Estimating the entropy of shallow circuit outputs is hard

arXiv:2002.12814

Alexandru Gheorghiu

Matty J. Hoban

For some probability distribution $p: \{0,1\}^n \to [0,1]$

For some probability distribution $p: \{0,1\}^n \to [0,1]$

$$S(p) = -\sum_{x \in \{0,1\}^n} p(x) \log(p(x))$$

Shannon entropy

For some probability distribution $p: \{0,1\}^n \to [0,1]$

$$S(p) = -\sum_{x \in \{0,1\}^n} p(x) \log(p(x))$$

Shannon entropy

For some quantum state $\rho \in \mathcal{D}(\mathbb{C}^{\otimes n})$

$$S(\rho) = -Tr(\rho \log(\rho))$$

Von Neumann entropy

For some probability distribution $p: \{0,1\}^n \to [0,1]$

$$S(p) = -\sum_{x \in \{0,1\}^n} p(x) \log(p(x))$$

Shannon entropy

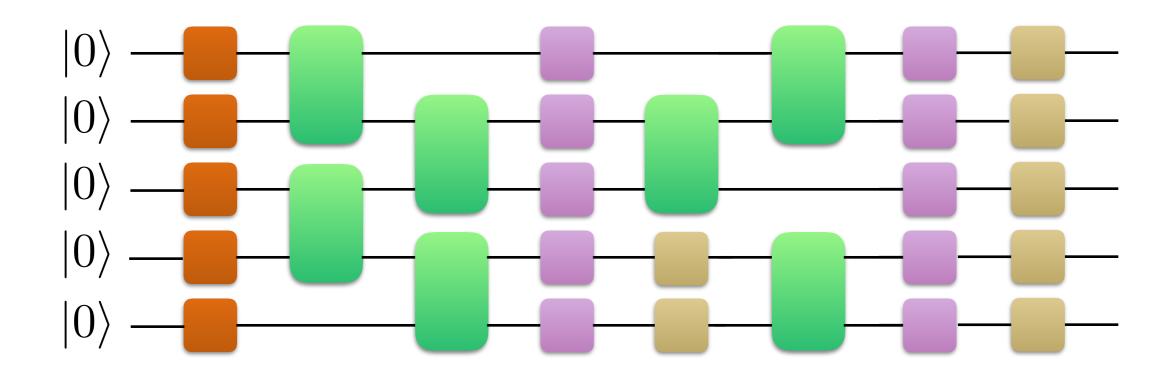
For some quantum state $\rho \in \mathcal{D}(\mathbb{C}^{\otimes n})$

$$S(\rho) = -Tr(\rho \log(\rho))$$

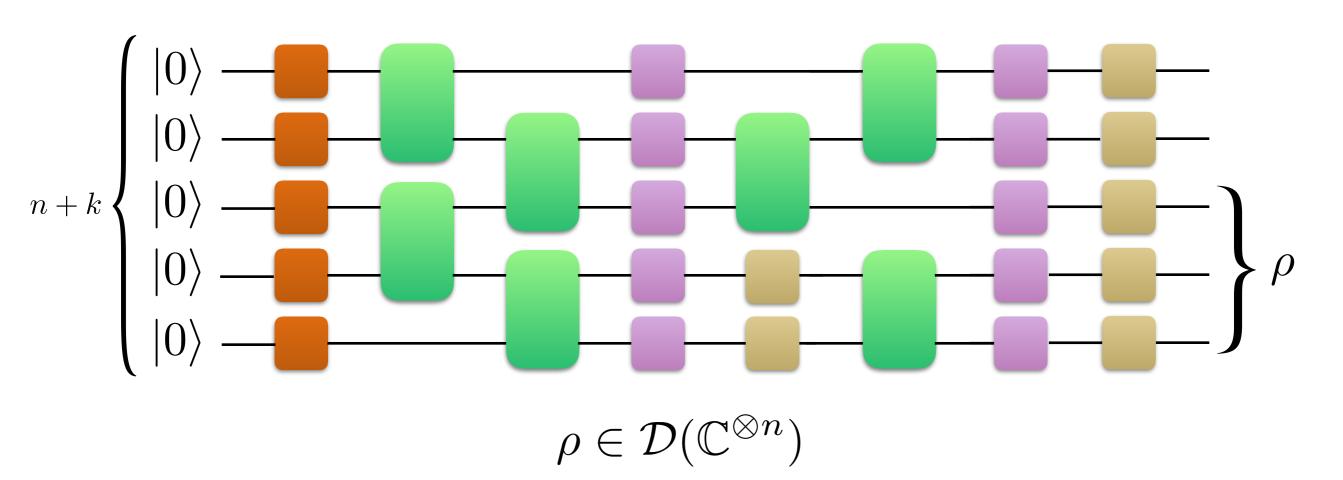
Von Neumann entropy

$$0 \le S \le n$$

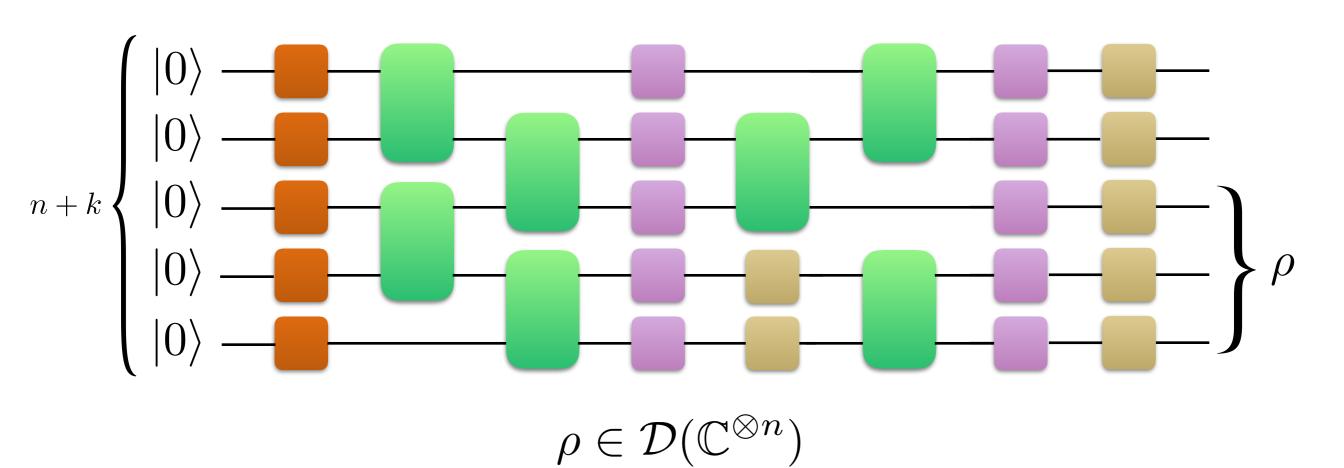
Given description of ...



Given description of ...

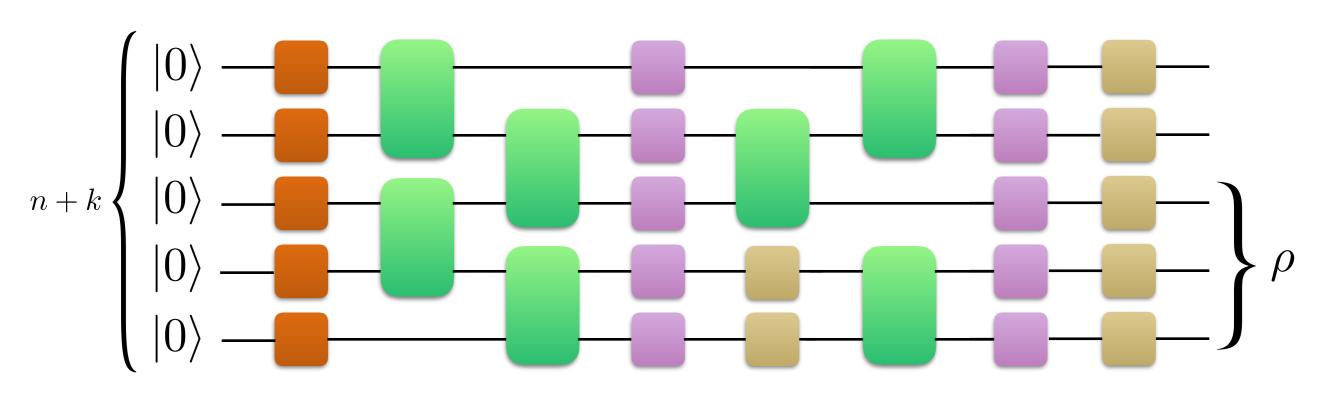


Given description of ...



(can similarly define classical case)

Given description of ...



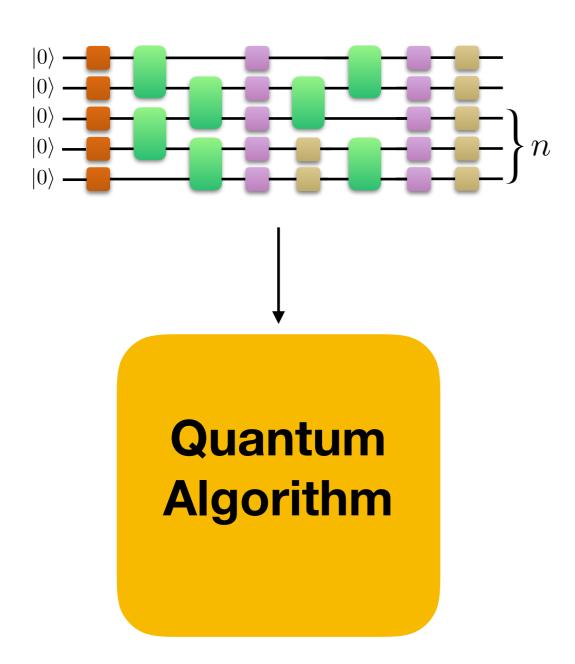
$$\rho \in \mathcal{D}(\mathbb{C}^{\otimes n})$$

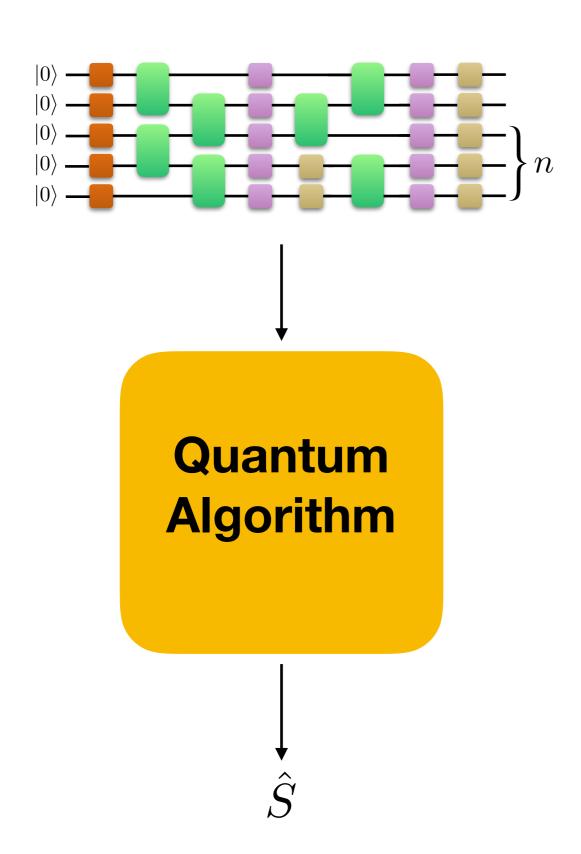
(can similarly define classical case)

