Computational

Science

F T PRESTO

E'j(? The University of Tokyo SAKIGARE
THE Ul

Tensor network study of honeycomb lattice Kitaev model

Department of Physics, The University of Tokyo, Tsuyoshi Okubo

Main collaborators: Korea Univ, H.-Y. Lee,
Kinki Univ. R. Kaneko

ISSP N. Kawashima,

Ref:
- T.O. et al, Phys. Rev. B 96, 054434 (2017).

- H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, PRL 123, 087203 (2019),
PRB 101, 035140 (2020).



Contents

Introduction
- Tensor network representation for qguantum states
- Honeycomb lattice Kitaev model

- Compact tensor network representation for the gapless
Kitaev spin liquid

+ Finite temperature simulation (on going)

+ Summary



Contents

Introduction
- Tensor network representation for qguantum states
- Honeycomb lattice Kitaev model

- Compact tensor network representation for the gapless
Kitaev spin liquid

+ Finite temperature simulation (on going)

+ Summary



Quantum many-body problems

A variety of phenomena in condensed matter physics

-

Chemical reaction
Superconductivity

Topological states
02

Quantum many-body problems
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Cited from wikipedia: "Meisner effect”, "Torus"

(Time independent) Schrodinger equation| = Eigen value problem

H|T) = B|0)

- Dimension of the vector space increases exponentially as # of particles increases
- Quantum many-body problem ~ Eigenvalue problem of huge matrices

To solve the problem numerically by (classical) computer,
» we need huge memory and huge computation time.




Numerical approach for guantum (spin) systems

- Numerical diagonalization

Exact and applicable for any systems, but system size is limited.

S=1/2 spin models ~ 50 sites » We need careful extrapolation.
- Quantum Monte Carlo (QMC)

Within statistical error, solving problem “exactly
Easy calculation for very large system.

”I

frustrated interactions are usually
suffered from the sign problem!

- Variational method
Assuming a wave-function ansatz

Variational Monte Carlo: larger systems than ED
Tensor network method: Very large system size (infinite)

But,



Information compression by tensor networks

We can not treat entire data in the present computers.

» Try to reduce the "effective” dimension of
(Hilbert) space

By considering proper subspace of the Hilbert space,
we can represent a qguantum state efticiently.

v

Tensor network guantum states!

Hilbert space

Subspace



Tensor network states (TNS)
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G.S. wave function: |¥)
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Vector (or N-rank tensor):

“Tensor network”
decomposition

*  Matrix Product State
(MPS)

Al[’il]AQ [22] cee AN[ZN] —_
A[m]| : Matrix for state m

* General network . . . . .
TI’Xl [Zl]XQ [ZQ]Xg [23]X4 [Z4]X5 [Z5]Y

X,Y : Tensors

Tr ;: Tensor network contraction

By choosing a "'good” network, we can express G.S. wave function efficiently.

eX. | MPS: # of elements =2ND?2 | D: dimension of the matrix A

L Exponential— Linear  *If D does not depend on N... )




Area law of the entanglement entropy

Entanglement entropy:
Reduced density matrix of a sub system (sub space):

o4 = Trg|U) (T o000 00O0OO0
Entanglement entropy = von Neumann entropy of p4

S = —Tr(palogpa)

A B

(General wave functions:

EE is proportional to its volume (# of spins).

S = —Tr(palogpa) o< L*

(c.f. random vector)

Ground state wave functions:

For a lot of ground states, EE is proportional to its area.
J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys, 277, 82 (2010)

S =—Tr(palogpa) oc L4
Ground state are in a small part of the huge Hilbert space!




Tensor

Product States (T

PS)

~

-
TPS (Tensor Product State) (akcr, T. Nishino, K. Okunishi, ...)

