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operators
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Part I: General results



Motivation

* Classical chaos:

* £(0) = (x(0),p(0)) = &(t) = (x(®),p(®))

* Sensitivity to initial condition §(t)
* Lyapunov exponents

« £(t) is a complicated function
of £(0)

* Quantum analog: Heisenberg operator evolution
O0(t) = et 0(0)e1tH

* 0(t) is a complicated function of 0

* How to define “complicated”?



Many-body quantum chaos

* Non-interacting system:
A particle has N possible
positions.

l/)x(t) — Zy=1...N be(y)l/’)\y(())

* Generic interacting system:
A particle can decay into
multi-particle states.
Exponentially many final
states in the Hilbert space.

* l/jx(t) — be(y)l/zy(()) +
(:bx(:)’l:VZYB)l/)yll/);zl/)yg T+

=




Operator size distribution

* Di proba b|||ty of size [ (rRoberts-Stanford-Susskind 14, Hosur XLQ '16,

Roberts, Streicher, Stanford ‘18)

* Example: Majorana fermions

e Y, (t) = a; + b, + c, P, + d s, + -
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Operator size distribution

* Example: a random fermionic operator
. N
e p, = 217N (127),for odd [. Average size >

* Doubled formalism:
- Take two systems L, R, each consisting of N
Majoranas.
- Prepare a maximally entangled state |I)

* For every operator O, applying it to the left system, to
obtain a state: |0) = 0; @ Ix|I)

« (A|B) = %tr(AJrB) |

m—)




The size superoperator

* In the doubled formalism, size is a linear operator

A%

Va1, =) . Ya1h,

<



The size superoperator

* Size superoperator fi depends on reference state |I).
fill) = 0 is required

* A convenient choice of |I): (¢;; — iY;r)|I) =0

* |I) is the vacuum state of fermion with annihilation
operator f; = %(lpiL — iip), Ui i} = 63

* In this basis i = ¥; f;" f; is fermion number

Y i ) = fi+fj+ .. |I)

* In Majorana basis

« i = %(N — i1 i YuYir)



Generating function

* The size superoperator can be used to compute the
full size distribution

oy = Xal(la| O] 1)
G, = (I|0Fe #0|I) = XN e Hp,| O]
* For random fermionic operator

_ul (N _
* Gi =Y oda e Ml(l)zl '

= () - (22




General results

* Independent from details, this formalism already tells us
interesting information about operator size.

e Consider the TFD state:
1 ,BH

° p :Ee_
1 _1
J |TFD>: pZ =/ Ze_:BHL|I>:U
1
* Size of pz: /‘\

» n(p'/?) =(TFDIAITFD) = [ F------

__iz<TFD|l/)iLl/)iR|TFD> \/

2 2
N 1 B N N (B
272 <¢i(§)¢i“’> =TEG(§)




General results 1: thermal state

* Distance to scrambling (average size of random

operatorn® = N /2): G(t)
5. =11 —c(B
5'8 =1 n* G (2) ‘
e Usually, G (g) decays to zero :
at f — oo =» Size approachesg :{
—
* For example, PR has size g if O 1T

the system has unique ground state and a gap, or if
the system is a CFT.

§7
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General results 2: single fermion excitation

* At infinite temperature, a single fermion operator y;

has size 1. In our doubled language, this means
A1) = ;|1
* As a generalization, we can consider Y;; |TFD)
* Sngly;| = (TFD|Y;, Ay, |TFD) — (TFD|A|TFD)
= (TFD|[y;, ily; ITFD).

* Fermion anticommutation gives

\

* Sngly;| = —I{TFD|Y;ry; ITFD)
o1 1= (B) =
=¥ ol = 6 (5) =6
0 n*=N/2 > n*(1-68g) n*



General results 3: Time evolution and OTOC

* The effect of (chaotic) dynamics /_\ O]

is described by studying the size [ }-------

of Heisenberg operators. \/

* Sng[;(t)] = (TFD|[;,(t), Al (D)ITFD).

* This is related to the out-of-time-ordered correlation
function (OTOC):

* Sngly; ()] = X; <1/Jj (g) {Wi(e +it), Y; (0 };(—e + it))

* Infinite temperature case Roberts, Streicher, Stanford ’17

,8.

* Finite temperature xLa-streicher ‘18



Part ll: SYK model



Sachdev-Ye-Kitaev model

* H = Xk JijiXiXjXi X with Gaussian random coupling J; jx;.
(Sachdev-Ye, ‘93, Kitaev 15, Maldacena-Stanford ‘16)

* Or complex fermion model g-body interaction
H = Zij,kl]ijle;_Cj_'_CkCl- /

* Generalization (valdacena-Stanford “16) :
H = Yii,.ig iin.igXis Xiy - Xig

e Averaging over disorder

e /7" = 7 inlarge N limit. N fermions

* Large N order parameter

* G(11,T3) = %ZKXL'(H)XL'(TZ» =

++ T




Sachdev-Ye-Kitaev model

e Critical correlation function (A = 1/q)

@x @) o sin(37)|  sgno).

e Real time: thermal double state
B

TFD()) = 272 5 e (a0 n), [n).

ot —2A
* (e (E)xir(t)) « [cosh (g)

* Chaos. Maximal Lyapunov exponent

A = 2nT (Kitaev 15, Maldacena-Stanford '16,
Maldacena-Shenker-Stanford ‘15)

* (Approximately) dual to
Jackiw-Teitelboim gravity



Operator growth in the SYK model

* Infinite temperature case
(Roberts-Stanford-Streicher ‘18)

* For finite temperature, we study . =

the size dis:cribution
(TFD|e #"*|TFD) and —
(TFD |y e #™p |TFD)