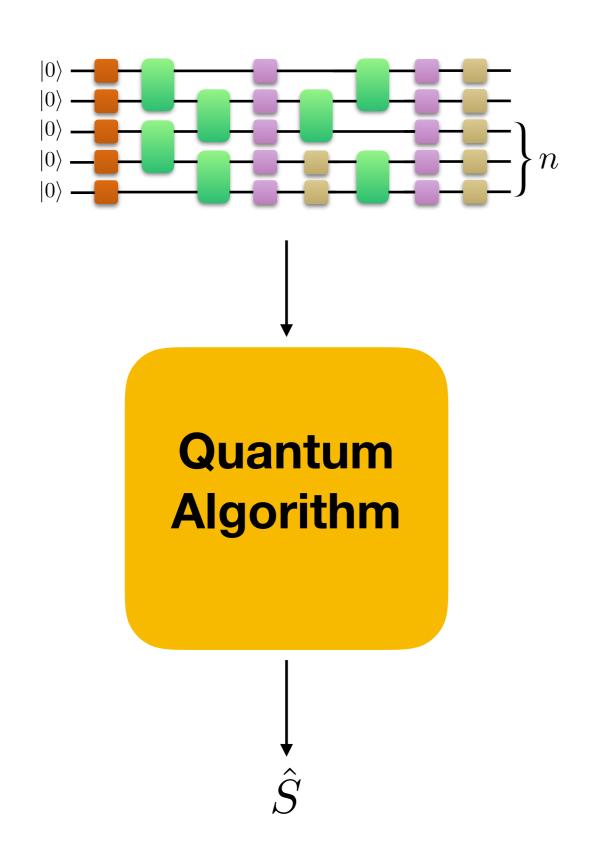
compute an entropy estimate \hat{S}

$$S(\rho) - 0.1 \le \hat{S} \le S(\rho) + 0.1$$

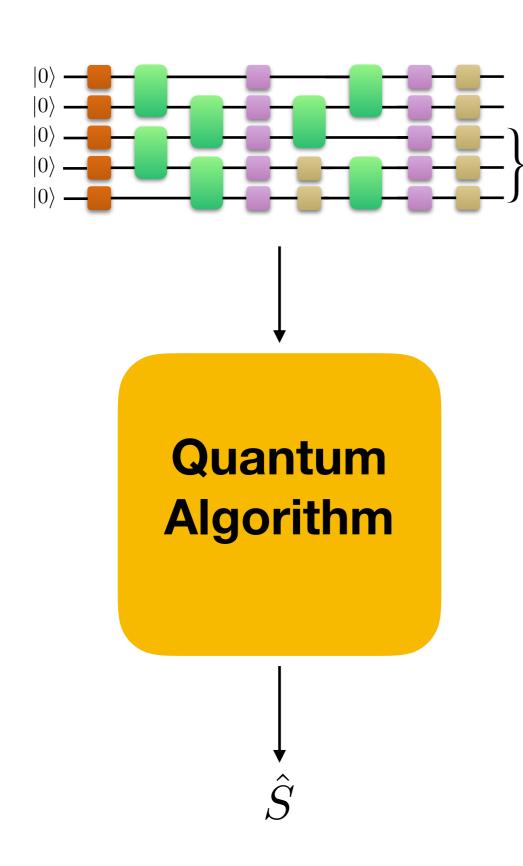
Quantum Algorithm







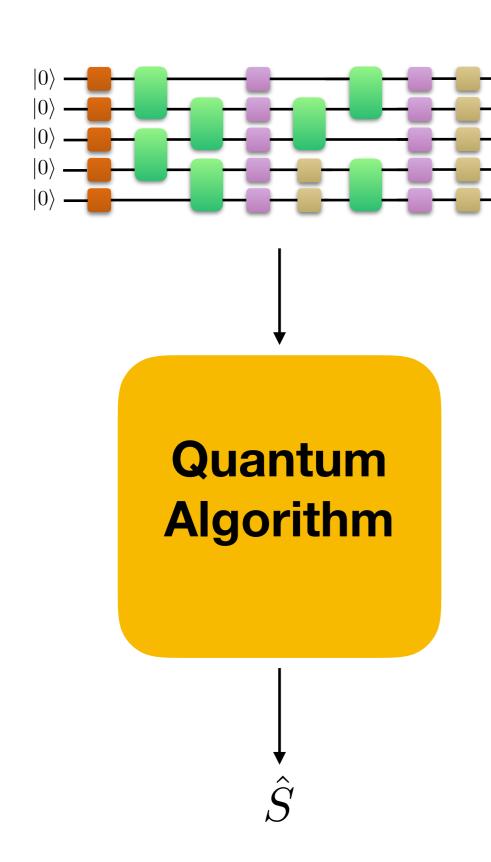
How much time does the fastest algorithm require as a function of n?



How much time does the fastest algorithm require as a function of n?

 $poly(n) \longrightarrow Efficient$

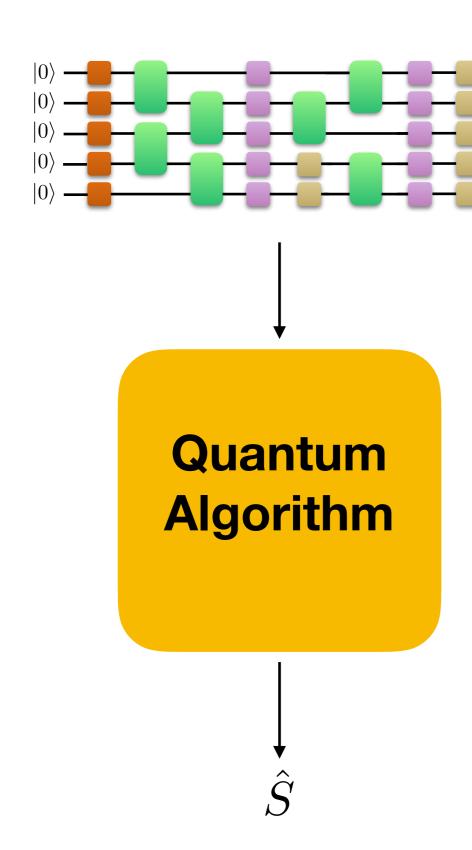
Otherwise ---- Inefficient



How much time does the fastest algorithm require as a function of n?

 $poly(n) \longrightarrow Efficient$

Otherwise — Inefficient (problem is *hard*)

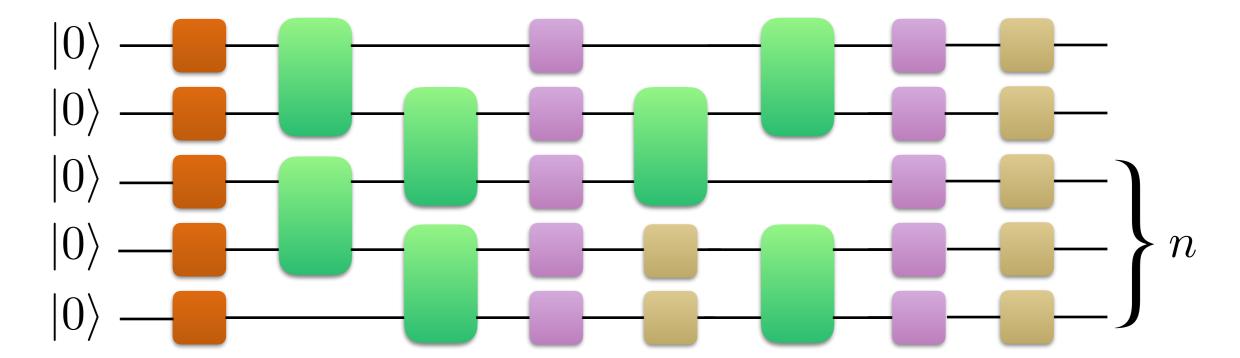


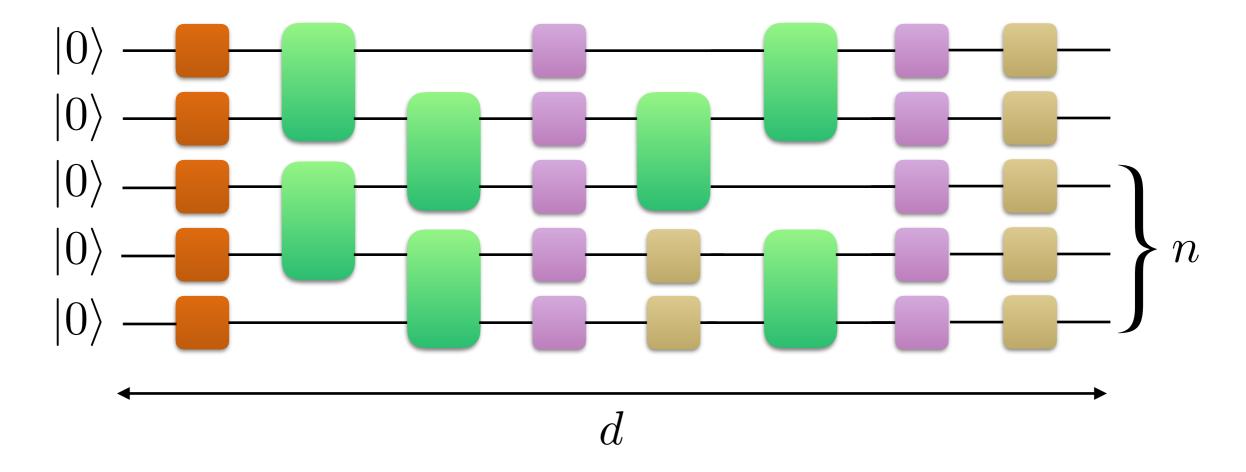
How much time does the fastest algorithm require as a function of n?

