
# The amazing Super-Maze

## Iosif Bena IPhT, CEA Université Paris-Saclay



with Dimitrios Toulikas, Anthony Houppe, Yixuan Li, Nejc Ceplak, Shaun Hampton and Nick Warner



JOHN TEMPLETON

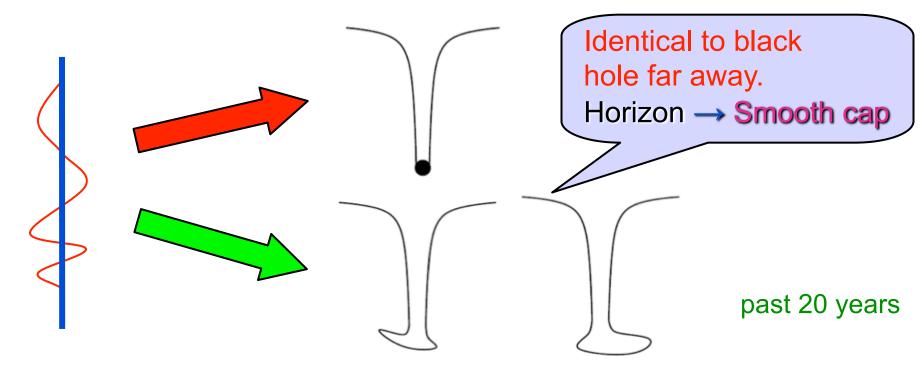
FOUNDATION





An amazing success of String Theory *Count Black Hole Microstates* (branes + strings) Correctly match B.H. entropy !!! Zero Gravity

One Particular Microstate at Finite Gravity:


#### Standard lore:

As gravity becomes stronger,

- brane configuration becomes smaller
- horizon develops and engulfs it
- recover standard black hole

Susskind Horowitz, Polchinski Chen, Maldacena, Witten An amazing success of String Theory *Count Black Hole Microstates* (branes + strings) Correctly match B.H. entropy !!! Zero Gravity

One Particular Microstate at Finite Gravity:



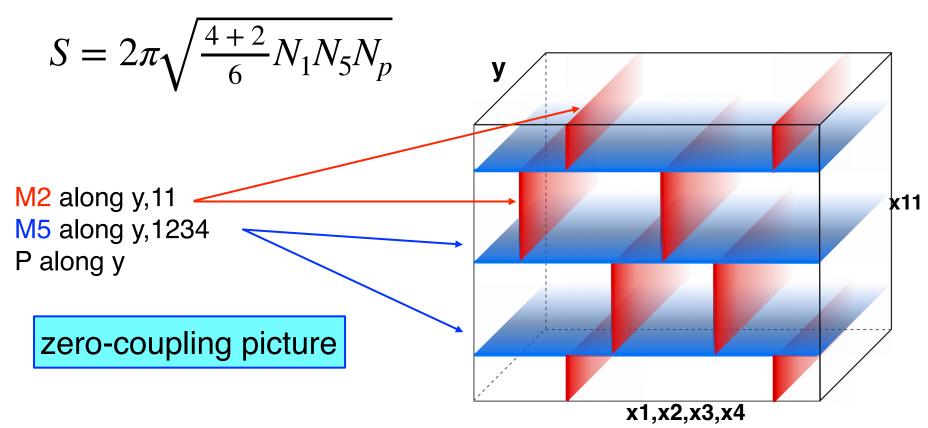
In an ideal world: Track each and every BH microstate from zero-gravity regime to fully-backreacted solution

