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Outline

In a nutshell, I will introduce a moduli space of semiclassical Lorentzian
wormholes in AdS and check through various examples that integrating
over this moduli space is (gauge) equivalent to analytically continuing
the results of Euclidean path integral with spacetime wormholes.

Motivation and introduction to Lorentzian topology change

Boundary predictions as precision checks on our proposal

Lorentzian wormholes using Louko-Sorkin crotches and slits in AdS

Constrained instantons explain why singular slit spacetimes contribute

Example 1. spectral form factor slits near the horizon on the double cone

Example 2. two-point function at late times

Example 3. firewall probability rejuvenating the two-sided black hole
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Motivation and introduction to Lorentzian topology change

Many physically relevant questions about black holes intrinsically involve
real times (obviously), such as the fate of an infalling observer, the
nature of the black hole interior and the resolution of the singularity.

Recent progress bases on computing Euclidean wormhole amplitudes
suggests that topology change is relevant for answering those questions.
In particular topology change often becomes important when
exponentially long times or interiors are involved. When one asks
complex questions, competition with topological suppression can arise
(Almheiri, Lin, Stanford, Yang, Iliesiu, Mezei, Sarosi . . . ).

We want to understand what those Euclidean answers really mean for a
real time observer (such as ourselves). In other words, we think it is
important to understand topology change via Lorentzian spacetimes,
in order to truly understand black hole physics in our universe.
Lorentzian topology changing spacetimes were also discussed recently by
(Marolf, Maxfield, Collin-Ellerin, Dong, Rangamani, Wang, Tajdini, Rath,
Usatyuk . . . ) which were sources of inspiration for what follows.
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Lorentzian topology change can be slightly more tricky than its Euclidean
twin brother, for the following reason.
We usually imagine baby universes that detach from the parent at some
time ti and reattach at some time tf (Giddings, Strominger . . . )

ti

tf

∼ T 2e−2Sinst

At these times the spatial metric at some d−2 sphere (or two points in
2d) vanishes

√
g = 0, because the sphere shrinks to one point.

In other words the metric is singular at these special locations.

So to allow for topology change we should entertain Lorentzian metrics
with singularities, where the metric is not invertible (Louko, Sorkin).
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To appreciate that this is really not optional consider 2d JT gravity on
some closed manifold. The Gauss-Bonnet theorem saysˆ

d2x
√
gR = −8π(g − 1) real

Assuming R + 2 = 0 everywhere this makes a contradiction (unless
g = 1), because for Lorentzian metrics

√
g is imaginary.

Therefore R + 2 = 0 smooth spacetime is not enough, and one should
allow for the aforementioned singular points (surfaces).

As shown by (Louko, Sorkin) those points (surfaces) have the property
√
gR ⊃ −4π

∑
crotches

δ(x − xc)

We will have one such singular points marking the birth and death of
baby universes, which reproduced the correct Euler character
χ = −2 (number of baby universes) + . . . . Much more details later!

Our goal is to find the moduli space of semiclassical Lorentzian wormholes
with such singularities in AdS and check through various examples that
integrating over this moduli space is (gauge) equivalent to analytically
continuing the results of Euclidean path integral with wormholes.
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Boundary predictions

Before getting to the Lorentzian wormholes, I will first introduce those
examples. In particular I will give two rather non-trivial predictions that
the Lorentzian wormholes should reproduce.
The boundary prediction is universal, the Euclidean calculations have
only been done in 2d.

The first example is the spectral form factor

Z (β + iT , β − iT ) = Tr
(
e−(β+iT )H

)
Tr
(
e−(β−iT )H

)
=

dim(H)∑
i=1

dim(H)∑
j=1

e−β(Ei+Ej )e−iT (Ei−Ej )

After some time averaging one finds for chaotic quantum systems a
universal late-time profile. For instance via periodic orbits (Haake book).

