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introduction

Entanglement in quantum many-body systems
* Quantum spin chain: biparititoning entanglement
entanglement spectrum/Hamiltonian

Characterizing entanglement between subsytems
DMRG/TNs c.f detector of SPT states

Our aims XXZ chain.
e analogy with Unruh effect
a simple example of gravitational effects on QFTs
CTM for 6-vertex model/Lorenz boost operator integra bility
e visualization of the entanglement with
classical world lines of spins (QMC for the RDM)




Ising-like XXZ chain
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XY Heisenberg Classical Ising

Bethe ansatz solvable
Bulk energy, excitation gap, magnetization, etc.

Ising-like regime:
The groundstate is gapful with a finite correlation length.



entanglement Hamiltonian for biparitioning
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* This bipartition EE can be easily calculated by DMRG.

If we can write p ~ exp(—Hgg) , Hgg is called “entanglement
Hamiltonian” or “modular Hamiltonian”.

A modular Hamiltonian defines a time evolution in the angular time direction,
which is different from the usual real time.



XXZ chain and 6-vertex model
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Commuting transfer matrices

[T(w), T(u')] =0 Tw) = 3 | | Wittt valttner, vier)

. T
u : rapidity(=spectral parameter= pseudo’umomentum)

d
Hamiltonian of the XXZ chain H = — o log T'(u)

Simultaneous eigenstate  [7'(u), H] = 0

u=0



integrability and CTM

Eigenvector: Bethetype Baxter’s magi / CTM

A(A-u)
¥) ~ im T"|b) =

A—00

Baxter, J.Math.Phys. (1968), J.Stat.Phys. (1971)
The groundstate wavefunction can be written as a product of CTMs
¥~ A(d — u)A(u)  with Au) ~ 7%
Reduced density matrix 9C plays a role of the entanglement Hamiltonian

B p=exp(-BI)Z it ?jiixp(—ﬁﬂ)




entanglement/corner Hamiltonian
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Free boundary condition at n=1, L

» The boundary effect at n=1 should be perfectly suppressed
at (3, = 24 to reproduce the uniform ground state.

The energy scale is proportional to n

Effective temperature decreases as n increases.
(This can be a source of difficulty in a QMC simulation)

The exact spectrum of corner Hamiltonian provides the exact EE
for XXZ chain. Kaulke Peschel, K.O.Y. Hieida and Y. Akutsu

What is the interpretation of the corner Hamiltonian?



U Nru h eﬂ:e Ct . vacuum thermalization in quantum field theory

A constantly accelerating observer
N x = % cosh(an)
t = = sinh(an)

L R sees the vacuum as a thermalized
state with an effective temp.
(Unruh temp.)

The quantum fluctuation of the vacuum

The Left and right parts are space-like is observed as thermal fluctuation
regimes, which are classically separable!



Rindler-Fulling quantization (n,¢)

X = ﬁcosh(an)
N R
t smh(cm)
: aiv)z
f dfé (O ¢ ey + mig?
Lorentz bOOSt operator
byl0)k = byl0), = 0
constantly accelerating observer Bogoliubov transformation

H = f dx %[(6ﬂ¢)2 + m*¢*]

with dy, |0>M Minkowski vacuum

cf. K= fdxx%[(ay(ﬁ)z + m*¢?]

0%y = e o™ 055103, 10
pr = Trrl00u (0l = | [ %

p
with B* = 2_}? and K, pb‘]j‘rbﬁ‘
a

m=0 massless case



IC corner Hamiltonian /Hamiltonian of CTM
L

n- n+l

K = J,&Z”{SﬁSLI + 8,8, +ASLS; }

n=1

Lattice Lorentz boost operator 4 \T AL = T(u + v
(Rapidity shift operator) (T MAW) (1 )

= The CTM formulation corresponds to the Rindler quantization
of the relativistic quantum field theory

Lattice Poincare algebra H.B.Thacker, Physica D 18, 348 (1986).
[P,H] =0, [K.,Pl=iH, [K,H]=i ~O
. _ I, ,
ly=iP L=-H L=ilL= Z[hn,n+lshn+1,n+2] log T(u) = Z EH ,

Reduced density matrix ¢ plays a role of the entanglement Hamiltonian

| B =24
B p=ep(BIZ with g g



Unruh effect | Rindler-Fulling quantization

(free scalar field)

entanglement Lorentz boost proper time
. . evolution =
Hamiltonian  operator omentum shift
parameter acceleration a
mass m independent

