Pseudo Entropy in Quantum Many-Body Systems and Holography

Kotaro Tamaoka (YITP)

Based on

2005.13801 (PRD) with Yoshifumi Nakata, Tadashi Takayanagi, Yusuke Taki, and Zixia Wei 2011.09648 (PRL) with Ali Mollabashi, Noburo Shiba, Tadashi Takayanagi, and Zixia Wei

+ work in progress

@ Recent progress in theoretical physics based on quantum information theory, YITP Kyoto, March 2021

This talk: a holography-inspired QI-quantity and its applications

Pseudo Entropy = Entanglement Entropy for "Transition Matrix"

$$\rho^{\psi} = |\psi\rangle\langle\psi| \qquad \qquad \mathcal{T}^{\psi|\varphi} = \frac{|\psi\rangle\langle\varphi|}{\langle\varphi|\psi\rangle}$$

Plan

1. Interpretation 2. Gravity dual 3. Application as order parameter

Based on

2005.13801 (PRD) with Yoshifumi Nakata, Tadashi Takayanagi, Yusuke Taki, and Zixia Wei 2011.09648 (PRL) with Ali Mollabashi, Noburo Shiba, Tadashi Takayanagi, and Zixia Wei

+ work in progress

Background: Entropy and Area in (Quantum) Gravity

Thermodynamical Entropy and Area [Bekenstein '72] and [Hawking '74]

$$S = \frac{A}{4G_N}$$

 $S = \frac{A}{4G_N}$! Volume law in lower dimension (The idea of holographic principle)

Entanglement entropy and Area [Ryu-Takayanagi '06],...

$$S(\rho_A) \equiv -\operatorname{Tr}(\rho_A \log \rho_A) = \frac{\operatorname{Area}(\Gamma_A)}{4G_N}$$

<u>Microscopic</u> entropy ↔ Area (in Lorentzian spacetime)

(We will focus on the classical part, but quantum/non-perturbative corrections are also important)

Motivation from Gravity

Minimal surfaces in Euclidean AdS

("time-dependent" due to $\phi \neq \psi$)

Quantum information theoretical quantity?

(Perhaps new one?)

- $\langle \phi | \psi \rangle$ (overlap in CFT) has a sharp gravity dual based on AdS/CFT
- What is the boundary dual of minimal area in this geometry? (If $\phi = \psi$, the entanglement entropy)

→ Our answer: Pseudo Entropy!

This talk: a holography-inspired QI-quantity and its applications

Pseudo Entropy = Entanglement Entropy for "Transition Matrix"

$$\rho^{\psi} = |\psi\rangle\langle\psi| \qquad \qquad \qquad \mathcal{T}^{\psi|\varphi} = \frac{|\psi\rangle\langle\varphi|}{\langle\varphi|\psi\rangle}$$

Density Matrix (pure state)

$$\rho^{\psi} = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}$$

Expectation value

$$\langle A \rangle_{\psi} = \text{Tr}[A \cdot \rho^{\psi}] = \frac{\langle \psi | A | \psi \rangle}{\langle \psi | \psi \rangle}$$

Transition Matrix

$$\mathcal{T}^{\psi|\varphi} = \frac{|\psi\rangle\langle\varphi|}{\langle\varphi|\psi\rangle}$$

Weak value: complex value in general

$$\frac{\langle \varphi | A | \psi \rangle}{\langle \varphi | \psi \rangle} = \text{Tr}[A \cdot \mathcal{T}^{\psi | \varphi}]$$

Pseudo (Entanglement) Entropy

[Nakata-Takayanagi-Taki-KT-Wei '20]

$$S(\mathcal{T}_A^{\psi|\varphi}) = -\text{Tr}\left[\mathcal{T}_A^{\psi|\varphi}\log\mathcal{T}_A^{\psi|\varphi}\right]$$

where
$$\mathcal{T}_A^{\psi|\varphi} = \operatorname{Tr}_{A^c} \mathcal{T}^{\psi|\varphi}$$

Precise definition: defined via eigenvalues (Jordan normal form),

"Renyi entropy":
$$S^{(n)}(\mathcal{T}_A^{\psi|\varphi}) = \frac{1}{1-n} \log \mathrm{Tr}[(\mathcal{T}_A^{\psi|\varphi})^n]$$

Pseudo Entropy can be defined as n→1 limit

· Complex-valued in general

- In some nice class of states, (Pseudo Entropy) ≥ 0
 - Ground states of spin systems (e.g. transverse Ising model)

$$\mathcal{T}^{1|2} = |0_{J_1,h_1}\rangle\langle 0_{J_2,h_2}| \qquad H_{1,2} = -J_{1,2}\sum_{i=0}^{N-1} \sigma_i^z \sigma_{i+1}^z - h_{1,2}\sum_{i=0}^{N-1} \sigma_i^x$$

• Holographic states (CFT states dual to semi-classical geometry in AdS/CFT)

inon-Hermitian "modular Hamiltonian" !?)