Z (β+ iT , β− iT )conn =

ˆ ∞

0

dE e−2βE min(ρ(E ),T/2π) , ρ(E ) = eS(E)
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Writing this out and using integration by parts gives

ˆ E(T )

0

dE e−2βE ρ(E ) +
T

2π

ˆ ∞

E(T )

dE e−2βE =
1

2β

ˆ T/2π

0

dρ e−2βE(ρ)

∼
∞∑
g=0

T 2g+1

˛
0

dρ

ρ2g+1
e−2βE

Given the suppression by powers of 1/ρ2 = e−2S(E) it is tempting to
identify this with some type of instanton expansion. After integration
by parts and using a semiclassical approximation one obtains

∼
∞∑
g=0

T 2g+1

ˆ ∞

...

dE e−2gS(E) e−2βE , eS(E) = eA(E)/4G

Here A(E ) is the area of black holes in your theory with ADM energy E
and the entropy S(E ) seems to play the role of an instanton action.
One nice thing about this equation is that the right hand-side as a whole
follows from perturbative periodic orbit (quantum chaos) considerations
(Saad, Stanford, Yang, Yao).
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This expansion is convergent.
In particular for T → ∞ this goes to a non-zero constant plateau Z (2β).
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The first litmus test for the Lorentzian wormhole solutions that we will
discuss, will be to reproduce this expansion.

Let me mention that until recently it was not even clear that a Euclidean
gravity calculation could reproduce this expansion.
In gravity, one computes the spectral form factor by path integrating over
wormhole geometries, with two asymptotically AdS boundaries.
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Building on work by (Okuyama,Sakai on Airy gravity) and (Saad,
Stanford, Yang, Yao) we found that the sum over Euclidean wormhole
geometries in 2d

Zg (β+iT , β−iT )conn =

genus g wormholes

β + iT β − iT

. . . ∼ T 2g+1

indeed reproduces this expansion.
We work in the late time limit T → ∞ and eS0 → ∞ with their ratio
fixed. This double-scaled regime is sometimes called the τ -scaling limit,
and it is a crucial ingredient in making the expansion convergent.

I will not discuss this Euclidean story here, but feel free to ask afterwards.
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Let us emphasize that the only input here has been chaotic behavior in
the double scaling limit, leading to the sine kernel and min(ρ(E ),T/2π).
Since black holes in any dimension are chaotic, this equation should hold
universally. Within individual charge sectors.
Much like the double cone explaining the ramp (Saad, Shenker,
Stanford)

Z0(+iT ,−iT )conn =

(almost) singular

+iT −iT

identify

∼ T

I will review this double cone in more detail later.
our Lorentzian semiclassical wormholes exist indeed for any theory, in line
with this claimed universality. You should think of them as higher genus
versions of the double cone.
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In particular our solutions look for instance like

Z1(+iT ,−iT )conn =

+iT −iT

swap identify

singular crotch

smooth slit

∼ T 3e−2Sinst

This is just a teaser, much more details will follow.
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You may think at this point, Andreas, these higher genus corrections are
super specific things, why in the world should anyone care. Since I
think motivation is everything, let me repeat the point.

In truth, I do not think you should care about higher genus corrections to
the spectral form factor.
But you should care about higher genus corrections to physical
observables, such as correlation functions, which actually affect our
observations in black hole backgrounds, and as we will discuss later even
indicate what your survival chances are when you jump into an old
(typical) black hole.
There is two layers to such questions, one what the actual answer is (a
number) and two what the physical mechanism is that explains this
answer. This mechanism is Lorentzian wormhole physics, and our goal is
to understand how Lorentzian wormhole physics works.
It just turns out that the spectral form factor is the simplest setup in
which Lorentzian wormhole physics plays a role, therefore we try to first
understand what we can in this simplest example, before moving on to
the stuff we actually should care about.
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Moving on we shall do.

The second (closely related) example of a benchmark for our Lorentzian
wormholes is the late time two point correlation function.
For this we consider 2d only, but a generalization to higher dimensions
presumably exists. See work by (Sonner, de Boer. . . ).