B

* (TFD|e #"|TFD) = Z, is a
partition function of SYK with

twisted boundary condition 3 /‘\
B 3\ -

-
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Operator growth in the SYK model

* Two-point function with u term can be obtained by
Schwinger-Dyson equation

* G =[0; - Zu]_l /

2, (T1, T2) :fzgu_l(TpTz)- \ J/

* Note that o
6 (r1,) = \TFPlbu (e oy ()| TFD)
u\lt1r 2 (TFD‘e—yﬁ‘TFD>

* This is a ratio of two generating functions. Expansion of
Gy = Xme MKy, Coefficient K, satisfies

* P [l/)l(t)p%] = 2m Km D1-m [,0%] : FLA‘ §-m X

* K, is the “transition probability”
that the fermion operator increases
>4

size of p2 by m —




Large-q solution

* In large g, the Schwinger-Dyson equation simplifies
2
[aT - %Gq-ll «G =1,

g
* G = Gyed, <> Liouville equation 9, 0, g = —2]%e?
* Define u = %, {i changes the boundary condition of g

6_’&/qu, (’7'1 — Tg)

gﬂ# (ThTQ) - 1—e—f 2/q
(1 - (T:af) (G, (T — 7'2))(1/2 sin (Q{“ (7-1 _ Z?)) sin (ajju (TQ . Zﬁ’)))

Vi
/ T4




Large-q solution A[o"] for -4

N/2

e Size of thermal state

Al =201 -4

N/4

2
8 = (3)°

e At low temperature a =

BT

SNE

2
* Fermion size dng[y,(t)] =1 + 2 ( sinh at)

* Lyapunov exponent 2«
* Consistency at t — 0: conjecture

dngly,(t)] = g [1 + 2 ( sinh at)zl

10*

108




Large-q solution

Palys(t)] for g=4 and BT =0

e Full size distribution can be

obtained by expanding g,  * - — 7
* The entire distribution is the N o

same as infinite temperature
case except a renormalization

of parameter sinh Jt — %sinh at

(< sinh (at)) 2

8]

2\ "3
(1 + (< sinh (at)) )

«

K g 01 (0] = (=1)" (_i/q>



Low temperature solution

* At large (], the dynamics of the SYK model can be
described by reparameterization modes f(t), defined

by
Gf(Tl;TZ) = |f'(T1)f’(T2)|AGS(f(T1)»f(T2))

* Effective theory describes the breaking of
reparameterization symmetry.

* Schwarzian action § =
N 15 T
—a J, dzSch [tan (Ef(r)> , T]
* Preserves SL(2,R) gauge symmetry

* Bulk picture S = Na(L — A). L = [5],
maximize A.




Low temperature solution

e ¢ HM tarm adds an interaction
between thetimet =0and 1t =

B
-
* 6S < N <¢ (g) 1/)(O)>f = N cosh DA

 Solution: two arcs (similar to
Gu, Lucas XLQ ‘17)

* Analytic continuation 7; — € + itq,
T, = —€ + it, to determine G, (4, t;).

(Yingfei Gu, Yuri Lensky, XLQ, Pengfei Zhang, in progress)



Low temperature solution

* For tl — tz,

sin (§) -
g(p) = ba (277' . (a. (% _ 5)) — 27 cos (%) cosh (a?t))
(@ =+ cu)
2A
* Schwarzian ) =b :
g(ﬂ) A C]ﬁ"ﬂ- cosht + 2¢ '

e M

2 2
(1 + (1 —eam) (QL) sinh (aﬁi))

2A 7

o | =

* Large g 9al1t) =

n

* Agreement for long time requires to take the UV

cutoff € = %, and small i = qu < 1



Part Ill: Holographic
dual theory



The dual theory: bulk operator size

* The SYK is approximately dual to Jackiw-Teitelboim
gravity coupled with matter fields.

e Gravitational dynamics =) Repara. Modes

* Matter field &= Conformal fields
* In particular, fermion
Xia(p,t) == 1P;(t) N
e Bulk fermion mass S
1 1 1 2 S
m=A—-=-—-. 2 S
2 q 2 R
e HKLL construction

Xia(p, ) = [T dt'Ko(p, t — )i (t").

* Size of y;,(p, t) can be computed.
Yingfei Gu, Yuri Lensky, XLQ, Pengfei Zhang, in progress



The dual theory: bulk operator size

* Generating function

« B _ {TFD|xia(p,t)e " xia(p,t)|TFD)
Gu(p,t) = (TFD|e—#R|TFD)

= [ dt;dt,K,(p,t —t)K,(p,t — t5)
(TFD;(t,Se ¥y, (£,)TFD)

(TFD|e~#%|TFD)
— f dtldtZKa(pJ t — tl)Ka(p; t — tZ)g‘U,(tll tZ)

e Simplification: contribution is dominated by the light
conet =ty

*Gup,t) = %(Qu(h, ty) + G, (t-, t_)) +
Re (Qu(t+, t—))




The dual theory: bulk operator size

e Bulk fermion size is almost determined by the size of
boundary fermions at t..

* Approximately,

2
e (n) = (B]) (coshtcothp — 1) + f—i(coshp — sinh p cosht) + 0((,8])0).

212

* Size grows exponentially along radial | Z

and temporal direction with proper |
distance.

* Operator size diverges near the horizon

* The calculation only applies to ‘ti‘ <t"
(before scrambling time)




Conclusion and further discussion

e Operator size growth characterizes chaos (at early time)
* The same general results apply to qubit systems.

* SYK model operator size growth
can be computed for low
temperature or large q

* Size growth of bulk operator
provides an interpretation of
emergent bulk direction p

* Generalization to global AdS2?

* Does the size of bulk operator
depend on the representation?

e Relation to other works, such as
A. Brown et al 1804.04156







