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Useful discussions with Joaquin Turiaci and Vladimir Narovlansky



| was asked to give an extended
introduction.

So we will first review some general
ideas



Black holes

 We think that black holes, as seen from the
outside, can be described as quantum
systems.



“Central dogma”

A black hole as a quantum
system

A black hole seen from the outside can be described as a
guantum system with S degrees of freedom (qubits). S = Area/4

(Ipzl)
* |t evolves according to unitary evolution, as seen from outside.

= gif




The Geometry of the simplest black
hole solution

Singularity

Future interior

Left exterior Right exterior

Past interior



This solution contains two black holes

How should we interpret it?



Replace each black hole by a quantum
system
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W. Israel
In a particular entangled state JM
JM, Susskind
ER = EPR
‘TFD> — E G_BE”/Q‘En>L’En>R (state at t=0)
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Acts as a boost at the middle




The most interesting question

Singularity

T What is this time ?
What happens here




We will not answer this question...



We will try to analyze somewhat
“simpler” problems...



As usual in physics, we will study
problems with more symmetry



We will focus on near extremal black
holes

and explain why they have more
symmetry



Near extremal charged black holes

horizon

N'AdSz X SZ -



Focus on low energies



The quantum mechanical dual is a
nearly critical system with a scaling
(and conformal) symmetry

Approximate SL(2,R) symmetry = time translations +
time rescalings + one more.

AdS, region nearly critical QM system

N-AdS,/NCFT; correspondence



The Sachdev-Ye-Kitaev model is an
example of a quantum system with a
nearly critical low energy regime



The SYK model
i i Sachdev Ye Ki
N Majorana fermions {wz,wj} _ 523 é;orge;’iartzﬁzt
H= " Jiiisiai i, i, s,
7:1’... ,7:4

2 2 3
Random couplings, gaussian distribution. <Ji1i2i3i4> =J /N
To leading order = treat J;;, as an additional field

J = dimensionful coupling. We will be interested in the strong coupling region

]_ < 5(]7 TJ < N Low, but not too low, energies.

It is nearly scale invariant in this regime.



Spectrum

D. Stanford

400 Eigenvalues for N=32, plotted with 300 bins
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Number of eigenvalues
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(specific, but random J’s)

/ Energy, in units of J

Exponentially large number of states contributes to the low energy region we consider



* We can perform the large N summation of
diagrams. = gives a scale invariant theory at
low energies.

* 1/N corrections = there is a low action mode
that becomes important at low energies. It
can be exactly quantized. “Time superfluid
mode” (Schwarzian action). Breaks the
conformal symmetry.



Entropy

Large N. Constant plus linear in T correction

———

S= N s, A N]T+ %log §

— —

Conformal

invariant 1/N correction. All orders 2

makes the density of states
become small at low energies



Connection to Nearly AdS, gravity

Gravity action:

logZ = —1 =S, + T (constant)

Becomes constant at low energy.

Length grows as 1/T ( proper length goes as: —log T)
Very different geometries are having almost the same action 2>

There is a low action mode. = Same as the ““time superfluid mode”



What is the connection between AdS,
and SYK ?



SYK Near extremal
model black holes

l Nea rIy AdS,
grawty

[ Low energies }
L

[lConformaI invariant part + reparametrizations | !QFT on AdSZ, boundary dynammi
1\

same
Not the sam
du{f Schwarzian action
Time superfluid mode
- Low temperature entropy ‘ Kitaev
- Chaos exponent JM, Stanford
- Worm_hC"e trave.rsability Emergent time reparametrization symmetry Zhang, Suh
(location of horizon) which is spontaneously and explicitly broken




Yet one more simplification..



Supersymmetric black holes

Supersymmetry: symmetry relating bosons
and fermions = simplifies some
computations.

Black holes in supergravity theory

Black holes with M=Q  preserve some
supersymmetries.

Large number of exactly degenerate states

giving rise to the extremal entropy of the
black hole.



There is a supersymmetric SYK model

(we will discuss it later)



We will review results for the partition
function



Results for the thermodynamics
including the quantum corrections due
to the boundary gravitons

the qguantum mechanics of the time-
superfluid mode.



p(E)

Non-Supersymmetric

eSosinh VE

v

Entropy goes to zero at low energies.