After some time averaging one finds for chaotic quantum systems a
universal late-time profile (Saad, Blommaert. . . )

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
=

ˆ ∞

0

dE e−βE min(ρ(E ),T/2π) e−S0 |OEE |2
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After some work one obtains from this the semiclassical expansion

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
=

〈
e−∆ℓ

〉
∼

∞∑
g=1

T 2g−1

ˆ ∞

...

dE e−βE e−∆ℓ(E) e−(2g−1)S(E)

Here ℓ(E ) is the length of the ER bridge in the TFD at T = 0.
This can be reproduced from Euclidean geometry (Saad, Blommaert. . . )

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
g
=

g holes

β/2 + iT

β/2− iT

bulk particle. . .

∼ T 2g−1

but later we will explain how this is reproduced by Lorentzian
wormhole solutions.
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Lorentzian wormholes general construction

The firewall setup (Stanford, Yang) I will introduce later, first I want to
give some details about our Lorentzian geometries.

Now let us start constructing our Lorentzian wormhole solutions in AdS.

Let me remind you that according to (Louko, Sorkin) one can allow for
Lorentzian topology change by including singular points (which they call
crotches, for visual reasons which will soon become apparent) with the
property that √

gR ⊃ −4π
∑

crotches

δ(x − xc)

We will have 2g such singular points marking the birth and death of
baby universes, which reproduced the correct Euler character χ = −2g
(in the case of the spectral form factor which we consider first).

Let us first consider one such crotch in some more detail.
Next slide is a bit technical but not essential to follow.
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As warm up consider the spacetime

ds2 = (x2 + y2)(dx2 + dy2)− 2(xdx − ydy)2 ∼ ww̄ dwdw̄

This metric vanishes at x = y = 0 and to characterize this singularity
(Louko, Sorkin) propose to regulate the singular point as follows

ds2 = (x2 + y2 + iσ)(dx2 + dy2)− 2(xdx − ydy)2 , σ → 0

They choose this regularization in order to have an allowable metric for
all σ > 0 (a concept which they invented in their paper).
Outside of x = 0 = y one can do the diffeomorphism z ∼ w2 or
u + iv ∼ (x + iy)2 which reduces the metric to Lorentzian flat space

ds2 = −du2 + dv2 ∼ dzdz̄

This diffeomorphism however is singular at the origin and via direct
calculation for σ → 0 one finds a delta function there with a negative sign

√
gR = −4π δ(x)

Such negative mass sources have the potential to increase the genus.
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The key point here is that the original spacetime in coordinates (x , y) is
a double cover of flat space in coordinates (u, v)

u + iv = reiθ ∼ ρ2e2iα = (x + iy)2

so indeed rotating once around the origin in (x , y) circles around the
origin twice in (u, v) coordinates α → α+ 2π = θ → θ + 4π.

The two covers (or two sheets) are identified along a branch cut starting
at the singular point u = v = 0 and extending out to infinity, just like the
complex function

√
u + iv . This gives the global spacetime

identify

crotch

u = 0

v = 0v = 0
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We now see where the name crotch for the singular point comes from, it
is literally the crotch of a (would-be) pair of pants

crotch

u = 0

v = 0

To make this into an actual pair of pants one could identify for instance
the slice v = a on both sheets and v = −b on both sheets.
The key takeaway is that if we take two copies of some geometry, we
cut them along two identical semi-infinite lines, and then swap identify
the resulting edges, that at the endpoint of the identification we have

√
gR ⊂ −4π δ(x − xcrotch)

We now want to mimic this construction in the AdS2 R + 2 = 0 setup.
The generalization to generic dimensions will be discussed later.
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Consider the metric of the Rindler patches of the TFD in conformal gauge

ds2 =
−du2 + dv2

sinh2 v

Here u is Rindler time and the two asymptotic boundaries are at v ∼ ±ε.

We now want to choose two semi-infinite lines on which we can cut the
geometry, and then make swap identifications that implement a crotch
singularity √

g(R + 2) = −4π δ(x − xcrotch)

Since locally any spacetime is flat we are guaranteed that the crotch at
the end of the branch cut always has precisely this type of source.

