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Introduction

It is widely expected that the black hole geometry is a
coarse-grained description of a large number of underlying
microstates [Strominger, Vafa ’96, Lunin, Mathur ’01, Balasubramanian, de Boer, Jejjala,

Simon ’05, Alday, de Boer, Messamah ’06...].

Universal classical region

Micro features

Our aim in this talk will be to study the effects of this
coarse-graining on the classical phase space and symplectic form
for excitations around the black hole geometry.

We will argue that the coarse-graining has a non-trivial effect – it
leads to an emergent soft mode on the stretched horizon.
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Preliminaries: CFT side

We will work with an incipient black hole, called the 1/2-BPS
superstar, whose microstates are 1/2-BPS states in N = 4 SYM
[Myers & Tafjord ’01, Balasubramanian, de Boer, Jejjala, Simon ’05].

The 1
2 -BPS sector of N = 4 SYM theory can be reduced to N free

fermions in a harmonic-oscillator potential:

L =
N

2

∫
dt

N∑
i=1

(
λ̇2
i − λ2

i

)
The ground state is given by filling the first N energy levels of the
oscillator, which we refer to as the Fermi sea. Excited states can
be labelled by Young diagrams:

r1

r2

r3

...
...

|0i |r1, r2, r3i
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Preliminaries: Phase space density

For comparison with gravity, it is convenient to introduce the
phase space density u(q, p).

u is the occupation density for fermions in the one-particle phase
space of the harmonic oscillator parametrized by (q, p):∫

dpdq

2π
u(q, p) = N~.

For example, in the classical limit N →∞, ~→ 0 with N~ fixed,
the Fermi sea is given by

u(q, p) = Θ(2~N − q2 − p2).

which we can pictorially represent as a black disc:

q

p
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Preliminaries: Phase space density

Here are some further examples:

|0i

Coherent state of Tr (Xk)

Onkar Parrikar (UPenn) Kyoto Workshop 6 / 18



Preliminaries: Gravity side

The 1/2-BPS states in N = 4 SYM are dual to a class of
asymptotically AdS5 solutions in IIB supergravity [Lin, Lunin, Maldacena]

g = −h−2
(
dt2 + Vidx

i
)2

+ h2
(
dy2 + dxidxi

)
+ yeGdΩ2

3 + ye−GdΩ̃2
3,

F5 = dB ∧ volS3 + dB̃ ∧ volS̃3 .

y ∈ [0,∞), (x1, x2) ∈ R2.

The various functions appearing in this metric can all be expressed
in terms of one function z0(x1, x2), which we can think of as a
boundary condition on the (x1, x2) plane as y → 0.

Remark: y-evolution has the effect of coarse-graining.
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Preliminaries: AdS/CFT in the 1/2 BPS sector

For the solution to be regular, the boundary condition z0(xi) can
only take on the values ±1

2 :

I On the regions where z0 = + 1
2 (which we may choose to represent

as white regions), S3 shrinks smoothly as y → 0.
I On the regions with z0 = − 1

2 (which we may choose to represent as

black regions), S̃3 shrinks smoothly.

The correspondence with 1/2 BPS states in N = 4 SYM proceeds
by identifying the LLM plane (x1, x2) with the one-particle phase
space (q, p) of the matrix model, and setting

z0(q, p) =
1

2
− u(q, p).

2π`4P = ~, `4AdS = 2N~.

Remark: The gravity description makes sense for sufficiently
“classical” states.
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Superstars

We will be interested in states of energy O(N2), with gravity duals
which look like incipient black holes called superstars [Myers & Tafjord

’01, Balasubramanian, de Boer, Jejjala, Simon ’05].

In terms of the density u(q, p), a typical state looks like N
concentric black and white rings, each with width ~.

So, there is no obvious classical limit! On the gravity side,the
“geometry” would have Planck-scale topological features close to
y = 0.
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Superstars

It seems natural to coarse-grain the density over some scale
y0 � `P :

However, translated into gravity, such a “grey” boundary
condition does not correspond to a regular geometry – indeed, if
we use such a boundary condition in constructing the LLM metric,
the resulting geometry has a singularity at y = 0 – the 1/2
BPS-superstar [Myers & Tafjord ’01].
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Superstars

We may think of this as a toy model for black hole singularities in
general relativity [Balasubramanian, de Boer, Jejjala, Simon ’05].

y

y0

x1

x2

The geometry for y � y0 is well-approximated by the superstar, but
for y < y0 it is perfectly regular. The purported singularity is replaced
by a topologically complex, but regular LLM geometry.