Bagrets, Altland, Kamenev
Stanford, Witten

Kitaev, Suh

Mertens Turiaci Verlinde

S=N50+¥+ 3log(§)



Low energy limit with supersymmetry

* Time superfluid mode + fermionic partners.

* Different quantum properties at low energies.



N=2, 4 supersymmetry

Stanford, Witten
Mertens Turiaci Verlinde
Heydeman, lliesiu, Turiaci, Zhao

A

p(E)

S =—o, /du{t(u),u} + partners



What happens in the gravity solution
at very low energies?

Energies << gap =2 only ground states survive.

3" Law is not obeyed = due to extra
symmetry.

Large degeneracy.
Frozen system?



First a comment

Their entropies match beautifully with
index computations...

Strominger-Vafa, 1996.

Dabholkar, Gomis, Murthy
lliesiu, Murthy, Turiaci



A closer look at gravity when we take
the low energy limit



The low energy limit
=

* The quantum fluctuations affect the length of the throat.

 These fluctuations blur the physics for the observer looking
from outside.

* But the inside observer seems happy, living in a large
spacetime.




What more could we say?



There are many questions that remain



There is more to a black hole than its
entropy!



What about the details of is AdS, near
horizon geometry?

s there an AdS,/CFT,?






Our main technical results involve
computing some of them.



There are many previous results
computing AdS correlators in AdS,

Witten diagrams



But, in two dimensions the situation is
a bit harder. And it has been
understood only within the last few
years.



The new feature is that there is a
gravitational mode that becomes
strongly coupled at low energies. Even
for large N (or large Q).



The boundary mode dynamics

To understand it, it is important to understand
the asymptotic symmetries of AdS,

SL(2) =2 full time reparametrizations f (1)
These symmetries are spontaneously broken.

They are also explicitly broken by the boundary
conditions

B f/// 3f//2
I=—g / at{f(t), 1) =30

Governs the boundary mode dynamics.




The boundary mode dynamics with
SUSY

 OSp(2]2) =2 full time super-reparametrizations.

I = —gbr/dt{f(t),t} + partners

* Atverylongtimes = the symmetries are
restored!.

* The extremely low energy theory has H=0, and is
topological, no time dependence.

* Restoration of the symmetry by quantum effects.



Review of Nearly-AdS, gravity
(Euclidean) correlators



Euclidean black hole

Boundary = circle of length 8



Nearly AdS, gravity

Matter fields moving in a rigid AdS,
spacetime.

The boundary becomes dynamical and
behaves as a particle moving in AdS,

The guantum mechanics of this boundary
particle can be exactly solved. Z. Yang, Kitaev and Suh

It behaves as a non-relativistic particle moving
in AdS, with an electric field”.



Quantum gravity from Witten-like

Z. Yang, Kitaev and Suh d |agra Mms

Bulk point =(t3,z3)

[

Boundary time
(parameter in the
boundary particle
propagator)

Bulk correlator

" in rigid AdS,

(includes bulk interactions)



Z. Yang, Kitaev and Suh

(O(u1) - - - O(uy,)) = (Boundary Particle)(Correlator in AdS,)

(O ~~Om)) = [ NP i) [0 Ot

\

|

QFT in AdS, correlators

They simplify because we are near the boundary

Boundary particle propagator.
(We will review later how they are computed)

Z
&



The N=2 case

* We have a similar expression.

* At low energies, or u;; >

* The propagator becomes independent of u.
* Only the zero energy states contribute.

* The correlator becomes topological.

(O(u1) -+ O(uy)) = Vol(SU(1,1]1))

P0<fi7 fi—i-l) H ZzAZ <O(331, 917 él) R O(mna ena e_n)>

)

Independent of the u; . Depends on the order.

(O(uy) -+ O(uy)) = number = F(A;, g;)



How can we have a theory with no Hamiltonian?

e The structure is in the form of the observables
(simple operators).

* Ground states + some simple operators.

* We have looked at Euclidean correlators, but
in the bulk we can also have a bulk Lorentzian
continuation.



