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Part I: General results



• Classical chaos:

• 𝜉 0 = 𝑥 0 , 𝑝 0 → 𝜉 𝑡 = 𝑥 𝑡 , 𝑝 𝑡

• Sensitivity to initial condition

• Lyapunov exponents

• 𝜉 𝑡 is a complicated function
of 𝜉 0

• Quantum analog: Heisenberg operator evolution 
𝑂 𝑡 = 𝑒𝑖𝑡𝐻 𝑂(0)𝑒−𝑖𝑡𝐻

• 𝑂(𝑡) is a complicated function of 𝑂

• How to define “complicated”?

Motivation

𝜉 𝑡

𝜉 0



• Non-interacting system:
A particle has 𝑁 possible
positions.
𝜓𝑥 𝑡 = σ𝑦=1…𝑁𝜙𝑥 𝑦 𝜓𝑦 0 .

• Generic interacting system:
A particle can decay into 
multi-particle states. 
Exponentially many final 
states in the Hilbert space. 

• 𝜓𝑥 𝑡 = 𝜙𝑥 𝑦 𝜓𝑦 0 +
𝜙𝑥 𝑦1𝑦2𝑦3 𝜓𝑦1

𝜓𝑦2
+ 𝜓𝑦3 +⋯

Many-body quantum chaos



• 𝑝𝑙 probability of size 𝑙 (Roberts-Stanford-Susskind ’14, Hosur XLQ ’16, 
Roberts, Streicher, Stanford ‘18)

• Example: Majorana fermions

• 𝜓1 𝑡 = 𝑎 𝜓3 + 𝑏 𝜓4 + 𝑐 𝜓2
𝜓3
𝜓4 + 𝑑 𝜓1

𝜓3
𝜓4 +⋯

Operator size distribution

𝑎 2

𝑏 2

𝑐 2

𝑑 2

size

𝑝1 = 𝑎 2 + 𝑏 2 𝑝3 = 𝑐 2 + 𝑑 2



• Example: a random fermionic operator 

• 𝑝𝑙 = 21−𝑁
𝑁
𝑙

, for odd 𝑙. Average size 
𝑁

2

• Doubled formalism: 
- Take two systems 𝐿, 𝑅, each consisting of 𝑁
Majoranas. 
- Prepare a maximally entangled state 𝐼

• For every operator 𝑂, applying it to the left system, to 
obtain a state: 𝑂 = 𝑂𝐿 ⊗ 𝕀𝑅 𝐼

• 𝐴 𝐵 =
1

𝐷
𝑡𝑟 𝐴+𝐵

Operator size distribution



• In the doubled formalism, size is a linear operator

The size superoperator

𝜓1 =1 ⋅ 𝜓1

=2 ⋅𝜓1𝜓2 𝜓1𝜓2

……



• Size superoperator ො𝑛 depends on reference state 𝐼 . 
ො𝑛 𝐼 = 0 is required

• A convenient choice of 𝐼 : 𝜓𝑖𝐿 − 𝑖𝜓𝑖𝑅 𝐼 = 0

• |𝐼⟩ is the vacuum state of fermion with annihilation 

operator 𝑓𝑖 =
1

2
𝜓𝑖𝐿 − 𝑖𝜓𝑖𝑅 , 𝑓𝑖 , 𝑓𝑗

+ = 𝛿𝑖𝑗

• In this basis ො𝑛 = σ𝑖 𝑓𝑖
+𝑓𝑖 is fermion number

• 𝜓𝑖𝐿𝜓𝑗𝐿… 𝐼 = 𝑓𝑖
+𝑓𝑗

+… |𝐼⟩

• In Majorana basis

• ො𝑛 =
1

2
𝑁 − 𝑖σ𝑖𝜓𝑖𝐿𝜓𝑖𝑅

The size superoperator

=



• The size superoperator can be used to compute the 
full size distribution

• 𝑝𝑙 = σ𝛼 𝑙𝛼 𝑂 𝐼
2

• 𝒢𝜇 = 𝐼 𝑂+𝑒−𝜇 ො𝑛 𝑂 𝐼 = σ𝑙=0
𝑁 𝑒−𝜇𝑙𝑝𝑙 𝑂

• For random fermionic operator

• 𝒢𝜇
𝑟𝑎𝑛𝑑 = σ𝑙 odd 𝑒

−𝜇𝑙 𝑁
𝑙

21−𝑁

=
1+𝑒−𝜇

2

𝑁

−
1−𝑒−𝜇

2

𝑁

. 