Onkar Parrikar (UPenn) Kyoto Workshop 11 / 18



Phase space: Gravity side

We wish to study the classical phase space of excitations around
the superstar.

From the gravity side, we have the symplectic form for type-IIB
supergravity:

Ωgrav ∼
∫

Σ
(δgmnδK

mn + δA4;mnpqδF5;0
mnpq)

For deformations, we can consider greyscale deformations at
y = y0: 0 ≤ δu(p, q) ≤ 1:

y

y0

x1

x2
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Phase space: Gravity side

After some calculation, the gravity symplectic 2-form becomes

Ωgrav =

∫
d2x δu δλ,

Here λ is a would-be “pure-gauge” mode in A4:

δA4 = dδλ ∧ (volS3 − volS̃3).

This emergent mode is a consequence of evaluating the symplectic
form in the universal black hole region y > y0, and taking `P → 0
before sending y0 → 0.

But this leads to a puzzle – what are we to make of this edge
mode from the CFT side?
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Phase space: CFT side

Our aim now is to give a CFT description of the “soft mode”, and
explain why it arises.

But first – how do we extract the microscopic phase space and
symplectic form from the CFT?

Answer: We can get the microscopic symplectic form by using
coherent states and the method of coadjoint orbits [Kirillov, Yaffe ’82...,

Belin, Lewkowycz, Sarosi ’18, Verlinde ].

ΩCFT (u0; δ1u0, δ2u0) =

∫
dpdq

2π
u0 {δ1π, δ2π}PB .

where δπ is defined in terms of δu0 by the equation

δu0 = {δπ, u0}PB = (∂pδπ∂qu0 − ∂pu0∂qδπ).
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Phase space: CFT side

Let us now apply this to the case of interest:

u u + �u0 0 0

The deformation δu0 take the schematic form

δu0(r, θ) =
∑
n

δu(0)
n (θ)δ(rn − r)

where δu
(0)
n are the microscopic shape-deformations of the rings.

Using δu0 = {δπ, u0}PB, we can solve for δπ and explicitly obtain

the microscopic symplectic form in terms of δu
(0)
n .

Crucially, we must now coarse grain these at some scale y0 � ε to
obtain the effective phase space variables.
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Phase space: CFT side

We can do this by rewriting δu
(0)
n in terms of two slowly-varying

modes:

δu(0)
n (θ) = δA(rn, θ) +

eiπr/ε

ε
δB(rn, θ).

(A) (B)

Then, δA is the coarse-grained density δu0,coarse, which we may
identify with the gravitational greyscale fluctuation.
On the other hand, δB is a slowly varying mode which is not
visible in the coarse-grained density because of the osclllatory
factor.
But if we compute the symplectic form, we find

ΩCFT =

∫
dpdq

2π
Sign(θ − θ′)δA(r, θ) δB(r, θ′).
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Phase space: CFT side

So in summary, upon coarse-graining the full UV density δu0, we
obtain two effectively independent slowly-varying modes: the
greyscale fluctuation δucoarse and its canonical momentum

δπcoarse(r, θ) =

∫
dθ′ Sign(θ − θ′)δB(r, θ′).

Comparing with the gravity result, we find

δu|y=y0 ∼ δucoarse, δλ|y=y0 ∼ δπcoarse.

This leads us to identify the gravitational soft mode at the horizon
as an emergent slowly varying mode in the CFT corresponding to
microstate deformations.
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Summary

We studied the phase space of fluctuations around an incipient 1/2
BPS black hole.

On the gravity side, we found a new physical soft mode at the
stretched horizon.

We explicitly constructed the coarse-grained phase space from the
CFT side, and found that the soft mode is associated with
microstate deformations.

Note that this mode is still an effective IR mode – it is merely
hidden in the UV part of phase space, and needs to be delicately
extracted.

In recent discussions of the information paradox, analogous “soft
hair” have been discussed [Hawking, Perry, Strominger ’16, Donnay et al ’16...].

Our discussion may provide hints about how aspects of
microstates might get imprinted on such soft modes.
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