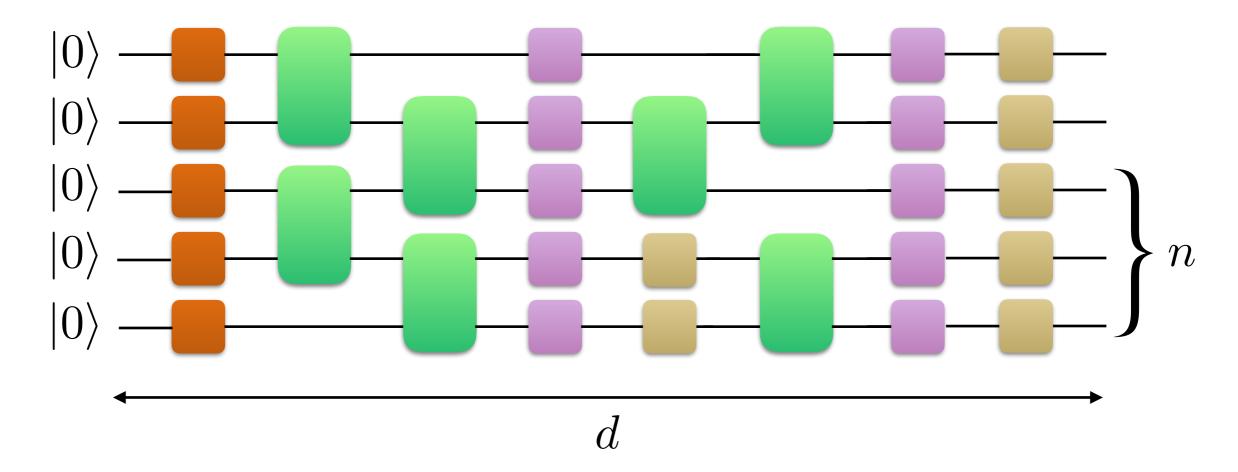
 $poly(n) \longrightarrow Efficient$

Otherwise → Inefficient (problem is *hard*)

Naive approaches are inefficient $2^{O(n)}$ time

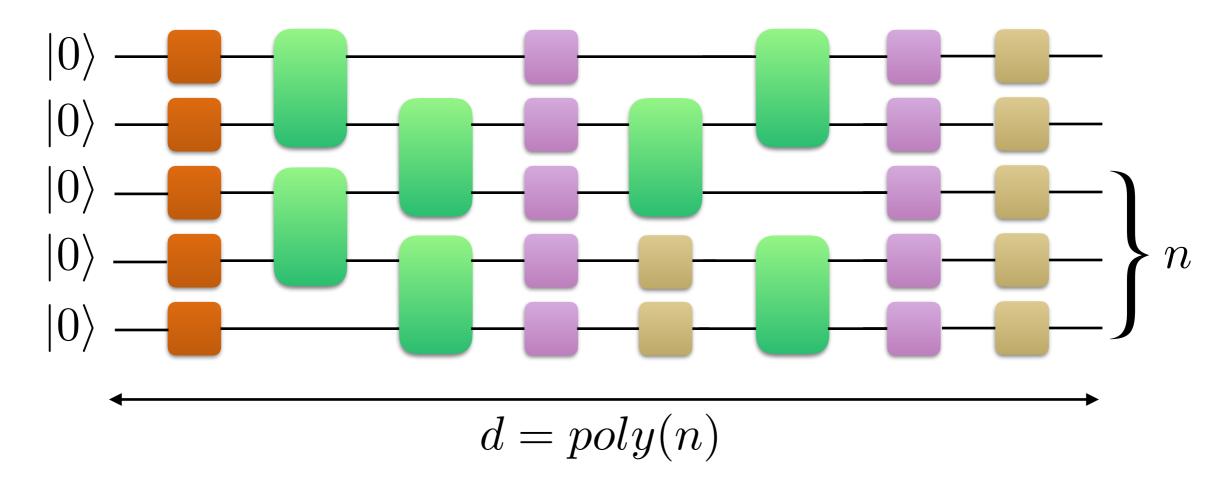






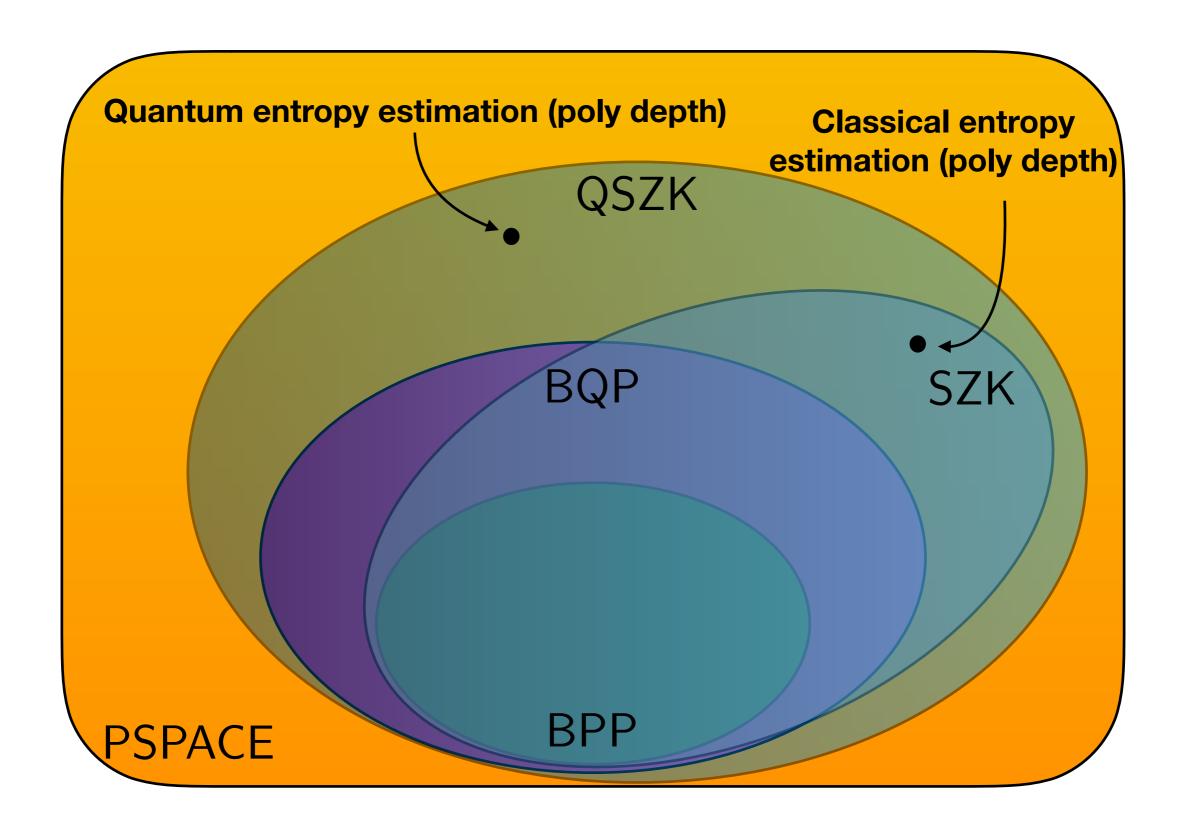
Assume circuit width is always poly(n)

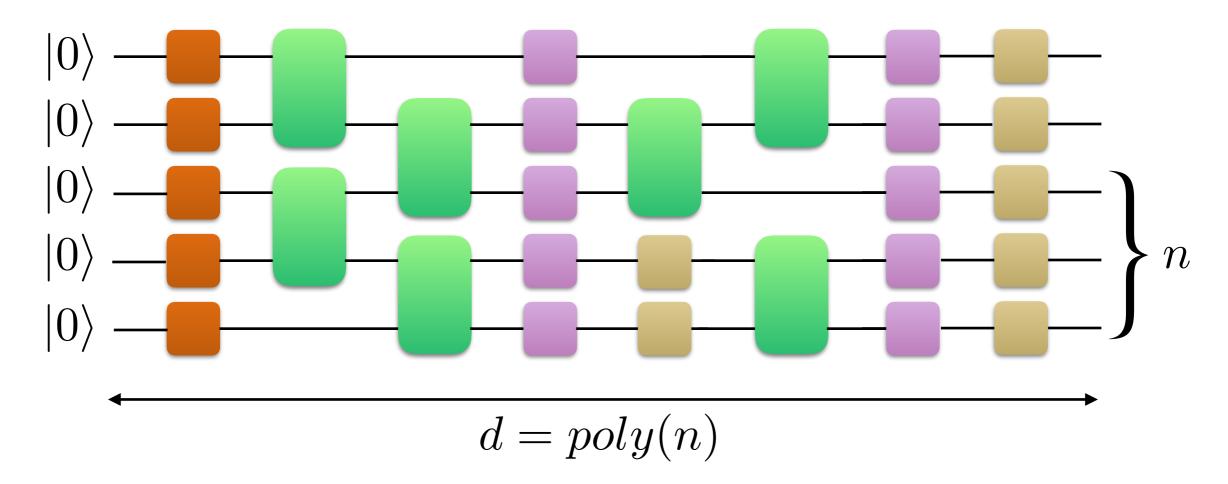




Hard based on plausible complexity-theoretic conjectures

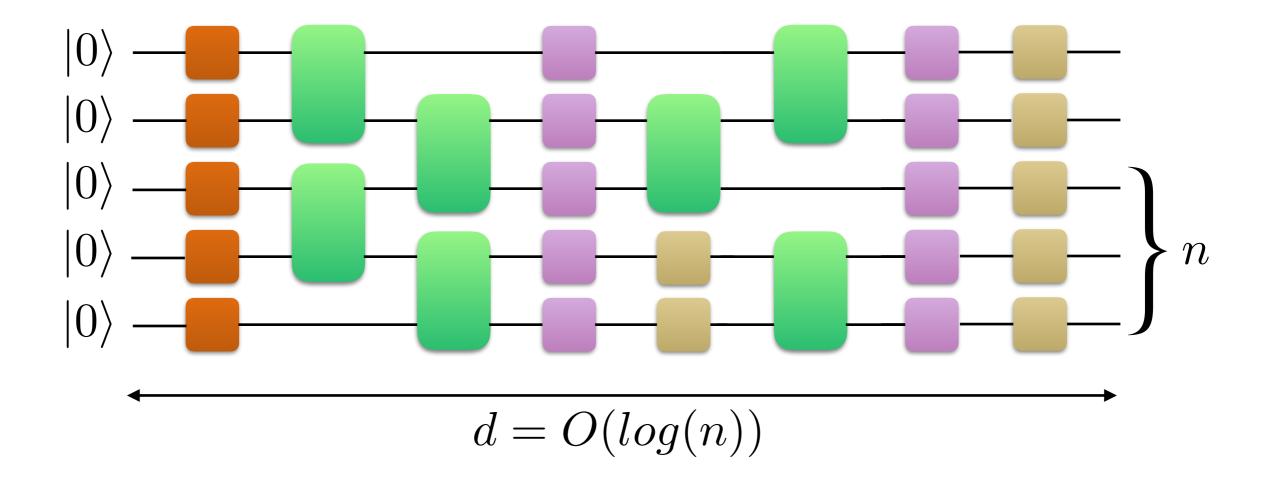
[Goldreich, Vadhan '99] [Ben-Aroya, Schwartz, Ta-Shma '10]

