local dimension ¢, evolved with
staggered layers of 2-site unitaries, each drawn randomly from a universal
gate set G

where evolution to time t is given by Uy = U® .. .UM



RQCs and randomness

Now we need a powerful result from [Brandso, Harrow, Horodecki]

Theorem (G-local random circuits form approximate designs)

For € > 0, the set of all G-local random quantum circuits of size T
forms an e-approximate unitary k-design if

T > enflog k]?k'%(n + log(1/e€))

where c is a (potentially large) constant depending on the universal
gate set G.

Less rigorous version: RQCs of size T' ~ n?k'% form k-designs



Complexity by design

curbing collisions

Now we can combine these two results to say something about the
complexity of states generated by G-local random circuits

Fix some initial state |io), and consider the set of states generated by
G-local RQCs: {U; [tho) , Ui € Egiocal RAC}

Obviously, at early times: Cs(|¢))) ~ T
but we must account for collisions: Uy |¢h) = Uz |tbg)

and collisions must dominate at exponential times as the complexity
saturates

but the definition of an e-approximate design restricts the number of
potential collisions
— allows us to count the # of distinct states



Complexity by design

curbing collisions

Now we can combine these two results to say something about the
complexity of states generated by G-local random circuits

Fix some initial state |i)g), and consider the set of states generated by
G-local RQCs: {U; |[v0), U; € Egutocal RQC}

For < v/d, G-local RQCs of size T, where T' > cn?(r/n)'0, generate at
least
M > clerlogn

distinct states with Cs(|1)) > r.

This establishes a polynomial relation between the growth of complexity
and size of the circuit up to r < v/d

— but what we really want is linear growth



RQCs and T ~ k

an appeal for linearity

To get a linear growth in complexity we need a linear growth in
design

we had T' = O(n%k'?), but would need T' = O(n?k)

[Branddo, Harrow, Horodecki]: @ lOwer bound on the k-design depth for RQCs
is O(nk)

Can we prove that RQCs saturate this lower bound? (and are thus
optimal implementations of k-designs)



k-designs from stat-mech in RQCs

I'll now briefly summarize the result mentioned two weeks ago

using an exact stat-mech mapping, we can show that RQCs form
k-designs in O(nk) depth in the limit of large local dimension

this was for local Haar-random gates, but we believe it should
extend to G-local circuits with any local dimension ¢



Random quantum circuits

Consider local RQCs on n qudits of local dimension ¢, evolved with
staggered layers of 2-site unitaries, each drawn randomly from the Haar
measure on U(q?)

where evolution to time t is given by Uy = U® .. U1

Study the convergence of random quantum circuits to unitary k-designs,
i.e. depth where we start approximating moments of the unitary group



Our approach

» Focus on 2-norm and analytically compute the frame potential for
random quantum circuits

> Maklng use Of the ideaS in [Nahum, Vijay, Haah], [Zhou, Nahum], W€ Can Write
the frame potential as a lattice partition function

> We can compute the k = 2 frame potential exactly, but for general
k we must sacrifice some precision

> We'll see that the decay to Haar-randomness can be understood in
terms of domain walls in the lattice model



Frame potential

The frame potential is a tractable measure of Haar randomness,
defined for an ensemble of unitaries £ as [Gross, Audenaert, Eisert], [Scott]

k-th frame potential :  F) = / AUV | Te(UTV) [
UVvee
For any ensemble &, the frame potential is lower bounded as

FP>FE. and F)

Haar Haar

= k! (for k < d)
with = if and only if £ is a k-design.

Related to e-approximate k-design as

o® _o® |7 < g2k (0 _ £
|28 < (F — Fi)

Haar
S




Frame potential for RQCs

The goal is to compute the FP for RQCs evolved to time ¢:
Fie = / dUav | Te(U; V)|
U,V €ERQC

Consider the k-th moments of RQCs, k copies of the circuit and its
conjugate:

1ol ol ol ol o ol o7 o7 o1




Lattice mappings for RQCs

Haar averaging the 2-site unitaries allows us to exactly write the frame
potential as a partition function on a triangular lattice.

