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Our result
If there exists (a family of) postselected quantum circuits efficiently generating 

ground states of any 3-local Hamiltonians, then the counting hierarchy collapses 

to its 1st level.

The efficient generation of ground states of any local Hamiltonians seems to be 

impossible even if we can use the postselection ability.

Previous hardness results are shown for universal quantum computation 

without the postselection. [J. Kempe, A. Kitaev, and O. Regev ‘06]

Our result improves the previous one (in a sense).
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Outlook

• Can we show the hardness for a constant (or the inverse of a polynomial) 
precision of the approximation?


• Can we strengthen the unlikliness? 


  ex. ) One direction is to improve the 1st-level collapse to the 0th-level one.


• Can our result be generalized to other Hamiltonians such as


✓ 2-local Hamiltonians


✓ Translation-invariant Hamiltonians


✓ Geometrically-local Hamiltonians?
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It is based on some previous results:

❖A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, 

     Classical and Quantum Computation (2002).

❖D. Aharonov and T. Naveh, 

     arXiv:quant-ph/0210077 (2002).

❖T. Morimae and H. Nishimura, QIC 17, 959 

     (2017).

❖B. Fefferman and C. Y.-Y. Lin, in proc. of ITCS,

     p. 4:1 (2018). 
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