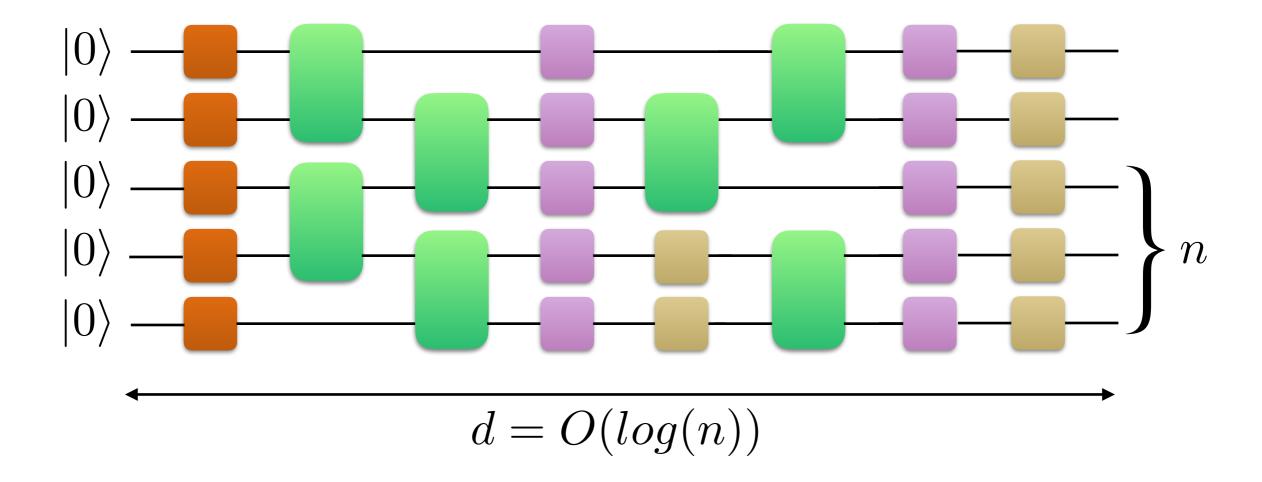




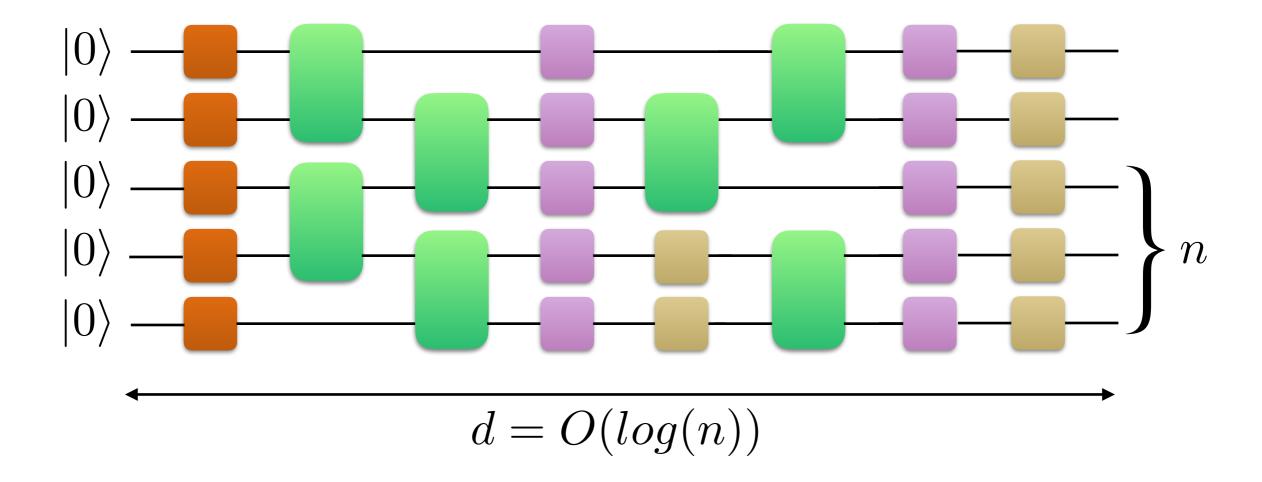
Hard based on plausible complexity-theoretic conjectures (at least as hard as finding collisions for a function)

[Goldreich, Vadhan '99] [Ben-Aroya, Schwartz, Ta-Shma '10]



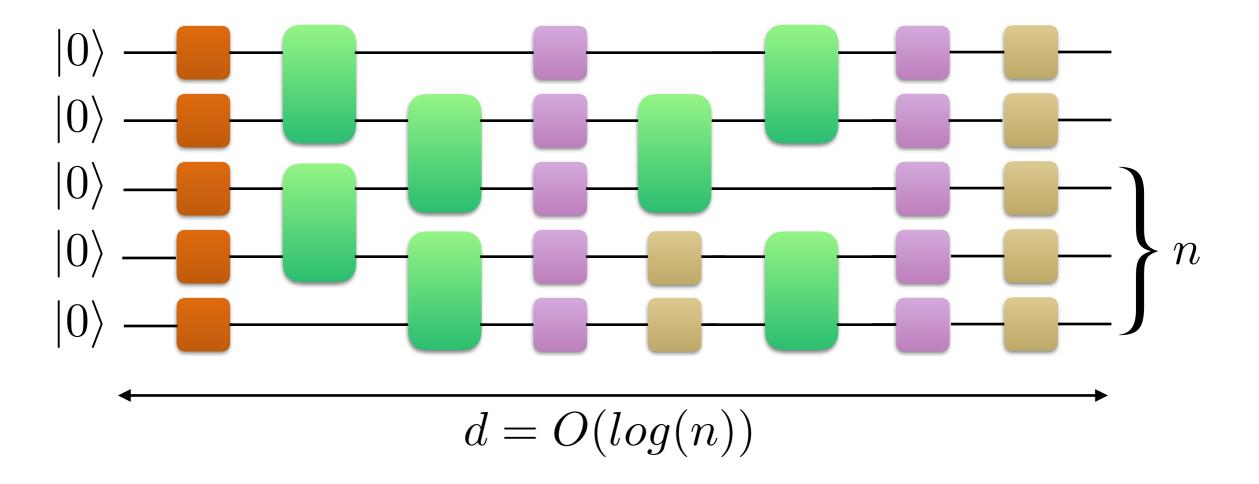


As hard as the Learning With Errors (LWE) problem



As hard as the Learning With Errors (LWE) problem

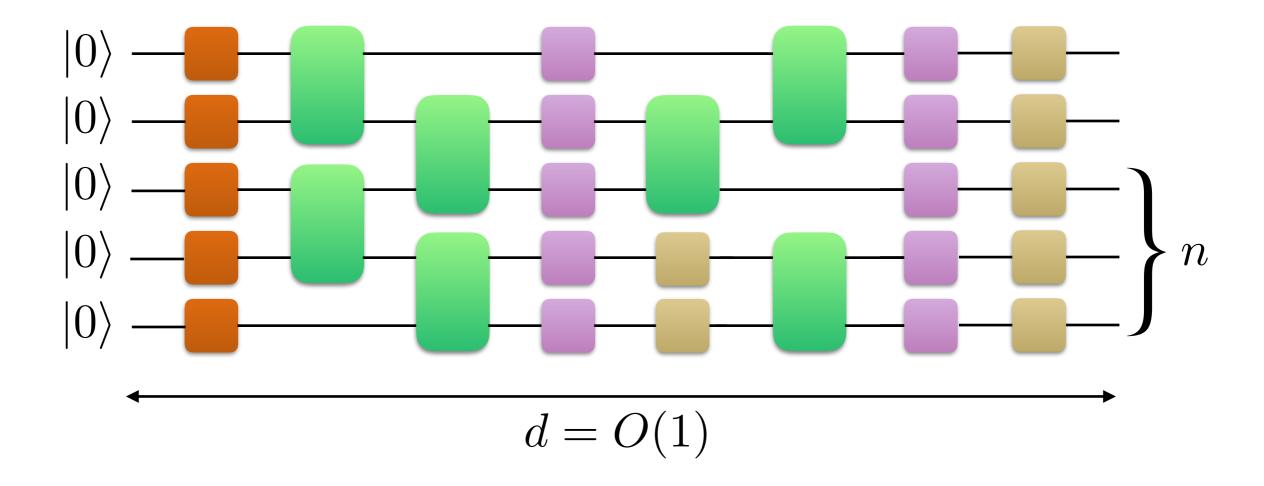
LWE is a candidate problem for post-quantum cryptographic protocols

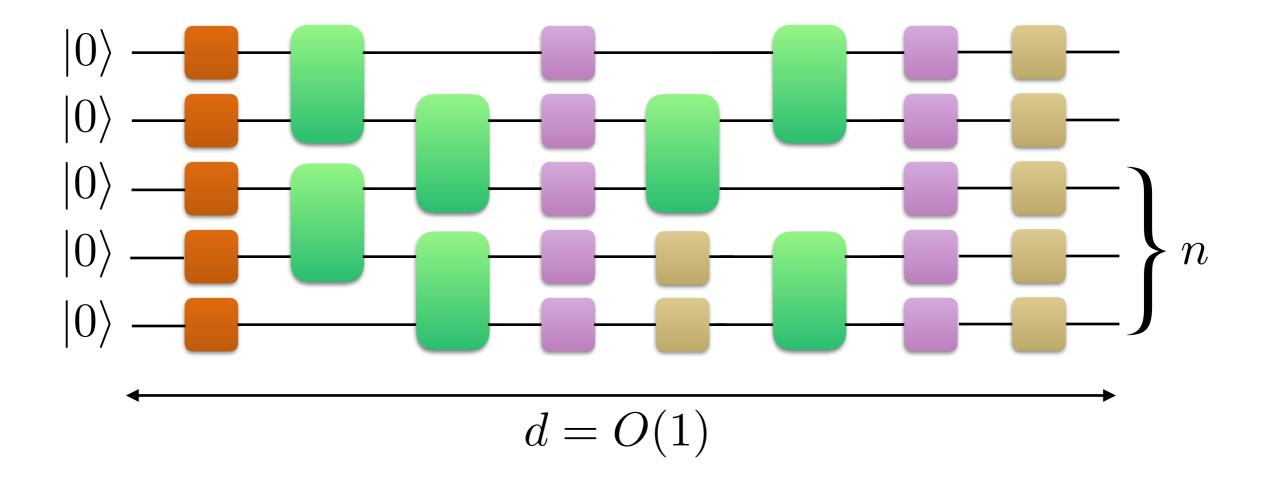


As hard as the *Learning With Errors (LWE)* problem

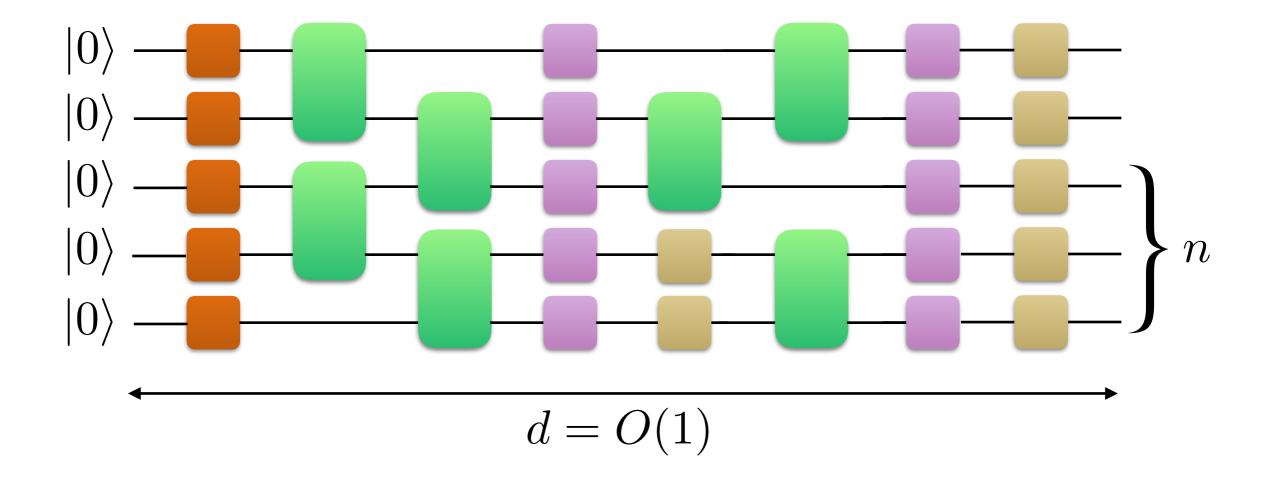
LWE is a candidate problem for post-quantum cryptographic protocols