Infrared operators

O — POOPO ~ lim G_uHOG_uH

U700 O is not BPS.
But O is BPS.

Projector on to the microstates.

O’s are simple in the UV theory. But O is complicated due to the projector Py, which
depends on the flow and characterizes how the ground states are embedded in the
full Hilbert space.

= bulk picture



The two point function in the N=2 susy
theory

 We can compute the two point function using
a variety of methods.

— The chord diagram technique in N=2 SYK.

Berkooz, Brukner, Narovlansky, Raz

— The super-LiouviIIe apprOaCh. As in Mertens, Turiaci, Verlinde

— Using the boundary propagators.



We first discuss some qualitative
features of the answer



The two point function at zero
temperature

(0(0)0W)geeo |




0©0@)p=w ||

e |t connects the shorter distance limit to the
ong distance, exactly AdS, regime.

* |[tis non-zero.

* This non-zero value has a power law
SUPPression (power of the entropy) relative to its
natural UV value.



Operator normalized so that
its two point function is one
in the region outside the
black hole.

Then (0 0) ~ (;—‘;)ZA ~ 5%

This is the value at very long times.




Typical values of matrix elements

The two point function is telling us information about the average value of the matrix
elements of the operator in a microstate

Raju, Shrivastava

(00) g = e~5°Tr[00] = =0 Z [k



Typical values of eigenvalues

We could diagonalize the (Hermitian) operator O, O, p ~ 0404

(00) g = e °Tr[00] = e Z ;

The two point function is giving us size of the typical eigenvalues of the operator.

This is the typical value of O in the basis that diagonalizes O.

This is larger than the typical value of the one point function of O on a random quantum states

/ & [(|OJ))* = e=50(00)



This gives an interesting implication for
where the geometry can start differing
for various microstates in this basis




Universal factor coming
from the propagation of
the particle in AdS,
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The geometry is the
usual one at least up to
this point

Then (0 0) ~ (T—e)ZA !

Bo 524

The geometry might be different from this point forwards for the different
microstates in this basis where we diagonalize O.

This gives us a constraint on what we should expect for individual microstates.



Another implication...



Some details on the computation of
the two point function using the
Liouville method

Mertens, Turiaci, Verlinde



Basic variable of the two sided problem:
the distance.

This is a gauge invariant coordinate for the wormhole.
Kuchar

/ It turns out that its action is a Liouville like action
)2 —L
dull* + e "]

Harlow-Jafferis, Lin

With supersymmetry = Super Liouville theory.

Naively we would try to consider an N=2 superLiouville theory. However, we need an N=4 one
because we have 2 SUSYs on the left and 2 SUSYs on the right.



Some more details on the
computation of the 2pt function

* With the super-Liouville method.

* N=2 Superliouville theory in 2d = N=2
Schwarzian in 1d. Mertens, Turiaci, Verlinde

* Liouville quantum mechanics.
1. . . o
S:/du [Z€2+d2+wi¢i_I_e—£/2—za,¢+¢__'_6—£/2—|—7,a,¢+¢__'_6—£

* Find eigenfunctions.

* Build the Hartle-Hawking state (use input from
the disk partition function)
—M) ~A(P+2i a)>

* Compute (e , or (e



The full answer is a bit long...



Trle=uH 0 e='H 0] = (ple=dyp) =

(r=1)° )2 ’ 22+2A 12,1
— Z e~ 1 (utu') — / dS/ ds'e —4s?u—4s"%u
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1. _ . . .o
SZ/CZ’LL [162+d2+¢:|:¢:|:+6_£/2_w¢—|—¢—+€_€/2+m¢—i—w—+e_£

1.
S = /du [—52 — e 2 p !
There is a zero energy normalizable ground state

V()

(L)

v

N — y

For this state the length of the wormhole is bounded, and time independent.

This is different from the naive classical picture of an infinitely long throat, or
dr?

ds* = —r?dt* + —;
r



Let us emphasize the last point by
asking:



Are there supersymmetric wormhole
configurations?

SUSY ER=EPR ?