### 20 years of microstate geometries

- Huge number of smooth horizonless solutions

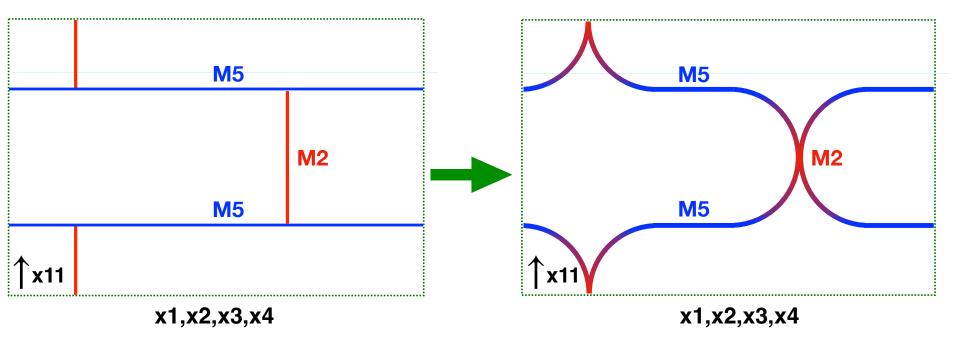
   Bubbling geometries, superstrata
  - Largest class of solutions to Einstein's equations ever
  - Many features of typical microstates (mass gap)
  - $-S \sim (Q_1 Q_5)^{\frac{1}{2}} (Q_p)^{\frac{1}{4}} < S_{BH} \sim (Q_1 Q_5 Q_p)^{\frac{1}{2}} \text{ Mayerson, Shigemori '20}$
- Link with D1-D5 states that count BH entropy ?
  - Only known for a few (messy holographic procedure)
  - Hard to build fractional momentum carriers Bena, Martinec, Turton, Warner '16; Shigemori '21, '22
  - Painful reality: we have not succeeded to track typical D1-D5 Strominger-Vafa microstates to finite gravity

Do not pray to the saint who does not help you ! Romanian proverb


#### Instead of D1-D5 look at D2-D4 (or F1-NS5 in type IIA)

One F1 inside  $N_5$  NS5 branes  $\rightarrow N_5$  little strings.

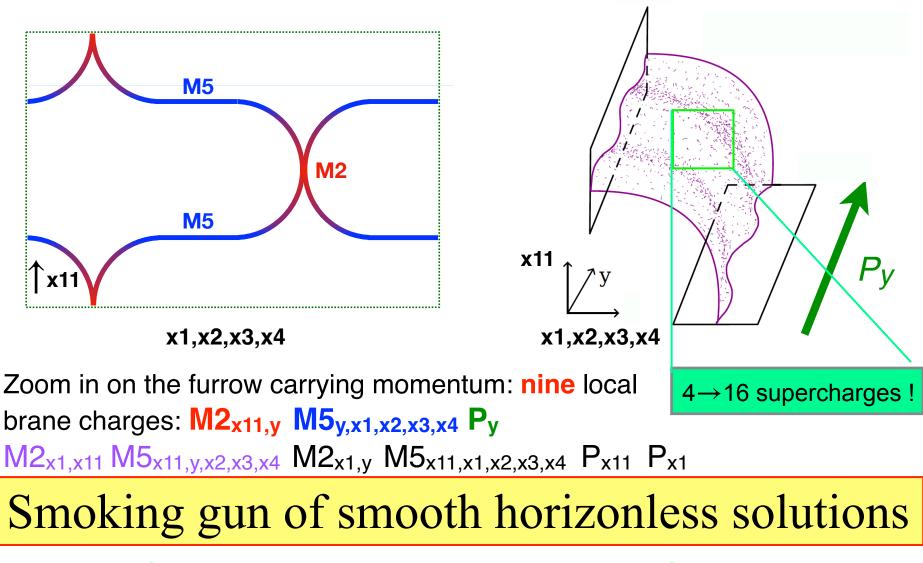
- Visible as M2 brane strips in M-theory


Dijkgraaf, Verlinde, Verlinde

- Total  $N_1N_5$  independent momentum carriers
- each has 4 oscillation directions ( $T^4$ ) + 4 fermionic partners

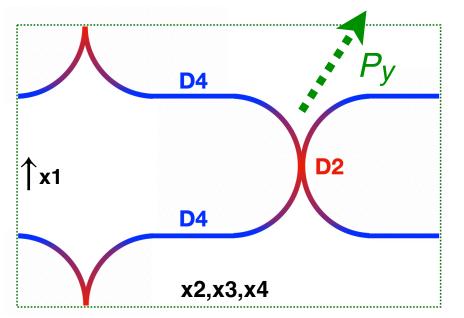


### What about finite coupling?


- Reminder: *Callan-Maldacena spike* formed by D1 pulling on an orthogonal D3
- M2 branes also pull on the M5 branes



