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RECENT DEVELOPMENTS

Random Matrix theory (RMT) is well known to have interesting connections with
two-dimensional gravity. An interesting and new version of this connection has been
discovered in the study of two-dimensional Jackiw-Teitelboim (Saad, Shenker, Stanford’19).

It has been shown that the key features of JT gravity are correctly reproduced by the
low-energy limit of the Sachdev-Ye-Kitaev (SYK) model (Sachdev, Ye'92, Kitaev'15), which is a
quantum mechanical model of N flavors of Majorana fermions with random couplings.

The Hamiltonian for SYK model with N flavours of Majorana fermions can then be thought of
asa L x L dimensional Hermitian matrix, with L = 2%, acting on a tensor product of Hilbert
spaces of N/2 qubits.

Quite remarkably, this model reproduces many aspects of JT gravity- the pattern of symmetry
breaking, the Schwarzian action for the time reparametrizations, the resulting thermodynamics
and the behaviour of OTOCs - are all shared by JT gravity. (Maldacena, Stanford ‘16, Polchinski,
Rosenhaus’16).
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MOTIVATION

These observations raise several interesting questions:

| 2

>

How much randomness is needed for agreement with gravity?

What happens when we start from the GUE and begin reducing the randomness, by decreasing
the number of Gaussian random variables?

Is the resulting behaviour, at low-energies, dependent on only the number of random variables
or also on which variables have been retained?

When do we get the behaviour at low-energies to agree with JT gravity? Etc.

N
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GUE vs SYK

» The partition function for the random matrix theory is given by

1
ZRMT = /DMeXp (MTI'M2> y

Here M are L x L Hermitian Matrices and where o is given by ¢ =

&=

» In the limit L — oo, the density of states p is given by

o) = Lva .

27
» The Hamiltonian for the SYK is given by

Hoyk, =% > Jiigeiinthiy - i,

1<i; <i2<-~~iqSN

with the couplings ji;, _;, drawn from a Gaussian ensemble with variance

_ -1,

<]i1iz--'iq7]j172"’jq> No—1 it 6i2’f2 a '5iq,jq
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» The density of states and the spectral form factor of GOE and SYK are

Random Matrix for L = 4096

Non Local SYK Model, for N=24

— Wigner — N=24
0.6 4
0.5
0.4
Im
T 0.3
0.2
0.1+
0.0
0.0 0.5 10 1.5 20 -1.0 =0.5 0.0 0.5 Lo
E E
RMT SFF, L=4096.Ensem= 440, B =5 Non Local SYK SFF. N =24, Ensem = 1000, =5
— Total 0.0 — Total
05
~104
© -15
8
§ 20+
-2.5
—301
—354
-4 -2 [ 6 -4 -2 0 6

Logl(t)

Logit)

4/17



ME

» The level spacing for the nearest neighbor eigenvalues is same,

Pe
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» The OTOC, given by
Ga = (Te(e™Mu(H);(0)i(1)5(0)))

NonLocal SYK Model A vs B for N =24 RMT GUE blodel OTOC, L = 4096
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SPARSE RMT

» Explore the consequences of considering random matrices which are not fully random.

v

Pick randomly and uniformly, n off-diagonal matrix elements, M;;, with i < j.

» The value of each of these matrix elements is chosen independently with its real and imaginary
parts being drawn from a Gaussian distribution with variance i All other off-diagonal matrix
elements of M are also set to zero.

> Finally the matrix is made Hermitian by taking it to be (M + MT).
» The density of states is given by
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» SFF shows interesting characteristics.
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» Level spacing shows that the eigenvalue differences become uncorrelated for sufficiently sparse

random matrix theory.

RMT Level spacing , for L = 4096 diff. no of Ran. ele
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» OTOC show a slower growth, perhaps indicating a possible exponential growth at early times
at sufficient sparseness.
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LocAL SYK

» Consider a variation of the SYK model where the number of random couplings is vastly
reduced and is only O(N).

» The Hamiltonian is given by

. 2 .
Hiocal_syx = i7/ Z Jirigerig iy Vi =+ iy s

il,iz,"'iq
Jirigwig =0 (exceptiy =ip+1=3+2=---=i;+q—1,
and iy =ipb—1=i3-2=---=i;—(q—1)),

with the fermions satisfying periodic boundary conditions:

YieN41 = Yi=1 -

The couplings jiliz...iq present are taken to be random with vanishing mean and variance

. . %)
Uiiyiglinjaja) = @ = DY 64 jy 61y jy -+ Gi



» The density of states is more narrower and level spacing is Poisson-like.
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» No good large N limit exits, so Lyapunov exponent is not well defined.
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DOUBLE-SCALING LIMIT

» Even though the local SYK model is simple enough, the model is not amenable to a saddle
point analysis.

» Is there any limit in the space of (g, N) that is analytically tractable? Yes! the double scaling
limit.

» For conventional SYK it corresponds to the limit (Erdds, Schroder’14, Cotler, Gur-Ari, Hanada,
Polchinski, Saad, Shenker, Stanford, Streicher, Tezuka’18, Berkooz, Prithvi, Simon "18)

e
q — 0o, N = oo, E:N:ﬁxed

» Chord-diagram technique used for computing partition function and matter correlators by

evaluating the moments of the form

my = Tr(H*)
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TRIPLE SCALING LIMIT

» Further taking a triple scaling limit leads to the Schwarzian theory,

A—0,E—0, %zfixed.

» Analogous double scaling limit exists for the Local SYK model.

g — oo, N — o0, Z%:ﬁxed

» Further taking a triple scaling limit leads to the Schwarzian theory,

A

9
N—>0.
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BACK TO GAUSSIAN ENSEMBLE

» An Hermitian matrix H can be thought of as being a vector in an L? dimensional Hilbert space
H of L x L Hermitian matrices. H can be expanded in any basis of H,

LZ
H=> ¢T,
a=1

» Under a change of basis the T*’s, and H, transform by conjugation, T* — UT*U', H — UHU'
where U is the L x L unitary matrix specifying the change of basis.

» Different basis can be used. (1) A standard basis corresponding to root vectors of U(L). (2) A
basis made out of tensor products of Pauli matrices. (3) A basis made out of products of N
flavours of Majorana fermions.

» Interesting to consider the breaking of the U(L) symmetry, say to U(M) x U(L — M) by

TrH> o= Hy? | <~ Hosl | o < Hial
-+ + D > D) :

2 2 2 )
20 Lj=1 207 o, f=M+1 207 151 ashir1 293
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» Alternatively, can consider the class of g = 0 (mod 4) terms of the SYK class.
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