However for general spacetimes we should be careful that the lines which
we want to identify are actually compatible, meaning the glued
spacetime is smooth across the identification.
In particular this forces the extrinsic curvature and length (and dilaton
in 2d dilaton gravity) to match on the identified lines.
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One natural way to always ensure this is to swap identify identical lines in
situations where we have two copies of the same (patch of) spacetime.

In the case of Rindler patches in the TFD for AdS2 one can for instance
take two mirrored half lines at v = v0 and v = −v0 as follows

The arrows are flow of Rindler time u.
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Moduli space and gauge fixing time

Before proceeding let me make one comment about this crotch formalism.

As you know, time in quantum gravity is only well-defined on an
asymptotic boundary (where gravity is effectively turned off).
Nevertheless the notion of a time function in the bulk spacetime is
still often extremely useful.
One can think of choosing some time function in the bulk as a particular
gauge choice, within which one can do calculations.

The Louko-Sorkin formalism should be thought of as implementing just
that.
In some sense (which they make precise) one can think of each singular
Lorentzian spacetime as one to one related with a Euclidean
spacetime and a choice of time slices.
Having chosen a time slicing, interactions take place at specific time
coordinates tcrotch at which time a topological transition occurs.
Integrating over interaction times is gauge equivalent to the integral over
Euclidean spacetimes.
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This is completely analogous to lightcone string theory (Mandelstam)
for 2d quantum gravity (Usatyuk).
More comments in discussion slide at the end of the talk.
In this sense, in this framework by definition one always knows the
spatial geometry for fixed boundary time, and it is physical to ask
questions about its properties, for instance what the spatial volume is.

For higher dimensional gravity is is not obvious that this is an identity
covering of a slice of the moduli space of metrics modulo diffeos, but
we will collect strong evidence in favor of this by reproducing several
non-trivial late time predictions (which we discussed earlier).

The spatial geometries are path integrated over of course, this integral
one should think of as analogous to not knowing what the bulk spatial
geometry is in another gauge choice. In another gauge any one bulk
spacetime has different notions of volume for fixed boundary time, one
can think of that as choosing different time functions, or equivalently as
having one fixed time function but integrating over different spatial
metrics as function of time. We consider the latter scenario.
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Constrained instantons and instanton action

Now we want to become more precise.
Before diving into the examples we want to first understand how these
crotch spacetimes are weighted in the gravitational path integral.
In particular we want to know their instanton action.

One confusing point in that regard is that in JT gravity the dilaton is a
Lagrange multiplier, namely the action is

exp

(
1

2

ˆ
d2x

√
g Φ(R + 2)

)
which naively localizes on exactly

√
g(R + 2) = 0 everywhere.

So naively the path integral has no saddles which involve crotches, even
if one gauge fixes Dg/diffeos to be over Lorentzian spacetimes with
crotches only.
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To resolve this confusion let us take a step back.
Precisely the same situation actually occurs for the Lorentzian black
holes contributing to Z (±iT ). These all have conical singularities at
the horizon, so naively the Lorentzian JT path integral just vanishes.

conical singularity α = AT
√
g(R + 2) = 2(2π − iα) δ(x)

identify

The reason there is this singularity with real-time periodicity is the
same reason that the Euclidean disk has a conical singularity when we
force the Hawking temperature of the black hole to differ from the
asymptotic length (see also fixed area states).
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In that case the way to proceed (Marolf) is to first keep the dilaton at
the horizon fixed and only in the end integrate over this modulus.
This is inspired by the constraint instanton construction of wormholes
by (Stanford) and (Cotler, Jensen) more commonly known as Lagrange
multipliers.