The result is then that we can write the k-th frame potential as

1(12(3 - ZHnglth = Z

fo} < {o}

with o € Sy, width ng, = [n/2], depth 2(¢ — 1), and pbc in time.
The plaquettes are functions of three o € Sy, written explicitly as

g2
-1 -1
Jor = o1 — Z Wg(oflT, q2)q6(7 Ug)qé(r 03) )

0203
TES
g3 k



Lattice mappings for RQCs

Haar averaging the 2-site unitaries allows us to exactly write the frame
potential as a partition function on a triangular lattice.

The result is then that we can write the k-th frame potential as

Fuge = 21175 =22

{o} < {o}

with o € Sy, width n, = [n/2], depth 2(¢ — 1), and pbc in time.

We can show that JZ, =1, and thus the minimal Haar value of the
frame potential comes from the k! ground states of the lattice model

Fide =k +...



RQC domain walls

all non-zero contributions to ]:P(m)zc are domain walls

(which must wrap the circuit)

e.g. for k =2 we have

a single domain wall a double domain wall
configuration: configuration:




k-designs from domain walls

To compute the k-design time, we simply need to count the domain wall
configurations

Froc —k’(1+ > wt(g,t) + Zwt(q,t)—i—...)

— decay to Haar-randomness from dws



RQC 2-design time

We have the k& = 2 frame potential for random circuits

2(t—1)\ ng—1
2 2q g
Fiige < 2<1+ <q2+1> )

H < d* (]: - ]:Haar)

and recalling that HCI)gQC 3

Haar

the circuit depth at which we form an e-approximate 2-design is then

2 1 1
ty > C(2nlogq+logn+logl/e) with C = <1qu2+ )
q

and where for ¢ = 2 we have t5 ~ 6.2n, and in the limit ¢ — oo we find
to & 2n



k-designs in RQCs

For general k, we then have the contribution from the ground states and
single domain wall sector, plus higher order contributions

Fo < /<:!<1 +(ng — 1)(];) <2§f__11)) (qu 1)2“71) T )




k-designs in RQCs

For general k, we then have the contribution from the ground states and
single domain wall sector, plus higher order contributions

Fo < /<:!<1 +(ng — 1)(];) <2§f__11)) (qu 1)2“71) T )

Moreover, the multi-domain wall terms are heavily suppressed and higher
order interactions are subleading in 1/q as

1
T

In the large ¢ limit, the single domain wall sector gives the e-approximate
k-design time: t;, > C(2nklogq + klogk + log(1/¢)), which is

tr = O(nk‘)



k-designs from stat-mech

RQCs form k-designs in O(nk) depth

we showed this in the large ¢ limit, but this limit is likely not necessary

Conjecture: The single domain wall sector of the lattice partition
function dominates the multi-domain wall sectors for higher
moments k and any local dimension q.

As the lower bound on the design depth is O(nk), RQCs are then
optimal implementations of randomness



Back to complexity

We'll now end on a much more speculative note

If this result holds for G-local random circuits, and for any local
dimension ¢, then the circuits of size T'= O(n?k) form approx unitary
k-designs

Therefore, G-local RQCs of size T' generate at least M > (d/k)k distinct
states with complexity Cs(|1)) ~ T. For k < v/d, we have

Tlogn
MZe

This would then realize a conjecture by [Brown, Susskind] in an explicit
example:

the # of states with Cs(Ur |10)) ~ T, generated by time-evolution to
time T (in this case RQCs of size T'), scales exponentially in T



Future

science

Can we prove anything about Cs(e™ 1 |4))) for a fixed
Hamiltonian?

Can we rigorously bound the higher order terms in .7-"1({13

small ¢7 and then extend the result to G-local RQCs

Explore the implications of an operational definition of
complexity (in terms of a distinguishing measurement). More
suited for holography?



Thanks!
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