Best known (quantum) algorithms require exponential time



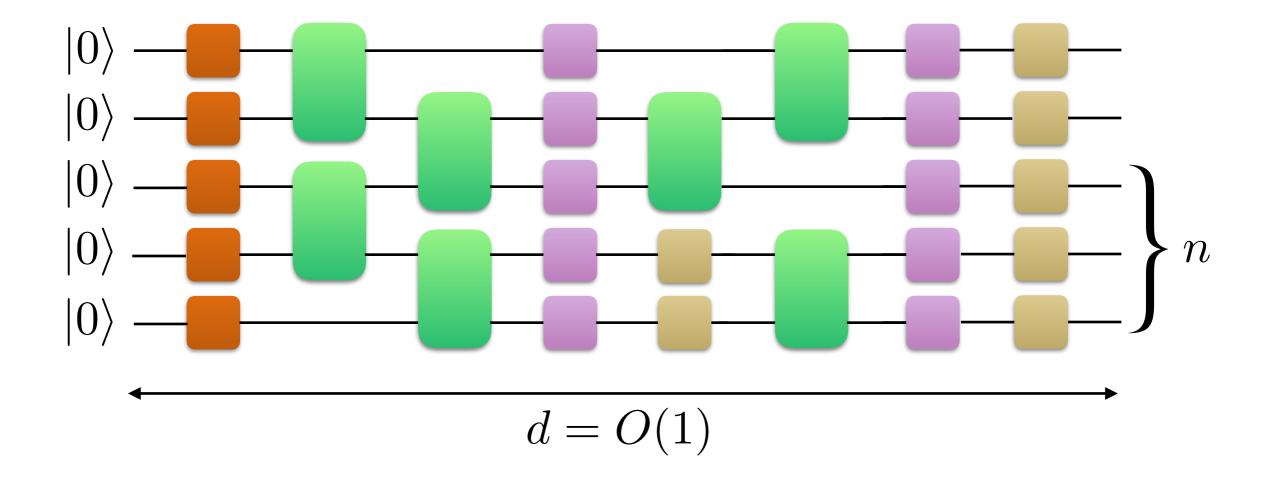


Classical circuit case is easy!



Classical circuit case is easy!

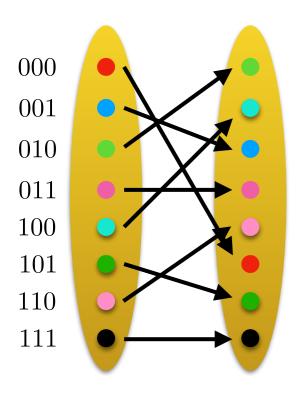
Quantum circuit case remains as hard as LWE



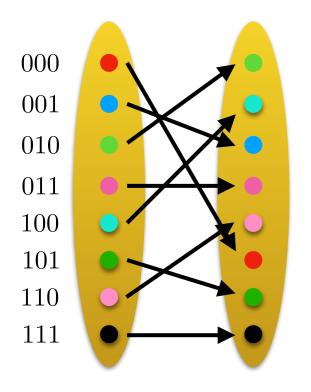
Classical circuit case is easy!

Quantum circuit case remains as hard as LWE

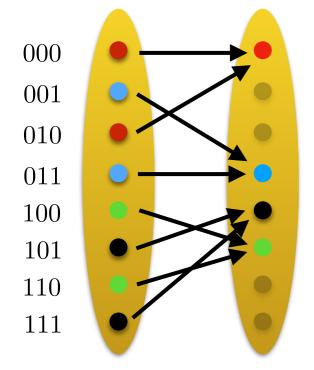
(requires arbitrary rotation gates)



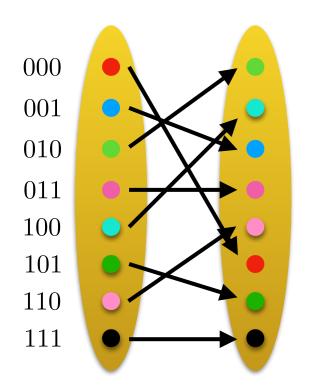
$$f: \{0,1\}^n \to \{0,1\}^n$$



$$f: \{0,1\}^n \to \{0,1\}^n$$



$$g: \{0,1\}^n \to \{0,1\}^n$$

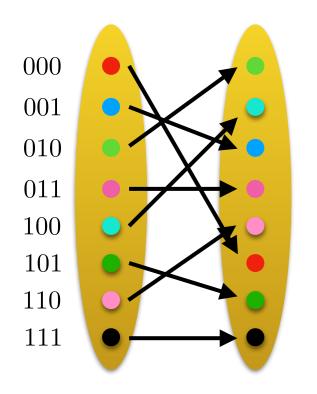


$$f: \{0,1\}^n \to \{0,1\}^n$$

$$x \leftarrow_U \{0,1\}^n$$

$$g: \{0,1\}^n \to \{0,1\}^n$$

$$x \leftarrow_U \{0,1\}^n$$



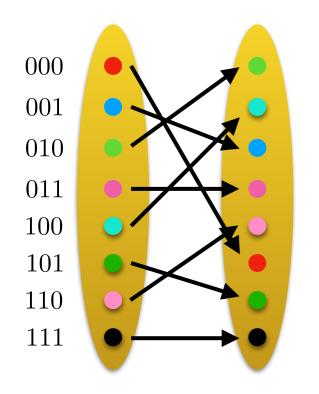
$$f: \{0, 1\}^n \to \{0, 1\}^n$$
1-to-1

$$x \leftarrow_U \{0,1\}^n$$
$$S(f(x)) = n$$

$$g: \{0,1\}^n \to \{0,1\}^n$$

2-to-1

$$x \leftarrow_U \{0,1\}^n$$
$$S(g(x)) = n - 1$$



$$f: \{0,1\}^n \to \{0,1\}^n$$

$$\sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle$$

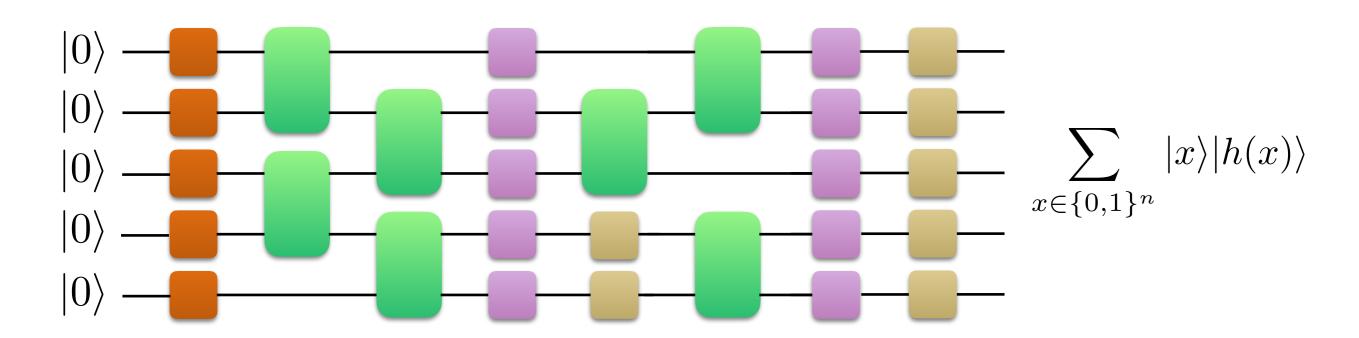
$$S(\rho_f) = n$$

$$g: \{0,1\}^n \to \{0,1\}^n$$

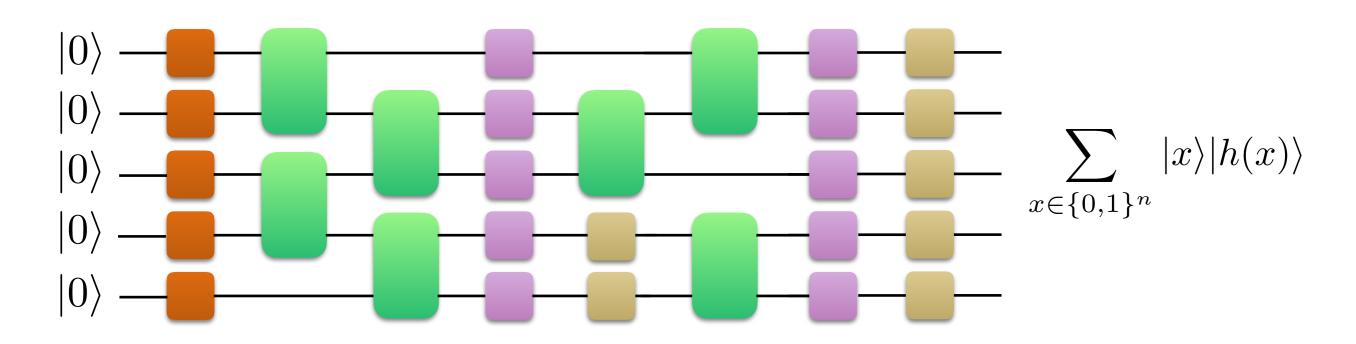
$$\sum_{x \in \{0,1\}^n} |x\rangle |g(x)\rangle$$

$$S(\rho_g) = n - 1$$

Given...