Very concretely in 2d dilaton gravity we found that one should insert

1 =

ˆ +∞

−∞
dA δ(A = Φ(x))

=
1´

dx
√
g

1

2π

ˆ +∞

−∞
dα

ˆ +∞

−∞
dA e(2π−iα)A defect(α)

with the defects sourcing conical singularities

defect(α) =

ˆ
dx

√
g e−(2π−iα)Φ(x)

For α = AT we obtain a solution to the sourced equations of motion

ds2 = dρ2 − 4A2 sinh(ρ)2dt2 , t ∼ t + T , Φ = A cosh(ρ)

despite the original problem having no saddles.
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Evaluating the JT action on shell for fixed A and finally integrating over
A one recovers the analytical continuation of the Euclidean answer

Z (iT ) ∼
ˆ +∞

−∞
dA eS0+2πA−iTA2

Concrete evidence that this trick is quantitatively accurate.
The contribution of the singular point is the factor

e2πA

which appeared in the Lagrange multiplier trick.
The takeaway is that one can account for (mildly) singular configurations
in the gravitational path integral using constrained instantons.

This inspires us to play the same game for the crotches by inserting

1 =
1

Vol

1

2π

ˆ +∞

−∞
dα

ˆ +∞

−∞
dA e(−2π−iα)A crotch(α)

crotch(α) =

ˆ
dxcrotch

√
g e(−2π−iα)Φ(xcrotch)
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Classical solutions arise when α = 0, they are precisely the geometries
with crotch sources that we described above.
Notably their contribution to the on shell action again can be read off
immediately form the A dependent piece of the previous equation

ˆ
dxcrotch

√
g e−S0−2πA(xcrotch)

The S0 from Einstein Hilbert term on solution R with curvature source.
Where A(xcrotch) is the dilaton at the crotch, initially kept fixed.

Just like for the black hole, the crotch wants to extremize this area,
therefore the saddle-point solution one finds upon varying A is that the
crotches accumulate near the horizon.

d

dxcrotch
A(xcrotch) = 0 ⇔ xcrotch = xextr ,

In 2d dilaton gravity this means we should extremize the dilaton.

The instanton action is thus the entropy associated with the dominant
extremal surface.
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Example 1. spectral form factor

In the remainder of the talk I will discuss examples of the resulting
geometries and amplitudes.
I will construct Lorentzian wormholes solutions relevant for several
observables, conjecture their moduli space (in analogy with the
interacting string picture) and check that this reproduces boundary
predictions.

First up is the spectral form factor where we seek a real time
explanation of the universal equation

∼
∞∑
g=0

T 2g+1

ˆ ∞

...

dE e−2gS(E) e−2βE , eS(E) = eA(E)/4G

Notice relation with formulas from original baby universe papers
(Giddings, Strominger)

Zg (+iT ,−iT )conn ∼ T 2g+1 e−2gSinst

This suggests interaction times are zero modes (approximately).
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Let us first construct Lorentzian spacetimes with such crotch singularities
in JT gravity and explain how they reproduce the boundary prediction.
I will later discuss how this obviously generalizes.
Consider thereto the double-cone saddle points (SSS)

ds2 =
dr2 − A(E )dt2

sinh(r)2
, Φ = A(E ) coth(r)

t flow identify

This is 2 copies of a real-time black hole with horizon area A(E ) = E 1/2.
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There is a moduli space of double-cone solutions labeled by E with
on-shell action 2βE , moreover there is an infamous twist zero mode
associated with relative time translations between the two boundaries.

Thus the contribution of this bare double-cone geometry is

T

ˆ ∞

...

dE . . . e−2βE

This is true for generic gravity models (SSS, Cotler, Jensen, Stanford).
In higher dimensions E (A) where A denotes the transverse area of the
horizon of the Lorentzian black hole.

We propose that inserting crotches on this moduli space of double-cone
saddles, one obtains new saddles which contribute the predicted answer

∼
∞∑
g=0

T 2g+1

ˆ ∞

...

dE e−2gS(E) e−2βE , eS(E) = eA(E)/4G

The E integral and one factor T is inherited from the bare double-cone.
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To obtain double-cone geometries with crotches that solve
√
g(R + 2) = −4π

∑
crotches

δ(x − xc)

we can make for instance the following mirrored identifications

step 1. slice

step 2. identify

genus 1 wormhole

t1T − t1

The reason that we can cut and glue on these lines is because they have
matching extrinsic curvature K and length, such that we are assured that
the resulting spacetime is smooth and R = −2. The dilaton matches too.
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The time ordering left and right is imposed by orientability, I can explain
this but it takes some time and a blackboard.

