Recent progress in theoretical physics based on quantum information theory @ YITP March 2nd 2021 (JST)

Can we probe the microstates of spacetime?

Naritaka Oshita (Perimeter Institute)

Role of gravitational entropy in cosmology

Gregory, Moss, NO (2020) 2003.04927 Gregory, Moss, NO, Patrick (2020) 2007.11428 NO, Ueda, Yamaguchi, (2019) 1909.01378 Gregory, Moss, NO, Patrick (in preparation)

What is the origin of gravitational entropy?

NO, Afshordi, Mukohyama (2021) 2102.01741 NO, Tsuna, Afshordi (2020) 2004.06276 Abedi, Afshordi, NO, Wang (2020) 2001.09553 NO, Wang, Afshordi (2019) 1905.00464

BH spectroscopy and CFT thermal state

Ongoing work

Could the total entropy decrease?

YES

(non-equilibrium situations)

Jarzynski equality Jarzynski (1997)

equilibrium state B

non-equilibrium paths

$$\langle e^{-\Delta S} \rangle = 1$$

Entropy (B) - Entropy (A)

Entropy decreases with small probability!

$$p \sim e^{\Delta S} \ll 1 \ (\Delta S < 0)$$

Cosmological horizon is no exception!

 $V(\phi_0) < V(\phi_1)$

Bekenstein Hawking entropy decreases!

$$\Delta S < 0$$

Coleman-de Luccia tunneling

Running coupling

$$V = \frac{1}{4} \lambda_{\rm eff}(\phi) \phi^4$$
 We are here Second minimum?

Figure 1: Left: SM RG evolution of the gauge couplings $g_1 = \sqrt{5/3}g'$, $g_2 = g$, $g_3 = g_s$, of the top and bottom Yukawa couplings (y_t, y_b) , and of the Higgs quartic coupling λ . All couplings are defined in the $\overline{\rm MS}$ scheme. The thickness indicates the $\pm 1\sigma$ uncertainty. Right: RG evolution of λ varying M_t , M_h and α_s by $\pm 3\sigma$.

Degrassi et al. (2013)

The Higgs self-coupling can be negative at high energies.

BH catalyzing effect and the Higgs metastability

NO, Ueda, Yamaguchi (2019)

 $r_s = 10^3 \ell_{\rm Pl}, \ H = 1 \times 10^{-4} M_{\rm Pl}, \ \Sigma = 1.5 \times 10^{-5} M_{\rm Pl} \ \Sigma/M_{\rm Pl} = 1.3 \times 10^{-5}$

Higgs metastability and PBHs

Higgs potential

Dai et al. (2019)

$$V=rac{1}{4}\lambda_{
m eff}(\phi)\phi^4$$
 $\lambda_{
m eff}=\lambda_*+b\left(\lnrac{\phi}{M_{
m Pl}}
ight)^2+c\left(\lnrac{\phi}{M_{
m Pl}}
ight)^4$ $\lambda_*=-0.004$ $b=1.5 imes10^{-5}$ $c=0$

PBHs (spectral index of the density fluctuations, mass, temp.)

Hawking radiation

What we can learn

quantum mechanics in gravity

non-equilibrium statistical mechanics

[Jarzynski equality]

transition probability $p \sim e^{\Delta S}$

gravitational entropy plays an important role in phenomenology

Constraints on cosmological models and the parameters of the (beyond) Standard Model

Role of gravitational entropy in cosmology

Gregory, Moss, NO (2020) 2003.04927 Gregory, Moss, NO, Patrick (2020) 2007.11428 NO, Ueda, Yamaguchi, (2019) 1909.01378 Gregory, Moss, NO, Patrick (in preparation)

What is the origin of gravitational entropy?