PEPS (Projected Entangled-Pair State)

(F. Verstraete and J. Cirac, arXiv:cond-mat/0407066)

d-dimensional tensor network representation
for the wave function of a d-dimensional quantum system

S

{m;=1,2,-

. ,m} ‘

Tr Ai1[mi)Asms]--- An|mn||mime---mnp)

~

Tr:tensor network “contraction”

Ag,alyiy Mi] @ Rank 4+1 tensor

) Y xyx,y =12 ..D

X XL

/ m

y m

D = “bond dimension”

i= 1,2, ... m m = dimension of the local Hilbert space

*D can be larger than m. “Virtual state “

J

.

TPS on square lattice

Tensor = Projector

v

o—0

Maximally entangled state
between D-state spins

_J




—ntanglement entropy of T

oS (P

—PS)

4 L ) Y
X XL

y m

B

N.(L) = 4L
N.(L) = 2dL%*

TPS can satisfies the area law even for d >1.

Bond dimension = D

# of bonds connecting regions 4 and B

(square lattice)

(d-dimensional
nyper cubic lattice)

» rank ,OA S DNC(L) ~ DQde—l
Sa=—Tr palogps <2dL%log D

=»

We can efficiently approximate vectors
in higher dimensional space by TPS.

* It indicates that TPS could approximate infinite system wi

h a finite D.



Toric code model

H=—> A,

As =
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—xample: Ground state represented by TPS
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(A. Kitaev, Ann. Phys. 303, 2 (2003).
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lts ground state is so called Z2 spin liquid state.

=

"Spin liquid" is a novel phase different from conventional magnetic orders.

It can be represented by D=2 TPS.

(F. Verstraete, et al, Phys. Rev. Lett. 96, 220601 (2006).

,
0,1: eigenstate of ox

0 0 1 1
YSED S
0 1
0 0 1 1
YIS S
0 1

\
(Non-zero elements of tensor)

S




Variational calculation using ITPS

Optimization: Imaginary time evolution

, _ M
thloo (e=™") " |¢) = ground state A N B
Approximatin Cost information Accuracy
Simple update O(D?>) local bad | 2
Full update O(D19) global better
We repeat updates about 103~ 105 steps A/.\ f B/

Evaluation: Contraction of the whole network

We use the corner transfer matrix method.
(R. J. Baxter (1968), T. Nishino, ef al (1998), R. Orus et al (2009) ...)

Environment
Cost ~ O(D'0) Q-

2 RE3
Only a few calculations i é,eAé




Application to quantum many-body systems

Examples: Frustrated spin systems (We can not apply QMC due to the sing problem.)

Magnetization of Kagome lattice model

7/9

3/9

R. Okuma, D. Nakamura, T. Okubo et al,
Nat. Commun. 10, 1229 (2019).
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H. Yamaguchi, Y. Sasaki, T. Okubo,
Phys. Rev. B 98, 094402 (2018).



Comment: Tensor network renormalization

Tensor renormalization group (TRG) Cf. M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007)
Approximate contraction of tensor network by using "coarse-graining” of the network

LxL (L*L)/2
. - It reduces the exponentially large
contraction cost to polynomial.
Corse-graining
(Renormalization)
into longer scale. x
A :DxDxDxD A DxDxDxD

- TRG type approaches are also used to solve guantum many-body
problems through the path integral formulation.
- |t is deeply related to TNS.

- Importance of short-range entanglement removing.
- Connection to MERA.

- | have been contributed to TRG by developing new algorithmes.
- D. Adachi, T.O. and S. Todo, PRB 102 054432 (2020); arXiv:2011.01679.
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Honeycomb lattice Kitaev Model

A. Kitaev, Annals of Physics 321, 2 (2006)
Honeycomb lattice
Kitaev model

H=— > J,5]5]
Y <Za.7>’7

_ _ x-bond 2bond
”Y :bond direction
Depending on the bond direction, only yoond
specific spin components interact.
» This model is exactly solvable,
by introducing Majorana fermions.

Spin Four Majorana fermions

—

S = (Sa:7 Sya Sz)

Majorana fermions:




Conserved quantity: Flux

Flux operator

_ ~r Y z xr Y 2
W, =o0j05050,0:0¢

M, Wy =0, [Wp, Wy| =0

1 2
6%}—3
5 4
* Ground state is in the sector with
v _
p, W, =1

(Vortex free condition)



GS phase diagram

Ground states are spin liquids

Anisotropic region (A) : gapped spin liquid

- Excitations of Majorana fermions has finite gap.
- |t is adiabatically connected to the toric code.