Because we are just making identifications on the original double cone,
the metric and dilaton configurations are not affected (except for
the metric singularity at the crotch points)

ds2 =
dr2 − A(E )dt2

sinh(r)2
, Φ = A(E ) coth(r)

The question remains what happens at the crotch points. More precisely
we want to understand to which degree these configurations are actually
semi-classical solutions, why these contribute and what their on-shell
action is.
But we already discussed this. For fixed A(xcrotch) they are saddles and
each crotch contributesˆ

dxcrotch
√
g e−S0−2πA(xcrotch)

In this scenario there is also a saddle for the area integral.
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Namely the area has an extremum (minimum) at the horizon, hence
classically the crotches accumulate near the horizon

genus 1 saddle

t1

t2

limit r → rsing = ∞

This means you are only likely to encounter wormholes at the horizon.
This means that each crotch contributes the on-shell action

e−S0−2πA(E) = e−S(E) = e−Sinst

The temporal location of the crotches remains a zero mode (unlike the
radial location which has a saddle-point). Dilaton only depends on r .
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Thus we conclude that each crotch contributes a factor

T e−S(E)

So in the baby-universe language the instanton action equals the black
hole entropy.
Combining this with the moduli of the parent double-cone we find that
these semi-classical slit geometries reproduce the full semi-classical
approximation to the plateau

∼
∞∑
g=0

T 2g+1

ˆ ∞

...

dE e−2gS(E) e−2βE , eS(E) = eA(E)/4G □

In 2d dilaton gravity one can make this even more precise by describing
the theory directly in lightcone gauge, for related work see (Usatyuk).
There are rigorous statements that integrating over the crotch locations
with the flat measure (as we did here) is gauge-equivalent to integrating
over the moduli space of Euclidean Riemann surfaces exactly once
(Giddings, d’Hoker, Phong, Wolpert).

Part of the bulk diffeo’s are gauge-fixed by choosing the bulk slices such
that each crotch has identical time coordinates left-and right.
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For clarity 2-slit geometries for instance look like

t4

t3

t2

t1

genus 2 wormhole
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One crucial point is that this whole construction goes through for any
gravitational theory (where the double-cone construction works).

Because the double-cone is always exactly two copies of the black
hole we can always make identifications on mirroring co-dim one
surfaces, the metric would still be a smooth solution to the Einstein
equations everywhere except at the end“points” of the identification.

This introduces singularities which are essentially the Louko-Sorkin
crotches tensor a transverse space (Marolf) and whose contribution to
the action is precisely again (Marolf) the area of that transverse space

e−A/4G

The area is a modulus whose on-shell extremum is achieved by letting it
coincide with the center of the double-cone, the spatial area of which is
precisely the horizon area A(E ).
The timelike location of this singularity is again a zero mode giving a
factor of T and we again recover the boundary prediction. □
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Before extremizing the area the co-dimension-1 slit (on which we
swap-identify) stretching between co-dimension-2 crotches may (or may
not) wrap around the horizon

γsing 2 γsing 2
t t

γsing 1 γsing 1

1-slit wormhole

swap insides
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After extremizing the area to obtain a saddle, these slits hug the horizon

t4
t3

t2

t1

2-slit saddle

swap insides

One suggested physical picture is that even though you think you are
falling into your black hole, you might find yourself in the interior of
another black hole, you may have been swapped near the horizon.
This second black hole could also be in a quantum computer decoding
the radiation.
For T > eS(E) there is a phase transition where slits proliferate at the
horizon and cover significant percentages. Statistics questions?
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Example 2. two-point function

As second (physically more interesting) example we reproduce the
semiclassical expansion of the late time correlator

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
=

〈
e−∆ℓ

〉
∼

∞∑
g=1

T 2g−1

ˆ ∞

...

dE e−βE e−∆ℓ(E) e−(2g−1)S(E)

Here ℓ(E ) is the length of the ER bridge in the TFD at t = 0

ℓ(E ) = − log(E )

We restrict to 2d dilaton gravity henceforth.