NO, Afshordi, Mukohyama (2021) 2102.01741 NO, Tsuna, Afshordi (2020) 2004.06276 Abedi, Afshordi, NO, Wang (2020) 2001.09553 NO, Wang, Afshordi (2019) 1905.00464

BH spectroscopy and CFT thermal state

Ongoing work

1. microstructure which breaks the Lorentz symmetry

(e.g. Horava-Lifshitz quantum gravity)

Superradiance of Primordial Black Holes (PBHs)

NO, Afshordi, Mukohyama (2021)

amplification in scattering process

2. microstructure which is an ensemble of two level systems

GW echoes from BH ringing (late-time GW signal from binary black hole merger)

NO, Wang, Afshordi (2019)

NO, Tsuna, Afshordi (2020)

Abedi, Afshordi, NO, Wang (2020)

Lifshitz scaling

Anisotropy between space and time

$$x \to bx \quad t \to b^z t$$

Applying this to quantum gravity theory, it becomes a renormalizable theory in a power-counting level.

Horava (2009)

Afterwards, the renormalizability of the (projectable) Horava-Lifhshitz gravity was performed!

Barvinsky et al. (2015)

dispersion relation in the Horava-Lifshitz quantum gravity

GR at high energy

$$\omega^2 = k^2$$

HL at high energy

$$\omega^2 = \Xi_6 k^6 + \Xi_4 k^4 + k^2$$
 $\Xi_4 = \frac{\mathcal{O}(1)}{M_{\mathrm{HL}}^2}$ $\Xi_6 = \frac{\mathcal{O}(1)}{M_{\mathrm{HL}}^4}$

HL quantum gravity is consistent with observational cosmology!!

1. HL gravity solves the Horizon problem in cosmology and leads to the scale-invariant perturbations

(alternative to inflation)
Mukohyama (2009), Kiritsis et al. (2009)

- 2. HL gravity has no Hamiltonian constraint
- → cold dark matter as integration constant Mukohyama (2009)

Lifshitz scaling and Hawking radiation

Hawking radiation

Scattering around a BH

$$N(\omega) = \frac{\Gamma(\omega)}{e^{(\omega-\mu)/T}-1}$$
 μ : chemical potential

greybody factor

determined by the reflectivity of a BH

superradiance around a Schwarzschild BH

$$\left[-\Xi_6 \Delta^3 + \Xi_4 \Delta^2 + \Box\right] \psi(t, r) = 0$$

NO, Afshordi, Mukohyama (2021)

Future observations to probe Lifshitz scaling

Spectrum induced GWs caused by the PBH evaporation is drastically modified by the Lifshitz scaling.

Evaporation of PBHs

changes the evaporation rate

induce curvature perturbations

induce GW

Observation of DECIGO / BBO

1. microstructure which breaks the Lorentz symmetry

(e.g. Horava-Lifshitz quantum gravity)

Superradiance of Primordial Black Holes (PBHs)

NO, Afshordi, Mukohyama (2021)

amplification in scattering process

2. microstructure which is an ensemble of two level systems

GW echoes from BH ringing (late-time GW signal from binary black hole merger)

Thermality of horizon Padmanabhan (2019)

Hartle & Hawking (1976)

Path integral approach

Lindler horizon \simeq a two-level system

What if a BH horizon has its Boltzmann reflectivity? * similar idea was out in 2019

GW echoes at late time

[Gravitational wave echoes from black hole quantization]

Cardoso et al. (2019)

Mechanism of GW-echo emission

Abedi & Afshordi (2016)

Tentative detection of GW echoes

Figure 4: A 3d rendition of Fig. (3) within our echo search frequency range f = 63 - 92 Hz, showing that our tentative detection of echoes at $f_{\text{peak}} = 72 \ (\pm 0.5)$ Hz and $t - t_{\text{merger}} \simeq 1.0$ sec clearly stands above noise.

GW170817 binary neutron star mergers tentative detection of GW echoes with 4.2σ

Third generation of GW detectors

Abedi, Afshordi, NO, Wang (2020)

Figure 40. Spectra of ringdown and echo phases in the Boltzmann reflectivity model with $\bar{a}=0.1$, $\epsilon_{\rm rd}=6\times10^{-7}$, $M=2.4M_{\odot}$, $\theta=90^{\circ}$, and $D_{o}=1$ Mpc. Here we also assume $\gamma=10^{-10}$, $T_{\rm H}/T_{\rm QH}=1$ (left) and $T_{\rm H}/T_{\rm QH}=1.37\times10^{-6}$ (right).