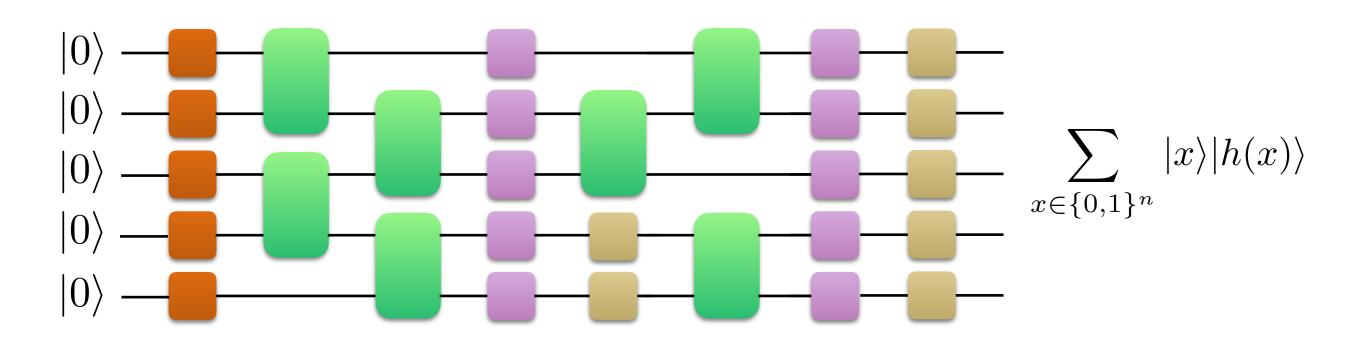


Given...



is ha 1-to-1 or a 2-to-1 function?

Given...



is ha 1-to-1 or a 2-to-1 function?

If we could estimate entropy, we could answer this question!

Can consider...

[Mahadev '18]

Can consider...

$$f(b,x) = Ax + b \cdot u + e \pmod{q}$$
$$g(b,x) = Ax + b \cdot (As + e') + e \pmod{q}$$
$$A \in \mathbb{Z}_q^{m \times n}, \ x, s \in \mathbb{Z}_q^n, \ u, e, e' \in \mathbb{Z}_q^m$$

[Mahadev '18]

Can consider...

$$f(b,x) = Ax + b \cdot u + e \pmod{q}$$
$$g(b,x) = Ax + b \cdot (As + e') + e \pmod{q}$$
$$A \in \mathbb{Z}_q^{m \times n}, \ x, s \in \mathbb{Z}_q^n, \ u, e, e' \in \mathbb{Z}_q^m$$

such that, determining which is the 2-to-1 function is as hard as LWE

[Mahadev '18]

Can consider...

$$f(b,x) = Ax + b \cdot u + e \pmod{q}$$
$$g(b,x) = Ax + b \cdot (As + e') + e \pmod{q}$$
$$A \in \mathbb{Z}_q^{m \times n}, \ x, s \in \mathbb{Z}_q^n, \ u, e, e' \in \mathbb{Z}_q^m$$

such that, determining which is the 2-to-1 function is as hard as LWE

Functions involve only linear-algebraic operations

[Mahadev '18]

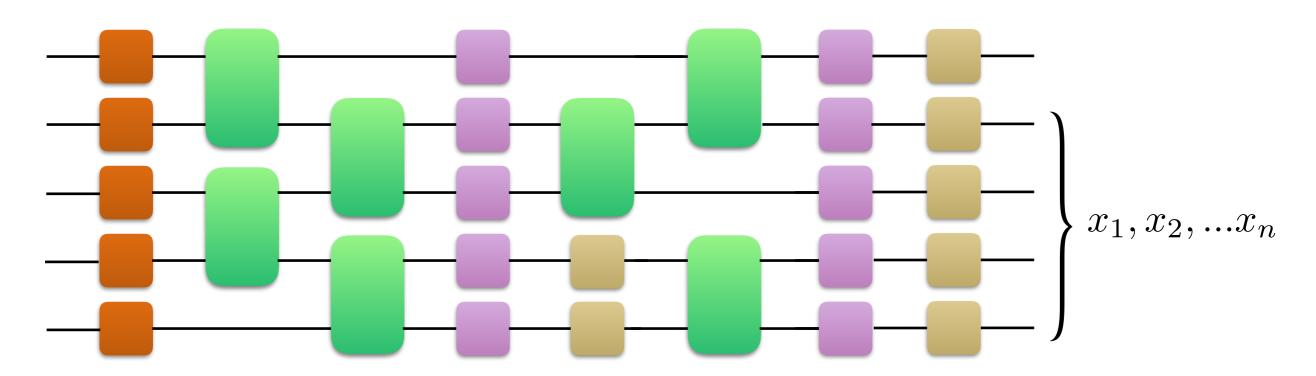
Can consider...

$$f(b,x) = Ax + b \cdot u + e \pmod{q}$$
$$g(b,x) = Ax + b \cdot (As + e') + e \pmod{q}$$
$$A \in \mathbb{Z}_q^{m \times n}, \ x, s \in \mathbb{Z}_q^n, \ u, e, e' \in \mathbb{Z}_q^m$$

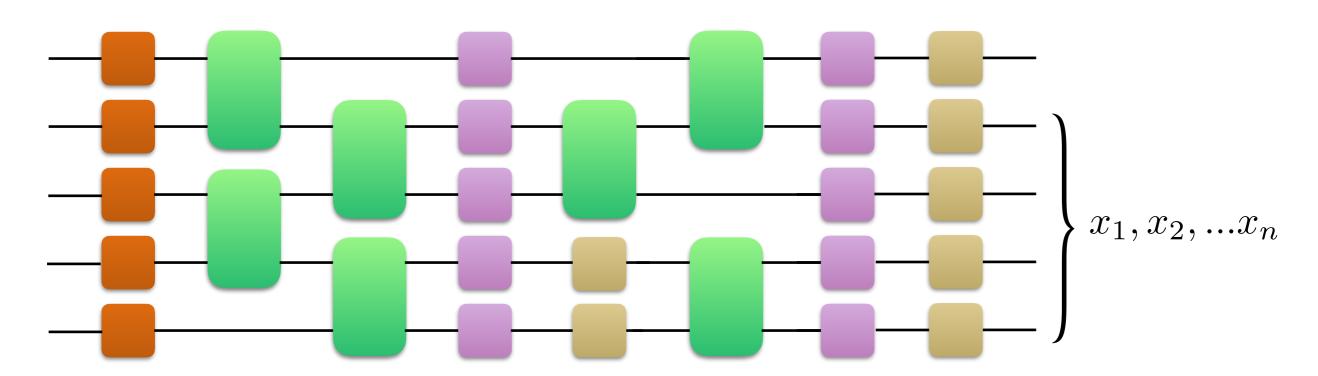
such that, determining which is the 2-to-1 function is as hard as LWE

Functions involve only linear-algebraic operations

Can be performed in logarithmic depth!



