Estimating the entropy of
shallow circuit outputs is hard

arXiv:2002.12814

Alexandru Gheorghiu Matty J. Hoban

Er,.' o Goldsmiths
zur’Ch UNIVERSITY OF LONDON




Entropy in (quantum) information theory

For some probability distribution p:{0,1}" — [0, 1]



Entropy in (quantum) information theory

For some probability distribution p:{0,1}" — [0, 1]

S(p)=— Y  pla)log(p(z))

xe{0,1}m

Shannon entropy



Entropy in (quantum) information theory

For some probability distribution p:{0,1}" — [0, 1]

S(p)=— > p(x)log(p(x))

xe{0,1}m

Shannon entropy

For some quantum state p € D(C®™)

S(p) = —Tr(plog(p))

Von Neumann entropy



Entropy in (quantum) information theory

For some probability distribution p:{0,1}" — [0, 1]

S(p)=— > p(x)log(p(x))

xe{0,1}m

Shannon entropy

For some quantum state p € D(C®™)

S(p) = —Tr(plog(p))

Von Neumann entropy

0<S5S<n



o O O
S~ TN TN SN S

o O

Entropy estimation

Given description of ...

=
= o=




n+ k

o O O O O
N~ TN TSN SN

Entropy estimation

Given description of ...

=

p € D(C®")

_u
— —
— —

}p



n+ k

o O O O

-

)
)
)
)
)

Entropy estimation

Given description of ...

p € D(C*")

(can similarly define classical case)

-
B8
T
T

—

}p



n+ k

o O O O

-

)
)
)
)
)

Entropy estimation

Given description of ...

-

a0 gesgss

— l'—IF1I—I'—IF1I—
p € D(C®")

(can similarly define classical case)
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compute an entropy estimate S

S(p) —0.1< S5 < S(p)+0.1
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Quantum
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How much time does the
}n fastest algorithm require as
a function of n”?

poly(n) —— Efficient

Otherwise —— Inefficient
(problem is hard)

Naive approaches are inefficient

20(1n)  time
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Assume circuit width is always poly(n)
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Hard based on plausible complexity-theoretic conjectures

[Goldreich, Vadhan "99]
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d = poly(n)

Hard based on plausible complexity-theoretic conjectures

(at least as hard as finding collisions for a function)

[Goldreich, Vadhan "99]
[Ben-Aroya, Schwartz, Ta-Shma '10]
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As hard as the Learning With Errors (LWE) problem

LWE Is a candidate problem for post-guantum
cryptographic protocols

Best known (quantum) algorithms require exponential time
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Quantum circuit case remains as hard as LWE

(requires arbitrary rotation gates)
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IS h a 1-to-1 or a 2-to-1 function?

It we could estimate entropy, we could
answer this question!
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Can consider...

f(b,z) = Ax+b-u+ e (modq)
gb,x) =Ax +b-(As+¢') + e (mod q)
AecZy™", x,s €Ly, u,e,e €Ly

such that, determining which is the 2-to-1 function
s as hard as LWE

Functions involve only linear-algebraic operations

Can be performed in logarithmic depth!
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S(il?l, X2, ilin) — Z S(Zlii‘ilii+1, Qj‘n)

S(xi|x;) = S(x;) if z; indep x;
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The classical case

S(x1, T2, ... ZS Ti|Tig1, ... Tn)

S(x1, e, ... ZS x| F(B(x;)) \ {z;})

S(wi| F(B(wi)) \{wi}) = S(F(B(xi))) = S(F(B(x:)) \ {i )

|

Completely determined by B(F(B(z;)))
Can be computed in O(1) time

Whole sum can be computed in O(n) time!
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In the quantum case this argument breaks down!

1 :2‘ a Measure non-red qubits
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2 D Zi41 = a;
Measure red qubits
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" S(x1|a1,...,an_1,azn) =0
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Perform Z rotations on qubitsiand | Rz(0); Rz(9);

%(M +eP+4|2))

Up to a global phase
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Classical and quantum entropy estimation are hard for
l0og-depth circuits!

For constant depth, classical is easy, quantum is hard

Quantum requires arbitrary rotation gates.
Possible with fixed gate set?

Connections to cryptography
Potential connections to quantum gravity (AdS/CFT)

Thanks!
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