Role of gravitational entropy in cosmology

Gregory, Moss, NO (2020) 2003.04927 Gregory, Moss, NO, Patrick (2020) 2007.11428 NO, Ueda, Yamaguchi, (2019) 1909.01378 Gregory, Moss, NO, Patrick (in preparation)

What is the origin of gravitational entropy?

NO, Afshordi, Mukohyama (2021) 2102.01741 NO, Tsuna, Afshordi (2020) 2004.06276 Abedi, Afshordi, NO, Wang (2020) 2001.09553 NO, Wang, Afshordi (2019) 1905.00464

BH spectroscopy and CFT thermal state

Ongoing work

BH spectroscopy and CFT thermal state

$$\left[\frac{\partial^2}{\partial r^{*2}} + \omega^2 - V(r)\right]\psi_{\omega}(r^*) = 0$$

$$\left[\frac{\partial^2}{\partial r^{*2}} + \omega^2 - V(r)\right] \psi_\omega(r^*) = 0 \qquad \text{Boundary condition}$$

$$\psi_\omega(r^*) \begin{cases} \to \exp\left(-i\omega_n r^*\right) & (r^* \to -\infty) \\ \to \exp\left(+i\omega_n r^*\right) & (r^* \to +\infty) \end{cases}$$
 Nunez et al. (2003)

Nunez et al. (2003)

Poles of the retarded correlators of the thermal $\mathcal{N}=4$ SYM theory operators

 ω_n : nth-quasinormal mode (QNM) frequency testable!!

Dissipation for quasiparticle excitations in the finite temperature gauge theory

$$e^{-i\omega_n t} = e^{\operatorname{Im}[\omega_n]t} e^{-i\operatorname{Re}[\omega_n]t}$$
 dissipation oscillation

Testing the no-hair theorem with GW150914

Isi et al. (2019)

QNM frequency depends on the mass and spin only!!! (no-hair theorem)

QNMs are characterized by

1. frequency

$$\omega_n$$

2. Excitation factor B_n

(quantify the ease-of-excitation of QNMs)

CFT Bulk

Ease-of-excitation of quasiparticles in thermal gauge theory? \blacksquare B_n for 5d Kerr-AdS

Role of gravitational entropy in cosmology

- Phase transition or tunneling process in strong gravity
- => decay rate is governed by the change of Bekenstein-Hawking entropy
- gravitational entropy plays an important role for putting constraints on cosmological models and Standard Model.

What is the origin of gravitational entropy?

Future GW observations (ET, CE, DECIGO, BBO,....) are very important to probe the microstructure of spacetime

BH spectroscopy and CFT thermal state

no-hair nature of QNMs is testable

QNM frequencies <==> dissipation of quasiparticles in thermal gauge theory

QNM excitation factors <==> ease-of-excitation of quasiparticles in thermal gauge theory??

Why superradiance?

[NO, Afshordi, Mukohyama (2021)]

Figure 1. A schematic picture showing the superradiant scattering around (a) a Kerr black hole and (b) Schwarzschild black hole with a Lifshitz field. The negativity of energy is allowed in the region where spacetime is superluminally dragged such as the ergosphere of a Kerr black hole or the interior of Killing horizon of a Schwarzschild black hole. Therefore, modes leaving from such a region can carry out additional positive energy to infinity while leaving negative energy there. This is nothing but the superradiance effect.

Why superradiance? -What causes the SR?-

$$\Xi_4 = 0.1 \quad \Xi_6 = 0.01 \quad c_{\chi} = 0$$

Kerr spacetime: positive (rotational) energy extraction at ergosphere

Schwarzschild with the Lifshitz scaling: Positive (mass) energy extraction near the horizon