Generating function



• Independent from details, this formalism already tells us 
interesting information about operator size.

• Consider the TFD state:

• 𝜌 =
1

𝑍
𝑒−𝛽𝐻

• 𝑇𝐹𝐷 = 𝜌
1

2 = 𝑍−
1

2𝑒−𝛽𝐻𝐿 𝐼 =

• Size of 𝜌
1

2:

• 𝑛 𝜌1/2 = 𝑇𝐹𝐷 ො𝑛 𝑇𝐹𝐷 =
𝑁

2
−
𝑖

2


𝑖

𝑇𝐹𝐷 𝜓𝑖𝐿𝜓𝑖𝑅 𝑇𝐹𝐷

=
𝑁

2
−
1

2


𝑖

𝜓𝑖

𝛽

2
𝜓𝑖 0 ≡

𝑁

2
−
𝑁

2
𝐺

𝛽

2

General results



• Distance to scrambling (average size of random 
operator 𝑛∗ = 𝑁/2):

• 𝛿𝛽 ≡ 1 −
𝑛

𝑛∗
= 𝐺

𝛽

2

• Usually, 𝐺
𝛽

2
decays to zero

at 𝛽 → ∞➔ Size approaches 
𝑁

2

• For example, 𝜌𝛽→∞ has size 
𝑁

2
if 

the system has unique ground state and a gap, or if 
the system is a CFT. 

General results 1: thermal state



• At infinite temperature, a single fermion operator 𝜒𝑖
has size 1. In our doubled language, this means 
ො𝑛𝜓𝑖𝐿 𝐼 = 𝜓𝑖𝐿 𝐼

• As a generalization, we can consider 𝜓𝑖𝐿 𝑇𝐹𝐷

• 𝛿𝑛𝛽 𝜓𝑖 = 𝑇𝐹𝐷 𝜓𝑖𝐿 ො𝑛𝜓𝑖𝐿 𝑇𝐹𝐷 − 𝑇𝐹𝐷 ො𝑛 𝑇𝐹𝐷
= 𝑇𝐹𝐷 𝜓𝑖𝐿 , ො𝑛 𝜓𝑖𝐿 𝑇𝐹𝐷 . 

• Fermion anticommutation gives

• 𝛿𝑛𝛽 𝜓𝑖 = −𝑖 𝑇𝐹𝐷 𝜓𝑖𝑅𝜓𝑖𝐿 𝑇𝐹𝐷

•
1

𝑁
σ𝑖 𝛿𝑛 𝜓𝑖 = 𝐺

𝛽

2
= 𝛿𝛽

General results 2: single fermion excitation

0 𝑛∗ = 𝑁/2 𝑛∗𝑛∗ 1 − 𝛿𝛽



• The effect of (chaotic) dynamics
is described by studying the size
of Heisenberg operators.

• 𝛿𝑛𝛽[𝜓𝑖 𝑡 ] = 𝑇𝐹𝐷 𝜓𝑖𝐿 𝑡 , ො𝑛 𝜓𝑖𝐿(𝑡) 𝑇𝐹𝐷 . 

• This is related to the out-of-time-ordered correlation 
function (OTOC):

• 𝛿𝑛𝛽 𝜓𝑖 𝑡 = σ𝑗 𝜓𝑗
𝛽

2
𝜓𝑖 𝜖 + 𝑖𝑡 , 𝜓𝑗 0 𝜓𝑖 −𝜖 + 𝑖𝑡

𝛽
.