(In some sense, it is understood well.)

Isotropic region (B) : gapless spin liquid

- Majorana fermions shows gapless excitation.
- The flux excitations is gapped.

H=— > J,5'5]
Y <7’7.]>’7

G.S. Phase diagram

—

J =(0,0,1)

—

y J = (Jg, Iy, J2)
gapped Jx _|_ Jy _|_ Jz _ 1

B
gapless




Ground state calculation of a Kitaev material

T. Okubo, K. Shinjo, Y. Yamaji et al, Phys. Rev. B 96, 054434 (2017).

Strong spin-orbit interaction » Kitaev interaction in real compound

G.Jackeli, et al., PRL 102, 017205 (2009)

(ab initio spin Hamiltonian for NazlrOs

(Y. Yamaji et al. Phys. Rev. Lett. 113, 107201(2014))

Kitaev + Heisenberg + Off-diagonal interactions
_|_

Due to additional interactions, GS is
a magnetically ordered state,
iInstead of the spin liquid.

In this case, iTPS calculation
correctly captured such
magnetically ordered GS of the ab
initio Hamiltonian.

~

\_ 2nd and 3rd nearest neighbor interactions Y

Energy (meV)
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Ground state of infinite system

calculated by using IiTPS

Phase diagram varying the trigonal distortion

Zigzag

1PEPS e

1 6-sites

IC

zigzag phase is
consistent with
the experiments
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Problems In a standard approach for spin liquid

When we use iTPS as a variational wave function, standard optimization scheme
(imaginary time evolution) gives a biased result depending on the initial states.

J.O. Iregui, P. Corboz, and M. Troyer, PRB 90, 195102 (2014)

Magnetization Spin correlation on NN bonds
'O'OZ]__ i i i i ] — | .
- e FM (b) - 054" xx (x_bond (a) |
- -e-AFM ] L -e-YY gy—bond; .
Exact ] e ZZ (z-bond) 1
0.03[ 0 053 o
o L Y StE
: o9
_ .
S 0.02f ° e 8 0.52 e,
o e S - h
’ V r
o 0.51F 0
0.01} - .
[ [}
0.50F
0.00F, . . :
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Ol=2 T

It is important to find

» - A good initial state for the Kitaev spin liquid
Better optimization methods

In order to investigate models in the vicinity of pure Kitaev model.




Compact TN representation of the spin liquids

GS phase diagram

-

. ' . . J =1(0,0,1)
Kitaev spin liquids:
- Gapped spin liquid is adiabatically connected to the toric code
-+ The toric code state is represented by D=2 iTPS. s
f:(1,0,0g;mpe - J =(0,1,0)

GS for 8 sites honeycomb lattice
-3,-%)

(+3.-%)
0 ] T
@) o
/B/lz/
- Gapless spin liguid has no simple tensor network representation. /<
- By using Majorana fermions, we can construct a complicated TNS.
P. Schmoll and R. Orts, Phys. Rev. B, 95 045112 (2017). /]

. [+
Can we construct simpler TNS 01y
for the gapless Kitaev spin liquid? IS
o~ ‘22 :
NS
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Projector onto vortex free sector

The Kitaev spin liquid is in the vortex free sector. 1 2
* Let us consider the projector onto this sector. 6%:?3
5 4
Exercise:
i I+ Wz A W, = ofoyoioiosof

Projectoronto Wi=1: | P, 4 =

It can be represented by D=2 tensor network.