D1


D3

Except that the spike is a *furrow* carrying momentum waves along y

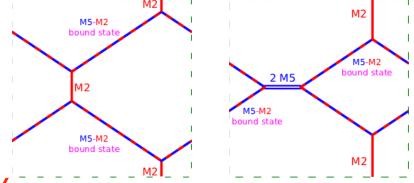


Bena, de Boer, Shigemori, Warner 2011 (conjectured superstrata) → HABEMUS

#### How would these solutions look like?



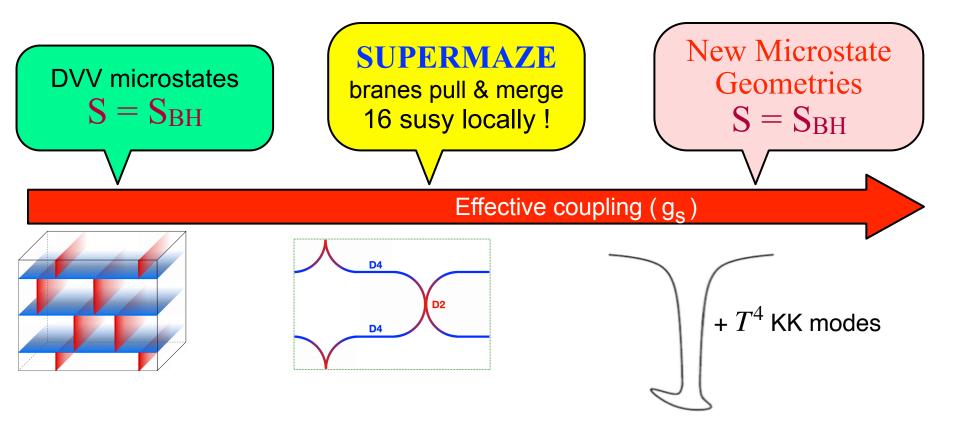



spherically symmetric in  $\mathbb{R}^4$  (x5,x6,x7,x8) same spacetime *SO*(4) symmetry as BH

SO(4) invariant solutions: momentum carried by waves on fractionated strings (inside T<sup>4</sup>) = bosonic d.o.f. :  $S_{bosonic} = 2\pi \sqrt{\frac{4}{6}} N_1 N_5 N_p$ + 2 fermionic d.o.f. preserving SO(4)  $\Rightarrow S_{SO(4) \text{ invariant}} = 2\pi \sqrt{\frac{5}{6}} N_1 N_5 N_p$ Remaining 2 fermionic d.o.f. break SO(4)  $\Rightarrow S_{SO(4) \text{ breaking}} = 2\pi \sqrt{\frac{1}{6}} N_1 N_5 N_p$ 

Confirms expectations from Bena, Shigemori, Warner 2014

#### How will the SO(4)-invariant solution look like ?


- 2-charge Monge-Ampère
  cohomog-3 at least Lunin 07
- 3-charge: at least cohomog-4
- smeared on  $T^3 \Rightarrow$  string web:



- Geometric transition  $\Rightarrow$  Bubbles on internal dimensions
- Expectation: backreaction will make bubbles large *irrespective* of  $T^4$  size at infinity
- Differs from BH only by  $T^4$  KK modes:
- Asympt.  $\mathbb{R}^{4,1} \times S^1 \times T^4$  : *exponentially-decaying*
- Asympt.  $AdS_3 \times S^3 \times T^4$  : high-dimension operators
  - Dimension depends on  $T^4$  moduli. SUSY ?
  - Visible at free-orbifold point ?
  - Can CFT distinguish different supermaze solutions ?

### How will the generic solution look like ?

- Generic microstates will contain SO(4) breaking modes +  $T^4$  dependent modes
- 2-charge systems:
  - when SO(4) breaking modes are present, smearing on  $T^4$  does not lose information Kanitscheider, Taylor, Skenderis
  - If only  $T^4$  dependent modes present, smearing erases information  $\Rightarrow$  singular, small horizon
- 3-charge story ?
  - superstrata with SO(4)-breaking (++) strands capture some smeared  $T^4$  dependent modes: (00) strands
  - A. Could the presence of SO(4)-breaking modes in generic solution allow  $T^4$  smearing without info loss ?
  - B. Would  $T^4$ -dependent information be lost upon smearing even when SO(4)-breaking modes exist?



- Build supergravity solution !
- Holographic dual to supermaze?  $T^4$ -dependent modes?  $\langle \Psi_{supermaze} | \mathcal{O}_{T^4-dependent} | \Psi_{supermaze} \rangle \neq 0$
- Most generic beast: is 6D sugra enough? or one needs10D?
- Flat space: supermaze fields decay exponentially. Universal ?