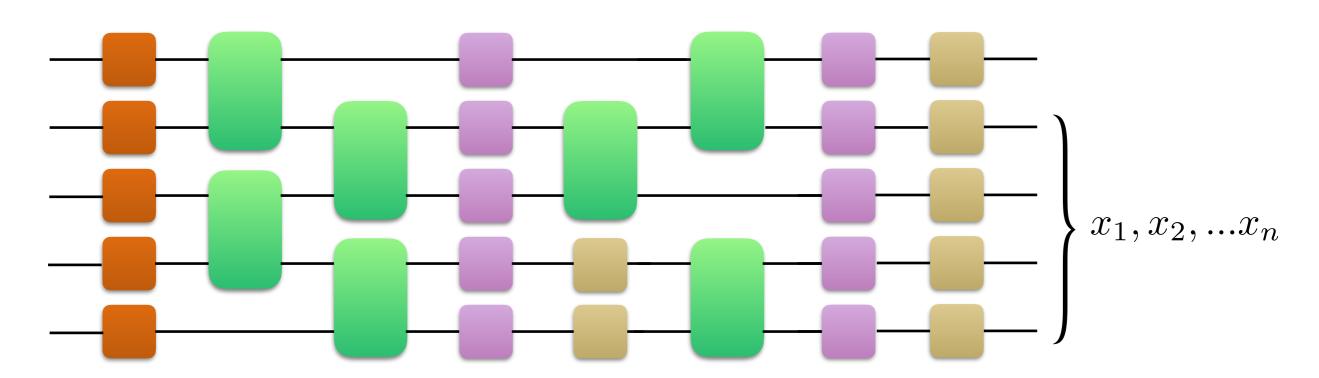
The classical case



Use entropy chain rule

$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | x_{i+1}, ...x_n)$$

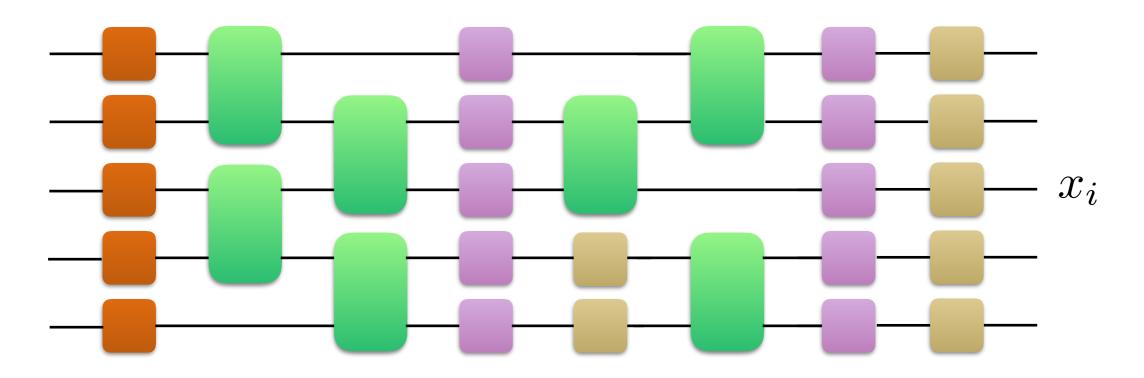
The classical case

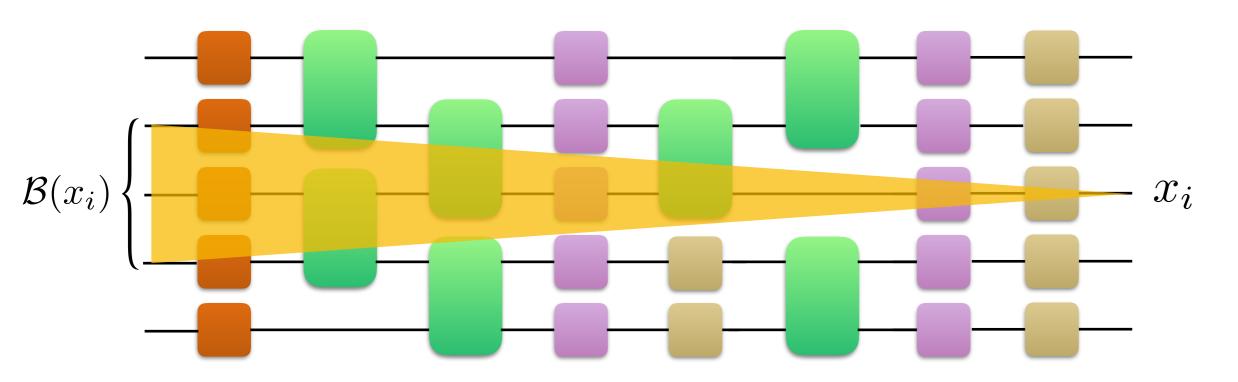


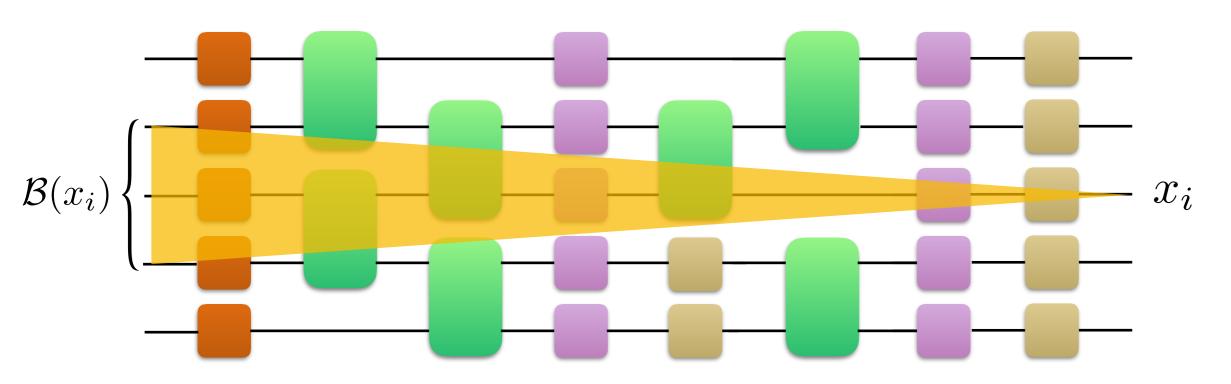
Use entropy chain rule

$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | x_{i+1}, ...x_n)$$

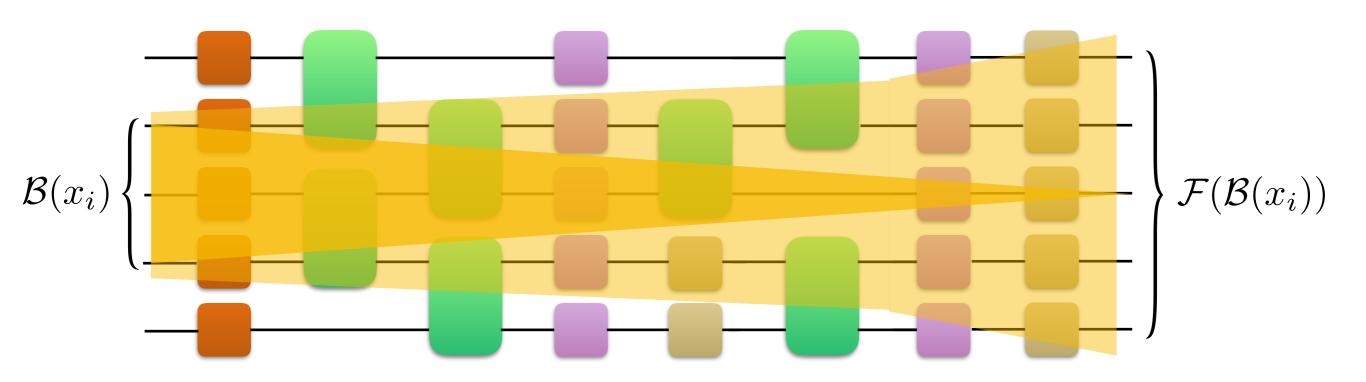
$$S(x_i|x_j) = S(x_i) if x_i indep x_j$$

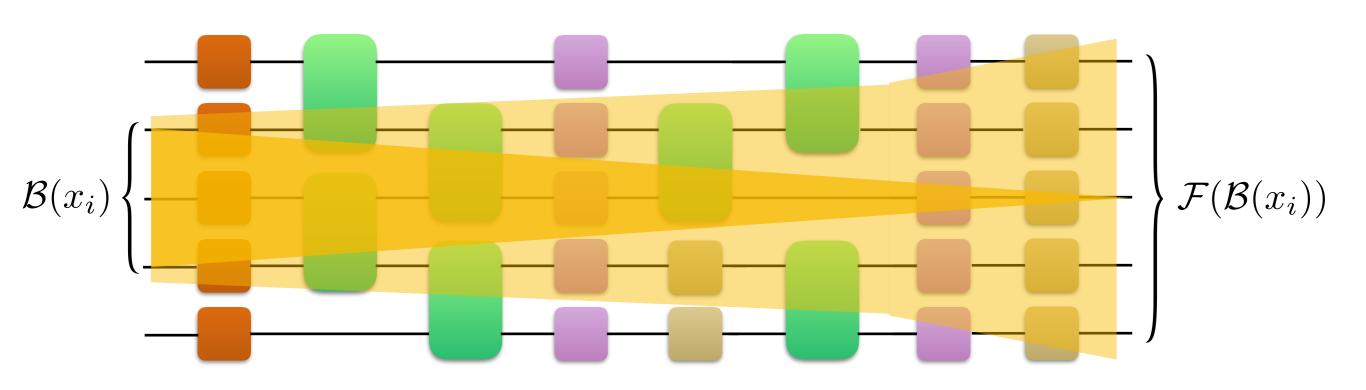






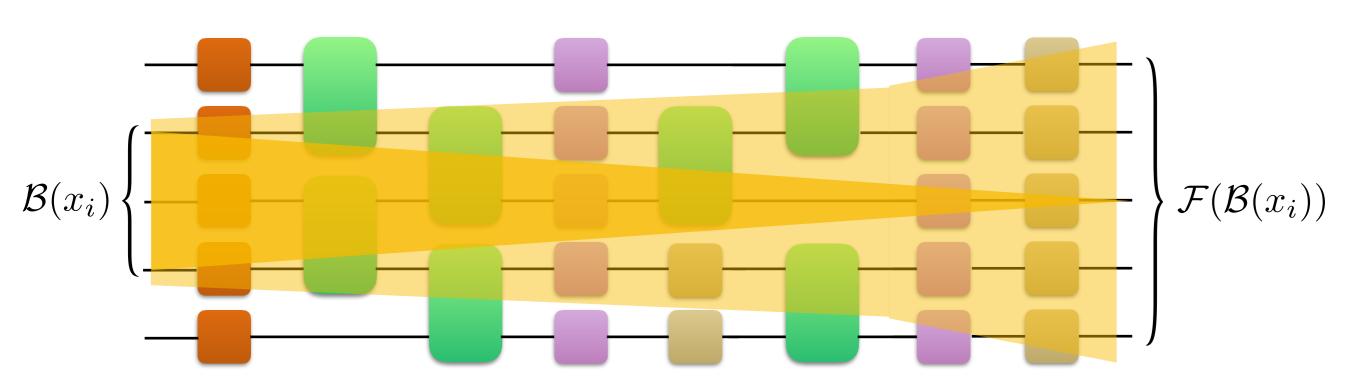
$$|\mathcal{B}(x_i)| \le f_{in}^d$$





$$|\mathcal{F}(\mathcal{B}(x_i))| \le (f_{in}f_{out})^d$$

$$|\mathcal{F}(\mathcal{B}(x_i))| = O(1)$$



$$|\mathcal{F}(\mathcal{B}(x_i))| \le (f_{in}f_{out})^d$$

$$|\mathcal{F}(\mathcal{B}(x_i))| = O(1)$$

$$x_j \notin \mathcal{F}(\mathcal{B}(x_i)) \implies x_i \ indep \ x_j$$

$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | x_{i+1}, ...x_n)$$

$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | x_{i+1}, ...x_n)$$
$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | \mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\})$$

$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | x_{i+1}, ...x_n)$$

$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | \mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\})$$

$$S(x_i|\mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\}) = S(\mathcal{F}(\mathcal{B}(x_i))) - S(\mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\})$$

The classical case

$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | x_{i+1}, ...x_n)$$

$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | \mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\})$$

$$S(x_i|\mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\}) = S(\mathcal{F}(\mathcal{B}(x_i))) - S(\mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\})$$

Completely determined by $\mathcal{B}(\mathcal{F}(\mathcal{B}(x_i)))$

The classical case

$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | x_{i+1}, ...x_n)$$

$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | \mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\})$$

$$S(x_i|\mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\}) = S(\mathcal{F}(\mathcal{B}(x_i))) - S(\mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\})$$

Completely determined by $\mathcal{B}(\mathcal{F}(\mathcal{B}(x_i)))$

Can be computed in O(1) time

The classical case

$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | x_{i+1}, ...x_n)$$

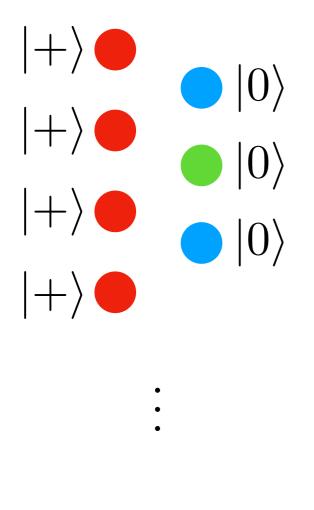
$$S(x_1, x_2, ...x_n) = \sum_{i} S(x_i | \mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\})$$

$$S(x_i|\mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\}) = S(\mathcal{F}(\mathcal{B}(x_i))) - S(\mathcal{F}(\mathcal{B}(x_i)) \setminus \{x_i\})$$

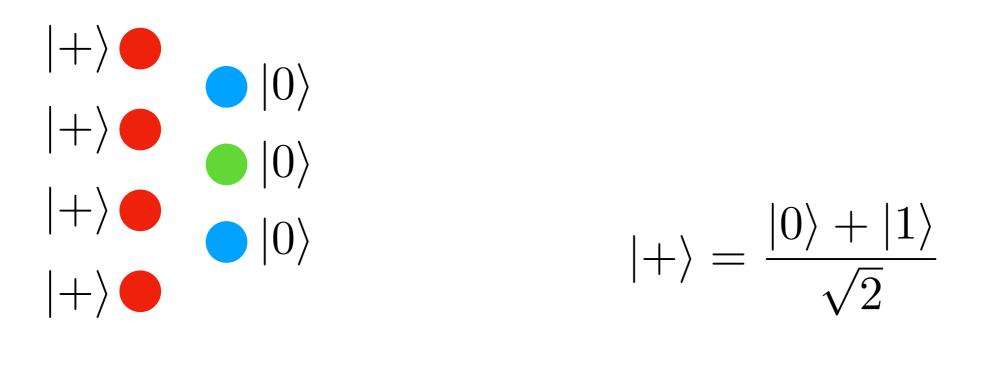
Completely determined by $\mathcal{B}(\mathcal{F}(\mathcal{B}(x_i)))$