In particular the real-time TFD spacetime has the metric

ds2 =
dσ2 − dX 2

sin(σ)2
, Φ = E 1/2 cos(X )

sin(σ)
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One should think of this spacetime as having boundaries parameterized
by (physical) boundary time t

tan(X/2) = tanh
(
E 1/2t

)
, σ = π − ε

dX

dt

The operators O are inserted on this boundary trajectory at t = T/2 and
the shortest geodesic between them is spacelike with linearly growing
length

ℓ(E , t) = − log(E ) + 4E 1/2t

The full spacetime looks like

linearly expanding interior

Lorentzian expanding space

Euclidean half disks

O

O

t = 0

identify
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Both bra and ket Lorentzian spacetimes are prepared at t = 0 by gluing
to half of a Euclidean disk

ds2 = dρ2 + 4E sinh(ρ)2dτ 2 , τ ∼ τ + β , Φ = E 1/2 cosh(ρ)

One checks that the metric and dilaton glue smoothly.
Because the length ℓ grows with time

〈
e−∆ℓ

〉
decays exponentially and

so for late time this spacetime does not contribute.

But wormholes (we are being told by science fiction) create shortcuts
in spacetime hence one expects at sufficiently late times shorter
geodesics (not growing with time) exist when wormhole come into play.
Those would dominate at late times.
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In particular we are led to consider the following Lorentzian spacetime

Lorentzian double cone

tiny wormhole

Euclidean gutter

O O

identify

g = 1 geometry

The salient feature is that Lorentzian time evolution is used to evolve a
double cone type region instead of the usual TFD bra and ket.
The preparation region in this case is half of a Euclidean double trumpet

ds2 = dρ2 + 4E cosh(ρ)2dτ 2 , τ ∼ τ + β , Φ = E 1/2 cosh(ρ)

One checks that the metric and dilaton glue smoothly.
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Indeed this Lorentzian piece can be recognized as a double cone region
with one additional identification

g = 1 geometry

ket R

time flow

crotch
ket L

OL

bra L

bra R

OR

identify

∼ Te−S(E)

The associated additional crotch gives an additional topological
suppression factor as compared to the previous calculation

e−S(E)

Otherwise the on-shell action calculation and zero modes are identical.
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For higher genus contributions we can now just mimic our previous
construction.
Indeed the rules of the game instruct us in general to account for any
number of crotches (resulting in branch cuts and identifications) near
extremal surfaces.
For instance the first subleading correction thus comes from

g = 2 geometry

ket R

ket L

OL

bra L

bra R

OR

identify

∼ T 3e−3S(E)
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Perhaps physically the most relevant feature of these spacetimes is that
the length of the final slice does not grow with time. In fact the metric
and dilaton on this slice are exactly equal to that of the TFD at t = 0

ds = dρ =
dσ

sin(σ)
, Φ = E 1/2 cosh(ρ) =

E 1/2

sin(σ)

Therefore in each geometry the correlation does not decay〈
e−∆ℓ

〉
= e∆ log(E)

as one would expect of wormholes spacetimes.

Combining the elements we recover our boundary prediction

Tr
(
O e−(β/2+iT )HO e−(β/2−iT )H

)
=

〈
e−∆ℓ

〉
∼

∞∑
g=1

T 2g−1

ˆ ∞

...

dE e−βE e∆ log(E) e−(2g−1)S(E) □

This prediction is quite difficult to get out of a Euclidean calculation so
this is a rather nontrivial match.
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Example 3. firewall probability

As final example we consider the typical state firewall setup which was
recently reconsidered by (Stanford, Yang).
The following has not appeared yet.

Consider a perturbed two-sided black hole.
If you jump in at t ≫ 0 then you do not encounter this perturbation.
We call any t ≫ 0 spatial slice expanding because the size grows.

If you jump in at t ≪ 0 you encounter a highly blueshifted perturbation
and you die honorably, effectively you encountered some firewall.
We call any t ≪ 0 spatial slice contracting because the size shrinks.
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Boundary arguments (Susskind . . . ) suggest that surprises may occur.
Even though you might jump in at t ≫ 0, the spatial slice of the
geometry which you encounter could actually be a t ≪ 0 slice of the
two-sided black hole.