• Infinite temperature case Roberts, Streicher, Stanford ’17 

• Finite temperature XLQ-Streicher ‘18

General results 3: Time evolution and OTOC



Part II: SYK model



• 𝐻 = σ𝑖𝑗𝑘𝑙 𝐽𝑖𝑗𝑘𝑙𝜒𝑖𝜒𝑗𝜒𝑘𝜒𝑙 with Gaussian random coupling 𝐽𝑖𝑗𝑘𝑙. 
(Sachdev-Ye, ‘93, Kitaev ’15, Maldacena-Stanford ‘16)

• Or complex fermion model
𝐻 = σ𝑖𝑗,𝑘𝑙 𝐽𝑖𝑗𝑘𝑙𝑐𝑖

+𝑐𝑗
+𝑐𝑘𝑐𝑙.

• Generalization (Maldacena-Stanford ‘16) :
𝐻 = σ𝑖1𝑖2…𝑖𝑞

𝐽𝑖1𝑖2…𝑖𝑞𝜒𝑖1𝜒𝑖2 …𝜒𝑖𝑞

• Averaging over disorder

• 𝑍𝑛 ≃ 𝑍
n

in large 𝑁 limit.

• Large N order parameter

• 𝐺 𝜏1, 𝜏2 =
1

𝑁
σ𝑖 𝜒𝑖 𝜏1 𝜒𝑖 𝜏2 =

N fermions

q-body interaction

Sachdev-Ye-Kitaev model

+ + +⋯



𝜏

0

Sachdev-Ye-Kitaev model

𝐿
𝑅

• Critical correlation function (Δ = 1/𝑞)

𝜒𝑖 𝜏 𝜒𝑖 0 ∝ sin
𝜏

𝛽
𝜋

−2Δ

sgn(𝜏).

• Real time: thermal double state

𝑇𝐹𝐷(𝑡) = 𝑍−
1

2σ𝑛 𝑒
−𝐸𝑛

𝛽

2
+𝑖𝑡

𝑛 𝐿 𝑛 𝑅. 

• 𝜒𝑖𝐿 𝑡 𝜒𝑖𝑅 𝑡 ∝ cosh
𝜋𝑡

𝛽

−2Δ

• Chaos. Maximal Lyapunov exponent 
𝜆 = 2𝜋𝑇 (Kitaev ’15, Maldacena-Stanford ’16, 
Maldacena-Shenker-Stanford ‘15)

• (Approximately) dual to 
Jackiw-Teitelboim gravity



• Infinite temperature case 
(Roberts-Stanford-Streicher ‘18)

• For finite temperature, we study 
the size distribution
⟨𝑇𝐹𝐷 𝑒−𝜇 ො𝑛 𝑇𝐹𝐷⟩ and 
⟨𝑇𝐹𝐷 𝜓𝑖𝐿𝑒

−𝜇 ො𝑛𝜓𝑖𝐿 𝑇𝐹𝐷⟩

• 𝑇𝐹𝐷 𝑒−𝜇 ො𝑛 𝑇𝐹𝐷 ≡ 𝑍𝜇 is a 
partition function of SYK with 
twisted boundary condition 

Operator growth in the SYK model

𝜓
𝛽

4
+ 𝜖 = cosh𝜇 𝜓

𝛽

4
− 𝜖 − sinh 𝜇 𝜓

3𝛽

4
− 𝜖



• Two-point function with 𝜇 term can be obtained by 
Schwinger-Dyson equation

• 𝐺 = 𝜕𝜏 − Σ𝜇
−1

Σ𝜇 𝜏1, 𝜏2 = 𝐽2𝒢𝜇
𝑞−1

𝜏1, 𝜏2 .