• Real part of PE:

3 A nice interpretation based on "distillable EPR pairs"

(Next slide)

Entanglement Entropy = # of Distillable EPR pairs under LOCC

Bunch of maximally entangled states (EPR pairs)

$$S(\rho_A) = \lim_{n \to \infty} \frac{n}{n}$$

T

Pseudo Entropy = # of Distillable EPR pairs under LOCC + post-selection

(\triangle Proven only when the reduced transition matrix is Hermitian and real-positive)

Bunch of maximally entangled states (EPR pairs)

$$S(\mathcal{T}_A^{\psi|\varphi}) = \lim_{n \to \infty} \frac{N}{n}$$

Summary

Pseudo Entropy = Entanglement Entropy for "Transition Matrix"

$$\rho^{\psi} = |\psi\rangle\langle\psi| \qquad \qquad \qquad \mathcal{T}^{\psi|\varphi} = \frac{|\psi\rangle\langle\varphi|}{\langle\varphi|\psi\rangle}$$

Holographic Pseudo Entropy (HPE)

$$S(\mathcal{T}_{A}^{\psi|\varphi}) = \min_{\substack{\partial \Gamma_{A} = \partial A \\ \Gamma_{A} \sim A}} \left[\frac{\operatorname{Area}(\Gamma_{A})}{4G_{N}} \right]$$

! Can prove by reusing [Lewkowycz-Maldacena'13] argument (Just use GKP-Witten relation to the replica manifold)

HPE as Weak Value of Area Operator

$$S(\mathcal{T}_A^{\psi|\varphi}) = \frac{\langle \varphi | \frac{\hat{A}}{4G_N} | \psi \rangle}{\langle \varphi | \psi \rangle}$$

EE for holographic states ~ expectation value of linear operator (area operator)

[Almheiri-Dong-Swingle'16]

Can confirm linearity of PE in holographic CFT2:

$$|\psi\rangle = \sum_{i} c_{i} |\mathcal{O}_{H_{i}}\rangle$$
 $|\varphi\rangle = \sum_{j} b_{j} |\mathcal{O}_{H_{j}}\rangle$
Heavy states

$$\frac{\sum_{i} b_{i}^{*} c_{i}}{\sum_{i} b_{i}^{*} c_{i}} \frac{\operatorname{Area}(\Gamma_{A}^{h_{i}})}{4G_{N}}$$

→ **complex-valued** in **general**

This talk: a holography-inspired QI-quantity and its applications

Pseudo Entropy = Entanglement Entropy for "Transition Matrix"

$$\rho^{\psi} = |\psi\rangle\langle\psi| \qquad \qquad \qquad \mathcal{T}^{\psi|\varphi} = \frac{|\psi\rangle\langle\varphi|}{\langle\varphi|\psi\rangle}$$

Pseudo Entropy as an order parameter

[Mollabashi-Shiba-Takayanagi-KT-Wei '20]

Ground States in Transverse Ising model

$$H_{1,2} = -J_{1,2} \sum_{i=0}^{N-1} \sigma_i^z \sigma_{i+1}^z - h_{1,2} \sum_{i=0}^{N-1} \sigma_i^x$$

$$\Delta S_{12} \equiv S(\mathcal{T}_A^{1|2}) - S(\rho_A^{(1)})/2 - S(\rho_A^{(2)})/2$$

$$\Delta S_{12} > 0$$
 If two states belong to different phases

 $\Delta S_{12} < 0$ If two states belong to the same phase

• generalization (e.g. XY model) • holographic interpretation

Summary

Pseudo Entropy = Entanglement Entropy for "Transition Matrix"

$$S(\mathcal{T}_A^{\psi|arphi}) = - ext{Tr}\left[\mathcal{T}_A^{\psi|arphi}\log\mathcal{T}_A^{\psi|arphi}
ight] \
ho^{\psi} = |\psi
angle\langle\psi| \longrightarrow \mathcal{T}^{\psi|arphi} = rac{|\psi
angle\langlearphi|}{\langlearphi|\psi
angle}$$

3. Order parameter $|\varphi\rangle\,\&\,|\psi\rangle$ In the same quantum phase?

Discussion

• Interpretation of imaginary part?

• Dynamical setup (relevant to imaginary part)

Mollabashi-Shiba-Takayanagi-KT-Wei and Goto-Nozaki-KT in progress

Mixed state generalizations

• Further application?

•

Summary

Pseudo Entropy = Entanglement Entropy for "Transition Matrix"

$$S(\mathcal{T}_A^{\psi|arphi}) = - ext{Tr}\left[\mathcal{T}_A^{\psi|arphi}\log\mathcal{T}_A^{\psi|arphi}
ight] \
ho^{\psi} = |\psi
angle\langle\psi| \longrightarrow \mathcal{T}^{\psi|arphi} = rac{|\psi
angle\langlearphi|}{\langlearphi|\psi
angle}$$

3. Order parameter $|\varphi\rangle\,\&\,|\psi\rangle$ In the same quantum phase?