Py =Tr (O70503500:05)

« L (T 0
O - 21/6 (O Jf‘)




Projector onto vortex free sector

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, PRL 123, 087203 (2019)

What is a tensor network representation for the vortex free projector?
I+ W.
P = b
[
p 4 | )

7 S
It is given by "loop gas" operator. ss’ __
» J / P9 P igk —*7 i, 7,k =0,1

j S

Non zero elements:

(D=2, TPO)




Loop structure of the operator

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, PRL 123, 087203 (2019)
(" o )

1 S
ss’_
ijk — W r i, k=01
7S
tTl“llQ: +
0 0 0 1
*_:] *—Z(;w

Sum over the all closed loops!|  Notice: ) =W,

:H(I—I—Wp) = NP — W W/
P Ng = 2NV :# of graphs



Loop gas state: a vortex free state

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, PRL 123, 087203 (2019)

A simple vortex free state corresponding to the isotropic Kitaev model:

LGS) = Qrc H ®[111),

Ferromagnetic state pointing (1,1,1) direction.

111y = |

1
(111]67|111) = —

>

D=2, TPS



Properties of the LGS

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, PRL 123, 087203 (2019)

LGS) = Qrc H ®[111),

Symmetries:
From the symmetries of Q and [111>, LGS is symmetric under

| attice translation
Ce lattice rotation (+ spin rotation)
Reflection + Times reversal

* Single reflection or time reversal symmetry is broken due to
underlying |111> state, although it can be recovered by
considering a linear combination of Q111> and Q|-1-1-1>.

Magnetism

Vortex free condition ensures that the LGS is non-magnetic.

» Qualitatively very similar to the Kitaev spin liquid.




ILGS) = QLG H®‘111>Z~
Criticality of the LGS z‘

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, PRL 123, 087203 (2019)

Criticality of the gapless KSL.:

It belongs to so called conformal quantum point.
cf. E. Ardonne, P. Fendley, and E. Fradkin, Ann. Phys. 310, 493 (2004).

» The wave function itself shows criticality (in 24).

It belongs c=1/2 Ising universality class.
(eg. K. Meichanetzidis et al, Phys. Rev. B 94, 115158 (2016))

If a wave function | qb) IS adiabatically connected to the Kitaev spin liquid,
(¢ | @) should show critical behavior which belongs to the Ising universality.




ILGS) = QLG H®‘111>Z~
Criticality of the LGS z‘

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, PRL 123, 087203 (2019)

LGS is mapped to classical loop gas:

(LGS|LGS) = Ne(111]Q 1o |111) (Qic = NeQre)
= Ng Z (111|Q¢|111) Q¢:product of oY corresponding to the graph G
G Eclosed loop <111‘0-7‘111> — L

1 la \/§
— Ng Z <ﬁ) I :loop length

G Eclosed loop

ldentical wit the partition function of the classical loop gas model
with fugacity 1/\/5 .

On the honeycomb lattice, it is exactly solvable.
(B. Nienhuis Phys. Rev. Lett. 49 1062 (1982).)

* It is actually the critical point of the loop gas model,
ant its criticality belongs to the Ising universality class.




LGS : a simple Kitaev spin liquid like state?

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, PRL 123, 087203 (2019)
Qualitative properties of LGS: |LGS) = Q¢ | | ®[111);
)

= [t satisfies the symmetries common with (gapless) KSL.

- Lattice translation
- Ce lattice rotation (+ spin rotation)
- Reflection + Times reversal

@ |t Is vortex free, and therefore nonmagnetic.

& [t shows the same criticality with KSL.

* One can consider LGS as the simplest example of KSL.

(It might be similar to the case of AKLT sate against the Haldane phase.)



Systematic improvement of LGS

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, PRL 123, 087203 (2019)

Energy of LGS for the Kitaev model: #=- ) 7,575

77<7:7j>’7

When we calculate the energy of LGS, it is

(LGS|H|LGS)
E = ~ —(.1634 Eeract >~ —0.19682
LGSLGS) 0.16349 H " 0.1968

Large discrepancy

Is Is possible to improve the energy without spoiling nice properties of LGS?

* Yes! We can systematically construct
a family of LGS by using tensor network.