From the previous comments = Yes!



veey |

P(£)




Now we turn to the boundary particle
propagator

We need it to construct more general correlators



Z. Yang, Kitaev Suh

The boundary particle formalism

* Boundary = Particle moving in AdS,



Z. Yang, Kitaev Suh

The propagator, no SUSY

* Use group theory to construct it.
* AdS,=SL(2)/U(1)
 Somewhat similar to the problem of

wavefunctions of particles in a magnetic field
on S?, which are related to matrix elements of

SU(2) group elements.



The boundary super-particle formalism

* Boundary = Particle moving in AdS,

* Symmetries:
— Full symmetry under the SU(1,1|1)= OSp(2|2)
supergroup. This is a gauge symmetry.
— N=2 worldline supersymmetry (Poincare)

— Physical U(1) R symmetry.

(N=1 case: Fan, Mertens)



The answer is simpler in the
u =2 infinity limit



Z. Yang, Kitaev Suh

Propagator for zero energy states

* Q1P =Q_1P0 =02>H,Py=0
* This propagator will enables us to compute
any correlator in AdS, at zero energy.

2122) 1/ Q! Z)* :
Py = 0(x12)< \/% exp (—(\/_;_12\/_) ) (4fermions)

"\ (O1-++-Op) ~ e 0Ty [OAlOAn}
|

_/

We checked that it does obeys the composition law.



Filling the inside
The distance increases, but remains
AdS, finite.
We could insert many particles.

The distance depends only on the total dimension.

The entanglement entropy between the two sides
decreases.

S=5, - (finite)

Type Il; algebra.

Similarities with dS: H=0, type Il; in the semiclassical limit.

Chandrasekharan, Long, Penington, Witten



Chaos in operators

Saad, Shenker, Stanford
* Since H=0, no chaos from energy levels.

P

* One can argue that the IR operators, O=POP,
are random matrices, with some evidence for
eigenvalue repulsion.

= Chaos in operators, or their eigenvalues.

See also: Jafferis, Kolchmeyer,
Mukhametzhanov, Sonner.



We can compare the super-Schwarzian
answers against those of the N=2 SYK

model



N=2 SYK model

Fu, Gaiotto, Sachdev, JM

Similar to the SYK model.

N complex fermions )"

Supercharge involves a product of three
fermions with random couplings.

Q= Zijk lpil/)jlpk
H=1{Q Q"



N=2 SYK model

 We can compute the number of ground states
analytica”y and numerica”y. Fu, Gaiotto, Sachdev, JM

* Now, we can compute correlators.

* They indeed go to constants at long times,
both for R-charged operators such as " as
well as for neutral operators such as ‘T’



Egap

Numerical computation of the energy gap

|||||||||||||||||||||||

3.0}
25F
2 o1 ¢ N=10
15_ ® N=12

g § s ® N=14
L \ / . N=16
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Figure 1: Gap as a function of R-charge for various values of V.

1 (el 1\° J [|r] 1\’
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Constant two point function at long
Euclidean times

Operator | R-charge | Schwarzian prediction | Numerical answer (N=16)
0 0.103 0.110 + 0.005
i i 0.103 0.110 4 0.005
Yi; —1/3 0.0213 0.024 + 0.003
-1/3 0.0243 0.027 + 0.001
Vith; 0 0.0754 0.079 + 0.001
+1/3 0.0243 0.027 £ 0.001




Conclusions

AdS,/TFT,
There is a bulk time but no boundary time. H=0.

There are other interesting observables for SUSY
AdS, : the correlators.

We computed the two point function.

We computed the zero energy propagator—> any
correlator.

These put constraints on how different various
microstates can be.

Good match to numerical SYK answers.




Future

e What is bulk time in this limit ?

 Can we get a gravity picture for the
microstates?






Extra slides



N=1 case: Fan, Mertens

N=2 Propagator

Propagator:

o P(1,2;u12, Kk, Ky, Ko Kz) = (1]e"1@771Q g U12H 20415 Q| 2)
_ Jla(ri-vite)

e i0,P =H,P

* D, P =0Q,P, iDr—P =Qq P

F(invariants, uq,, K1, K1, K3, K7)

* Qis a Grassman odd differential operator. It is invariant under the
left symmetries. We had to guess its form.