Can be computed in O(1) time

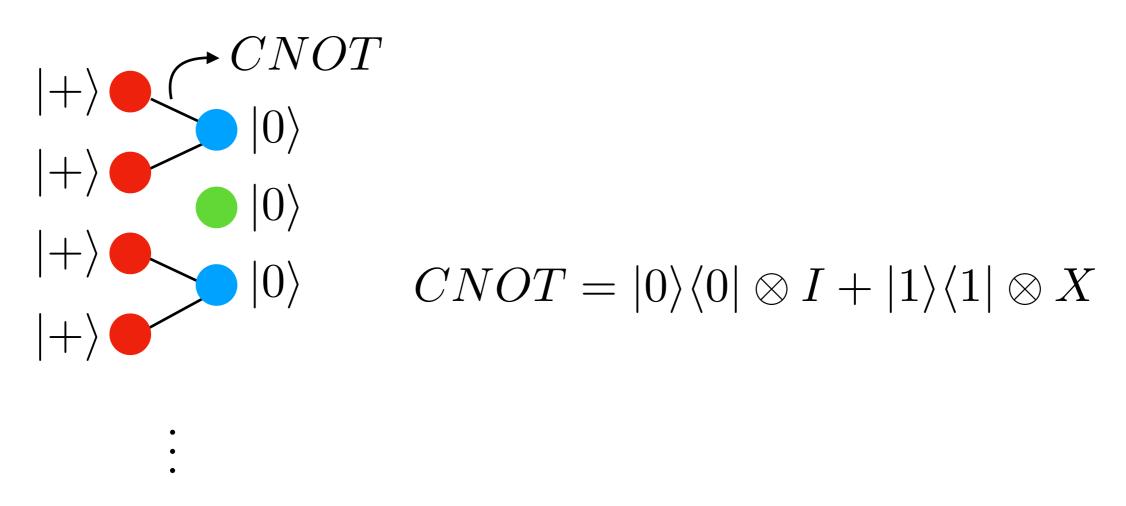
Whole sum can be computed in O(n) time!



$$|+\rangle$$
 $|0\rangle$
 $|+\rangle$
 $|0\rangle$

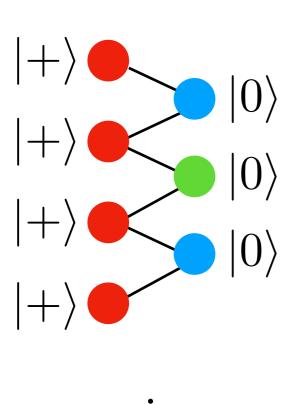


$$|+\rangle$$
 $|0\rangle$
 $|+\rangle$
 $|0\rangle$



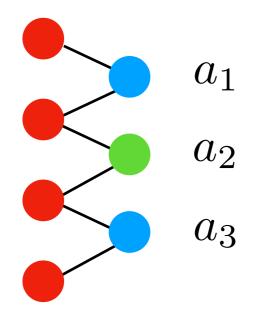
$$|+\rangle$$
 $|0\rangle$
 $|+\rangle$
 $|0\rangle$

In the quantum case this argument breaks down!



 $|+\rangle$ $|0\rangle$ $|0\rangle$

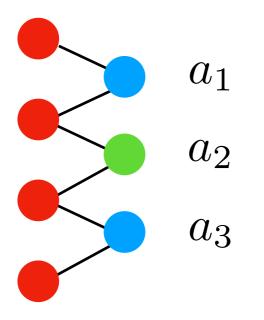
In the quantum case this argument breaks down!



Measure non-red qubits

 a_{n-2} a_{n-1}

In the quantum case this argument breaks down!



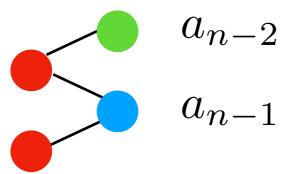
Measure non-red qubits

$$\frac{|z\rangle + |\bar{z}\rangle}{\sqrt{2}}$$

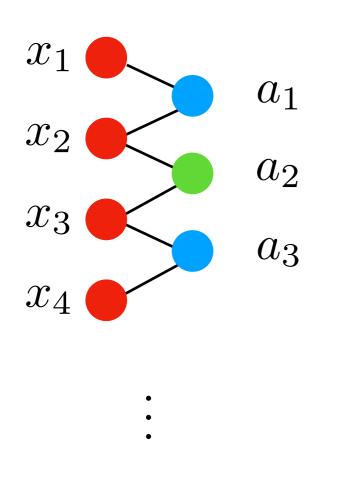
$$z_i \oplus z_{i+1} = a_i$$

$$\bar{z}_i \oplus \bar{z}_{i+1} = a_i$$

•



In the quantum case this argument breaks down!



Measure non-red qubits

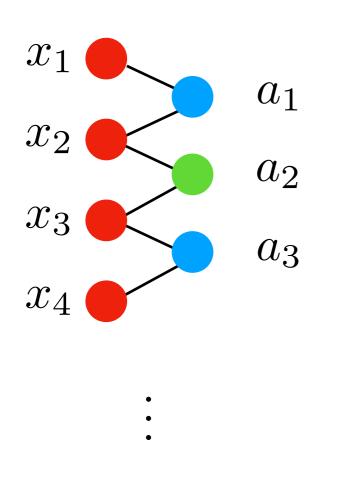
$$\frac{|z\rangle + |\bar{z}\rangle}{\sqrt{2}}$$

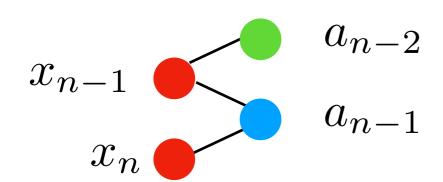
$$z_i \oplus z_{i+1} = a_i$$

$$\bar{z}_i \oplus \bar{z}_{i+1} = a_i$$

$$\begin{array}{c|c}
 & a_{n-2} \\
x_{n-1} & & \\
x_n & & \\
\end{array}$$

In the quantum case this argument breaks down!





Measure non-red qubits

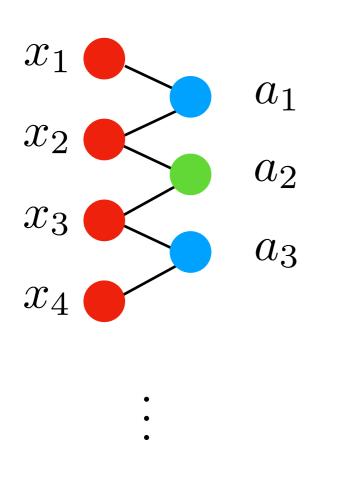
$$\frac{|z\rangle + |\bar{z}\rangle}{\sqrt{2}}$$

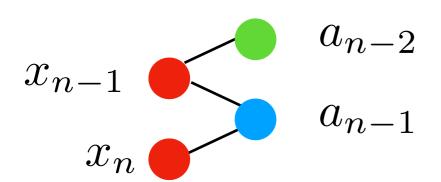
$$z_i \oplus z_{i+1} = a_i$$

$$\bar{z}_i \oplus \bar{z}_{i+1} = a_i$$

$$p(x_1|a_1,...,a_{n-1}) = 1/2$$

In the quantum case this argument breaks down!





Measure non-red qubits

$$\frac{|z\rangle + |\bar{z}\rangle}{\sqrt{2}}$$

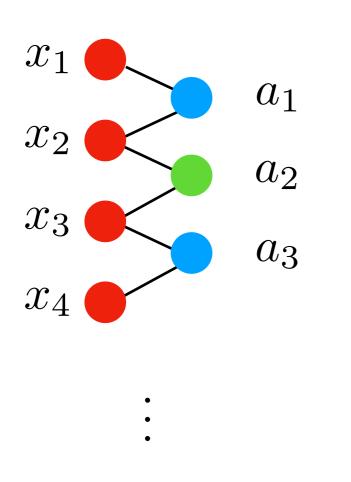
$$z_i \oplus z_{i+1} = a_i$$

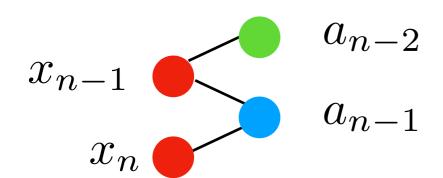
$$\bar{z}_i \oplus \bar{z}_{i+1} = a_i$$

$$p(x_1|a_1, ..., a_{n-1}) = 1/2$$

$$p(x_1|a_1,...,a_{n-1}, x_n) \in \{0,1\}$$

In the quantum case this argument breaks down!





Measure non-red qubits

$$\frac{|z\rangle + |\bar{z}\rangle}{\sqrt{2}}$$

$$z_i \oplus z_{i+1} = a_i$$

$$\bar{z}_i \oplus \bar{z}_{i+1} = a_i$$

$$S(x_1|a_1,...,a_{n-1})=1$$

$$S(x_1|a_1,...,a_{n-1},x_n)=0$$

But why is the quantum case hard?

But why is the quantum case hard?

$$\frac{|z\rangle + |\bar{z}\rangle}{\sqrt{2}}$$

But why is the quantum case hard?

$$\frac{|z\rangle + |\bar{z}\rangle}{\sqrt{2}}$$

Perform Z rotations on qubits i and j $R_Z(\theta)_i$ $R_Z(\phi)_j$

But why is the quantum case hard?

$$\frac{|z\rangle+|\bar{z}\rangle}{\sqrt{2}}$$

Perform Z rotations on qubits i and j $R_Z(\theta)_i$ $R_Z(\phi)_j$

$$\frac{1}{\sqrt{2}}(|z\rangle + e^{\theta + \phi}|\bar{z}\rangle)$$

Up to a global phase

Leverage this fact to encode

$$f(b,x) = Ax + b \cdot u + e \pmod{q}$$

$$g(b,x) = Ax + b \cdot (As + e') + e \pmod{q}$$

Leverage this fact to encode

$$f(b,x) = Ax + b \cdot u + e \pmod{q}$$

$$g(b,x) = Ax + b \cdot (As + e') + e \pmod{q}$$

$$\frac{1}{\sqrt{2}} \left(|z\rangle + e^{\frac{2\pi i}{q} (\langle a_i, x\rangle + b \cdot u_i + e_i)} |\bar{z}\rangle \right)$$

Leverage this fact to encode

$$f(b,x) = Ax + b \cdot u + e \pmod{q}$$
$$g(b,x) = Ax + b \cdot (As + e') + e \pmod{q}$$

$$\frac{1}{\sqrt{2}} \left(|z\rangle + e^{\frac{2\pi i}{q} (\langle a_i, x\rangle + b \cdot u_i + e_i)} |\bar{z}\rangle \right)$$

$$\frac{1}{\sqrt{2}} \left(|z\rangle + e^{\frac{2\pi i}{q} (\langle a_i, x\rangle + b \cdot (As + e')_i + e_i)} |\overline{z}\rangle \right)$$

Leverage this fact to encode

$$f(b,x) = Ax + b \cdot u + e \pmod{q}$$
$$g(b,x) = Ax + b \cdot (As + e') + e \pmod{q}$$

$$\sum_{x} |x\rangle |\widetilde{f(x)}\rangle$$

$$\sum_{x} |x\rangle |\widetilde{g(x)}\rangle$$

Conclusion

Classical and quantum entropy estimation are hard for log-depth circuits!

For constant depth, classical is easy, quantum is hard

Quantum requires arbitrary rotation gates. Possible with fixed gate set?

Connections to cryptography
Potential connections to quantum gravity (AdS/CFT)

Conclusion

Classical and quantum entropy estimation are hard for log-depth circuits!

For constant depth, classical is easy, quantum is hard

Quantum requires arbitrary rotation gates. Possible with fixed gate set?

Connections to cryptography
Potential connections to quantum gravity (AdS/CFT)

Thanks!

AdS/CFT