Dimer gas operator

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, PRL 123, 087203 (2019)

zyk ZRzyk Rss

ijk — k 1,7,k =0,1

Rpa(9) = tTrHRiajaka(gb) 0}_0 _ 1}—0
— Z (tan(¢))"¢ Q¢ : :

0
Gelp 0}1 — tan(¢)o¥ }— tan(¢)

—

= (0 &0 & @ J o

* We can show [Rpa(é),Qral =0

, and it satisfies all symmetries same with LGO.

S0, application of DG operator does not spoil the properties of LGO.




String gas states: energies

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, PRL 123, 087203 (2019)

nth-order string gas state (SGS)

V) = HRDG(¢i) LGS)

# of parameters 0 1 2
E/J -0.16349 -0.19643 -0.19681 -0.19682
AE/Eex 0.17 0.02 0.0007 -

By using only two variational parameters,
We can obtain very accurate energy.

v

By LGS and SGS, we can accurately represent the
gapless Kitaev spin liquid qualitatively and quantitatively!




LGS for chiral spin I|O|U|ds

H.-Y. Lee, R. Kanako, T.O. and N. Kawashima, PRB 101, 035140 (2020)

Star lattice

Kitaev model on the star lattice

/

i Ay V S AV AV
E E 0, G, ,

(ij)ey (lj>€)//

Ground state is a chiral spin liquid.

J/J = tan
/ ¢ Energy
non-Abelian : Abelian Y
egact] e :(c) [Wo)
-0.38 ¢ :
o |¢0> : I092
o ¥,
0.4 : L dB[%)
o
0.42 | —
_O 44 . .......... Oe) O|25 | 05 |Og | | B | | | B |
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ol ol o/



LGS a

S Initial states

“expanded lattice”

50 -40 -30 -20 -10 O

Phase diagram of ED (24-site)
(Y. Yamaji et al, PRL 113, 107201(2014))

% b T
ferromagnetic  spin liquid 12-site
L | | | | | | | | | J

10 20 30 40 50
A (meV)

ab initio Hamiltonian for NazlrOs (with lattice expansion)

-4.6

Energy (meV)

-5.3

\.

4.7}
4.8}
4.9}

51
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Energy and Phase diagram

12-site

Ferro

60 40 20 0 20 40

A (meV)

60

0.4}
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Local magnetization
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Ferro

SL

12-site

-60

40
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A (meV)

ITPS phase diagram is qualitatively consistent with the ED.

- Around A=0, a Kitaev spin liquid phase is clearly stabilized.
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Finite temperature calculation

< - N
Expectation value Density matrix p(8) = 1 —sn
(O)p = Tr[p(B)0]

Z
. Partition function Z = Tr e #™ y

How can we calculate the expectation value”?

1. Full diagonalization: (), = %<7\T5§;?”’;>
n \T? e ~7nn

- Size Is limited due to O(eV) dimension of the Hilbert space
2. QMC: MCMC sampling of world line configurations

- We can treat large size. But, application of QMC is limited due to
the sign problem.
3. Typical pure states (Restricted to finite size systems)
4, Approximation of density operator



Tensor network representation of density matrix

Possible two representations of the density matrix as TNSs.
ﬁ . Direct TPO representation  (cf. A. Kshetrimayum et al, PRL 122, 070502 (2019)) \

p(5) — N ~ 44+ This talk

Pros: - Algorithm becomes simpler.

cons: Approximate density matrix may contain negative (or complex) eigenvalues.
K - For full update, we need much cost. J

2  |Local purifica’[ion (cf. Czarnik et al, PRB 99, 035115 (2019))

-

Pros: . The approximate density matrix is positive semi-definite.