W CTM/RDM diagonal basis

entanglement Corner Hamiltonian Angulartime

i . — evolution
Hamiltonian = rapidity shift

lattice Lorentz boost

parameter anisotropy A

both of the effective acceleration and mass
gap are defined by A



extracting entanglement
from the corner Hamiltonian

Finite temperature, no furstration

) WL-QMC
off-diagonal interaction diagonal interaction
(XY-terms) (zz terms)

Stochastic updating of the classical world-lines provides
typical configuration of spins in the equillibrium.



world-line entanglement

 The corner Hamiltonian defines the imaginary angular time
evolution
time evolutionatn At o n
* Scaling of the imaginary time into the angular time defines
an effective acceleration for the XXZ chain.

. . . , 2rom
Scale imaginary time: T 6 = ar with a = ﬁ_ — p
A
O<7<B, ®» 0<6<2n
a : effective acceleration a=0 : classical limit
O : angular time

* We can illustrate entanglement as circles of classical world-
lines surrounding the entangle point(n=0)



snapshots  A=20 B =24
(1=13169---)

How can the “uniform” ground state be realized for the non
uniform Hamiltonian?

Density of kinks looks uniform
in this plot!

Local temp < nf;

T

kink # o< nf5;
For § < ; (high temp.), kinks
around the center becomes space.

For § > [;(low temp.), kinks
around the center are oscillating.



E(n,n+1)/n

bond energy distribution A = 2.0

(S, S A normalized

bond energy

normalized kink density

kink(n,n+1)/Bn
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kink density is related to the
off-diagonal parts of local energy

At 5 = [, ,the normalized bond energy and kink density become

flat around n=1

:> reproducing uniform ground state wavefunction.




correlation functions A =20
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Entanglement Entropy

The groundstate entanglement entropy for H can be calculated
as the thermal entropy for the entanglement Hamiltonian K.

Sep = —Trg [p lng] — ﬁi(%) + lOg /

We calculate S_EE with integration of a specific heat estimated
by a QMC simulation.

Sgr = Llog2— [~ dT = Llog2~ [ C.dx

log T,

The estimation of the entropy is not easy but possible with QMC.



Cv

Fitting: Gaussian Kernel method




Eneanglement Entropy
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Estimation of EE approaches to the exact value of EE for the halfOinfinite subsystem

The deviation from the DMRG result originates from geometry of world sheets:
DMRG: cylinder, corner Hamiltonian: disk



Unruh-DeW.itt detector

Vx

A harmonic oscillator coupled with a scalar field
moving along the Rindler trajectory

S f dng(x(n), t(q)X ) X = reoshian), £= rsinh(an)
I:> This detector is excited by the thermalized vacuum.

Excitation rate is given by an integration of the Wightman function
= Py [ e GG, ). O

Capturing the Bose distribution p 1
. H oC ;
with the Unruh temp. ebuwn — ]

(massless case)



XXZ-chain analogue of the detector

A harmonic oscillator coupled with a spin in the XXZ chain?
But, the detector does not accelerate in the chain literally .

Scalar field d(x(n), t(n)) = e"“’?L(b( r, 0)6—4*&??1:

n-dependent Lorentz transformation

Spin coupled with the detector : ¢ lattice Lorentz boost

7 _ _—ianK o u ian’K
> S,(m) =e She
n ~r : distance from the entangle point

4 )

Autocorrelation function G’J( _ Tr S’g(n)Sﬁ(O)e—ﬁﬂ(
with respect to 1 n\11) = 7

- J




Autocorrelations

DMRG: Renormalization transformation matrix gives

the relation between the /diagonal bases and the usual spin bases
Bogoliubov trans.
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m/a periodicity

Imaginary shift
of the rapidity
+

lattice effect



summa ry arXiv:1906.10441
J. Phys. Soc. Jpn. 88, 114002 (2019)

* We calculate the groundstate properties of the Ising-
like XXZ chain with a finite temperature formulation
based on the entanglement Hamiltonian/CTM.

Lattice Unruh effect
* We can understand the entanglement from the

viewpoint of classical world lines surrounding the
entangle point

world-line entanglement

e Can we realize lattice Unruh-Dewitt detector?

Autocorrelation captures entanglement spectrum
entanglement detector

* Critical cases? CFT, SSD, numerically bad convergence