• Note that 

𝒢𝜇 𝜏1, 𝜏2 =
𝑇𝐹𝐷 𝜓𝑖𝐿 𝜏1 𝑒−𝜇 ො𝑛𝜓𝑖𝐿 𝜏2 𝑇𝐹𝐷

⟨𝑇𝐹𝐷 𝑒−𝜇 ො𝑛 𝑇𝐹𝐷⟩

• This is a ratio of two generating functions. Expansion of 
𝒢𝜇 = σ𝑚 𝑒−𝜇𝑚𝐾𝑚 Coefficient 𝐾𝑚 satisfies 

• 𝑝𝑙 𝜓𝑖 𝑡 𝜌
1

2 = σ𝑚𝐾𝑚 𝑝𝑙−𝑚 𝜌
1

2 .

• 𝐾𝑚 is the “transition probability” 
that the fermion operator increases 

size of 𝜌
1

2 by 𝑚

Operator growth in the SYK model



• In large 𝑞, the Schwinger-Dyson equation simplifies

𝜕𝜏 −
𝐽2

𝑞
Gq−1 ∗ G = 𝕀,

• 𝐺 = 𝐺0𝑒
𝑔

𝑞,➔ Liouville equation 𝜕𝜏1𝜕𝜏2𝑔 = −2𝐽2𝑒𝑔

• Define 𝜇 =
ෝ𝜇

𝑞
, ො𝜇 changes the boundary condition of 𝑔

Large-q solution

𝜏1

𝜏2



Large-q solution

• Size of thermal state

• 𝑛 𝜌
1

2 =
𝑁

2
1 − 𝛿𝛽 ,

• 𝛿𝛽 =
𝛼

𝒥

2

𝑞

• At low temperature 𝛼 ≃
𝜋

𝛽
. 

• Fermion size 𝛿𝑛𝛽 𝜓1 𝑡 = 1 + 2
𝒥

𝛼
sinh 𝛼𝑡

2

• Lyapunov exponent 2𝛼

• Consistency at 𝑡 → 0: conjecture 

𝛿𝑛𝛽 𝜓1 𝑡 = 𝛿𝛽 1 + 2
𝒥

𝛼
sinh 𝛼𝑡

2
. 



• Full size distribution can be 
obtained by expanding 𝒢𝜇

• The entire distribution is the 
same as infinite temperature 
case except a renormalization

of parameter sinh𝒥𝑡 →
𝒥

𝛼
sinh 𝛼𝑡

Large-q solution

∝ 𝑒
−
4
𝑞𝛼𝑡 exp −

2𝛼

𝒥

2

𝑒−2𝛼𝑡𝑛



• At large 𝛽𝐽, the dynamics of the SYK model can be 
described by reparameterization modes 𝑓 𝜏 , defined 
by 
𝐺𝑓 𝜏1, 𝜏2 = 𝑓′ 𝜏1 𝑓′ 𝜏2

Δ𝐺𝑆 𝑓 𝜏1 , 𝑓 𝜏2

• Effective theory describes the breaking of 
reparameterization symmetry.

• Schwarzian action 𝑆 =
𝑁

𝐽
𝛼 0

𝛽
𝑑𝜏 Sch tan

𝜋

𝛽
𝑓 𝜏 , 𝜏

• Preserves SL(2,R) gauge symmetry

• Bulk picture 𝑆 = 𝑁𝛼(𝐿 − 𝐴). 𝐿 = 𝛽𝐽, 
maximize 𝐴.

Low temperature solution

A



• 𝑒−𝜇 ො𝑛 term adds an interaction 

between the time 𝜏 = 0 and 𝜏 =
𝛽

2
.

• 𝛿𝑆 ∝ 𝑁 𝜓
𝛽

2
𝜓 0

𝑓
= 𝑁 cosh𝐷Δ

• Solution: two arcs (similar to 
Gu, Lucas XLQ ‘17)

• Analytic continuation 𝜏1 → 𝜖 + 𝑖𝑡1,
𝜏2 → −𝜖 + 𝑖𝑡2 to determine 𝒢𝜇 𝑡1, 𝑡2 .