Cons: - Optimization of ancilla degree of freedoms seems to be complex.
- Bond dimensions can be much larger than the direct representation.
Gemma De las Cuevas et al, New J. Phys. 15, 123021 (2014)



Target: Honeycomb lattice Kitaev Model

Kitaev model A Kitaev, Annals of Physics 321, 2 (2006)
x-bond sbond
_ E : Y QY . N
H=-—-K SZ Sj ”Y :bond direction bond
— 1
¥5{2,3)~ (5: 5)
Ground state is gapless spin liquid
It satisfies the vortex free condition: J. Nasu et al PRB 92, 115122 (2015) (QMC)
P, Wp =1 1 2 06.(@) a=1.0
p: plaquette 5 3 . 4‘ tig e
Flux: W, = ofoioioo:0f . . O 0'2- tﬂg — .
/ 21 = AT B
M, Wp| =0, [Wy, Wp] =0 - g
(cf. H.-Y. Lee, et al, PRL (2019)) 0.0 (é)’ 10 “
At finite temperature, double peaks structure > 0.8} |
IS expected in the specific heat. N . e
The low temperature peak corresponds to = 04r g S W)
the development of the flux. I o
00-EF16 i Tl al  tepeeeeenens]
Can we reproduce it by iTPO method? 10¢ 10°® 102 10"  10°  10%




Another motivation: Kitaev material

a-RuCls :candidate of Kitaev spin liguid under a magnetic field

Its ground state is Zigzag state at zero magnetic field.
Under a moderate magnetic field, the magnetic order seems to disappear.
In this "phase”, they observed half quantized thermal Hall conductivity.

Y. Kasahara, et al, Nature 559 , 227 (2018).

uot (T)
4 6 8 10 12
Conventional paramagnet
Jlkg ~80K -==------- - - - oo oo
~~ Spin liquid (Kitaev paramagnet) ~~
Half-integer c . P
8T T quantized plateau 60° 4 - NE
¢ .- = L
g . “ >4 4 HIL ] ;
z - Zigzag ‘ i
[ s ®
AFM order p = S
> 4 h
4 tEH Non- %S
H—H o
| topological i
L
== i <
0 1 P 1
4 6 TH|T 8 10 12

Topological phase
moHy (T) transition point



Results: specific heat and flux

Specific heat

02
D=4 —+
D=8
D=12
0.15 | \ D=16
D=24
D=32 o
D=48 — o
sl — P S
01} | D=64
Q
005 |
0
005 EETIT BEEETITT BEETE T BT BT
0.001 0.01 0.1 1 10

100

flux

05
045
0.4
0.35
03
0.25
02 |
0.15
0.1

0.05

Flux

0.001 0.01

0.1

Small D, we do not see two peak structure.

As D is increased, the second peak becomes visible.

It corresponds to the increase of the flux.




Comparison between iTPO and QMC

J. Nasu et al PRB 92, 115122 (2015) (QMC)
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Compared with QMC, TPO method could not capture
the quantitative nature of Kitaev spin liquid at 7< 0.1.

This is probably due to the difficulty of optimization for infinite TPS.

* When we consider finite size systems, optimization becomes easier.



Kitaev model under a magnetic field (preliminary)

(In collaboration with Y. Motome, J. Nasu and T. Misawa)

Instead of the infinite 2d system,
we consider a finite cylinder.

For this setup, MPO representation
of the density matrix works well.
(cf. H. Li et al, arXiv:2006.02405)

We can accurately calculate finite
temperature properties even at low
temperature.

2nd peak of the specific heat.

We can discuss interesting
properties, such as the thermal
current.

It will be reported in the next
JPS meeting.
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Summary

Tensor networks are useful tool to investigate quantum many-body problems
We can investigate a variety of frustrated spin systems by iTPS.

We proposed compact tensor network representations for the gapless Kitaev
spin liquid.

ney are represented by loop gas or string gas configurations.

ney satisfy common symmetries with the Kitaev model.

ney are critical and belong to the Ising universality class.
We can extend the tensor network method to finite temperature.

For the infinite Kitaev model, accuracy becomes worse at a low
temperature.

For a finite size cluster, we can obtain reliable result by using MPO
representation.



TeNeS: Tensor Network Solver

We are developing a open source software for massively parallel
tensor network solver for 2D quantum lattice system.

https://github.com/issp-center-dev/TeNeS

—_— [ Ground state calculation of infinite 2d quantum spin (or boson) models
M Easy calculation for standard 2D lattices
!  You can also calculate models on general 2D lattices

T e N e S A Support of parallel calculations
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TeNeS

Massively parallel tensor network solver
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