Low temperature solution

A

𝜏1

𝜏2

(Yingfei Gu, Yuri Lensky, XLQ, Pengfei Zhang, in progress)



• For 𝑡1 = 𝑡2, 

• Schwarzian

• Large 𝑞

• Agreement for long time requires to take the UV 
cutoff 𝜖 =

𝜋

𝛽𝐽
, and small ො𝜇 = 𝑞𝜇 ≪ 1

Low temperature solution

(𝛼 ≃ 𝜋 + 𝑐𝜇)



Part III: Holographic 
dual theory



• The SYK is approximately dual to Jackiw-Teitelboim
gravity coupled with matter fields. 

• Gravitational dynamics           Repara. Modes

• Matter field                               Conformal fields

• In particular, fermion
𝜒𝑖𝛼 𝜌, 𝑡 𝜓𝑖(𝑡)

• Bulk fermion mass

𝑚 = Δ −
1

2
=

1

𝑞
−

1

2
. 

• HKLL construction 

𝜒𝑖𝛼 𝜌, 𝑡 = −𝑡
𝑡+ 𝑑𝑡′𝐾𝛼 𝜌, 𝑡 − 𝑡′ 𝜓𝑖 𝑡

′ .

• Size of 𝜒𝑖𝛼 𝜌, 𝑡 can be computed.

The dual theory: bulk operator size

Yingfei Gu, Yuri Lensky, XLQ, Pengfei Zhang, in progress



• Generating function

• 𝒢𝜇
𝐵 𝜌, 𝑡 ≡

𝑇𝐹𝐷 𝜒𝑖𝛼 𝜌,𝑡 𝑒−𝜇ෝ𝑛𝜒𝑖𝛼 𝜌,𝑡 𝑇𝐹𝐷

𝑇𝐹𝐷 𝑒−𝜇ෝ𝑛 𝑇𝐹𝐷

=  𝑑𝑡1𝑑𝑡2𝐾𝛼 𝜌, 𝑡 − 𝑡1 𝐾𝛼 𝜌, 𝑡 − 𝑡2

⋅
𝑇𝐹𝐷 𝜓𝑖 𝑡1 𝑒−𝜇 ො𝑛𝜓𝑖 𝑡2 𝑇𝐹𝐷

𝑇𝐹𝐷 𝑒−𝜇 ො𝑛 𝑇𝐹𝐷
=  𝑑𝑡1𝑑𝑡2𝐾𝛼 𝜌, 𝑡 − 𝑡1 𝐾𝛼 𝜌, 𝑡 − 𝑡2 𝒢𝜇 𝑡1, 𝑡2

• Simplification: contribution is dominated by the light 
cone 𝑡 = 𝑡±

• 𝒢𝜇
𝐵 𝜌, 𝑡 =

1

2
𝒢𝜇 𝑡+, 𝑡+ + 𝒢𝜇 𝑡−, 𝑡− ±

𝑅𝑒 𝒢𝜇 𝑡+, 𝑡−

The dual theory: bulk operator size



• Bulk fermion size is almost determined by the size of 
boundary fermions at 𝑡±. 

• Approximately, 

• 𝑛 =
𝛽𝐽 2

2𝜋2
cosh 𝑡 coth𝜌 − 1 +

𝛽𝐽

2𝜋
cosh𝜌 − sinh𝜌 cosh 𝑡 + 𝑂 𝛽𝐽 0 . 

• Size grows exponentially along radial
and temporal direction with proper
distance. 

• Operator size diverges near the horizon

• The calculation only applies to 𝑡± < 𝑡∗

(before scrambling time)

The dual theory: bulk operator size



• Operator size growth characterizes chaos (at early time)

• The same general results apply to qubit systems.

• SYK model operator size growth 
can be computed for low 
temperature or large 𝑞

• Size growth of bulk operator 
provides an interpretation of 
emergent bulk direction 𝜌

• Generalization to global AdS2?

• Does the size of bulk operator 
depend on the representation? 

• Relation to other works, such as 
A. Brown et al 1804.04156

Conclusion and further discussion



Thanks!