The gravitational origin of these surprises is wormhole physics.
Indeed in the previous example we already saw that wormhole can cause
the spatial slice at boundary time t ≫ 0 to become the t = 0 slice of the
eternal black hole.

We now generalize this and ask what the probability is that the spatial
slice at t ≫ 0 is expanding (you survive) or contracting (you die).
One can relate the age Tℓ of the bulk slice with its length

ℓ = − log(E ) + 4E 1/2|Tℓ|

therefore we should be interested in the length distribution P(ℓ) of the
bulk spatial slice which appears in observables as

⟨O⟩ =
ˆ +∞

−∞
dℓP(ℓ)O(ℓ)
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As emphasized earlier, our Lorentzian path integral construction has
the benifit that we have essentially gauge fixed the metrics such that it is
obvious for any geometry what this spatial length is.
Essentially we gauge fixed bulk time.
In contrast this is more subtle in the Euclidean setup, leading to
computational difficulties for (Stanford, Yang) for g > 1.

Omitting the derivation (based on random matrices) for time constraints
one finds the boundary prediction for the probabilities

Pexp(Tℓ) =
θ(Tℓ)

2πρ(E )

ˆ +∞

−∞
dω e−iω(T−Tℓ)

(
ρ(E )2 + δ(ω)ρ(E )− sin(πρ(E )ω)2

πω2

)
Pcon(Tℓ) =

θ(Tℓ)

2πρ(E )

ˆ +∞

−∞
dω e−iω(T+Tℓ)

(
ρ(E )2 + δ(ω)ρ(E )− sin(πρ(E )ω)2

πω2

)
This formula was not known but you should believe me that it is accurate.
The Lorentzian geometries will clarify why one is expanding and the other
is contracting.
You should not remember this formula for what follows.

48



Your survival probability is obtained by integrating over ℓ

Pexp = 1−min

(
T

TE
− 1

2

(
T

TE

)2

,
1

2

)
Pcon = min

(
T

TE
− 1

2

(
T

TE

)2

,
1

2

)
Subtracted infinite equal constants imposing that we know the spatial
geometry at T = 0, furthermore TE = 2πρ(E )

1/2
PconPexp

1

TE TE

Notice
Pexp + Pcon = 1
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and both assymptote to exactly 1/2 for T → ∞.
Therefore jumping in at very late times is essentially a coin flip. This
was expected on general grounds (Susskind . . . ).
The quadratic in T piece matches the calculation of (Stanford, Yang).
The 1 is the answer without wormholes.

For comparison with Lorentzian wormholes we note that one can
associate a semiclassical genus expansion with this exact answer

Pexp(Tℓ) ∼ θ(Tℓ) |T − Tℓ|2g+1 e−(1+2g)S(E)

Pcon(Tℓ) ∼ θ(Tℓ) |T + Tℓ|2g+1 e−(1+2g)S(E)

This takes some work, essentially the techniques are the same contour
deformation used for the previous observables.

What I want to highlight is that this expansion, which is quite difficult to
get even out of the Euclidean calculation in 2d (where only the g = 1
result was computed by (Stanford, Yang)) is quite elementary to find by
counting Lorentzian spacetimes.
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In particular the expanding spacetimes are

tent

double cone

gutter

Tℓ

T − Tℓ

t = 0

t = Tℓ

identify

The topological suppression works out and the zero modes from temporal
crotch locations give powers of |T − Tℓ|.
Crotches are located close to the horizon in the double cone region but
not shown to avoid cluttering
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Similarly the contracting spacetimes are

t = −Tℓ

Tℓ
T + Tℓ

t = 0

identify

The zero modes from temporal crotch locations give powers of |T + Tℓ|.

We see that wormholes can rejuvenate the two sided black hole to any
bulk age and that accounting for this one reproduces the expected
Pcon = Pexp = 1/2 at infinite boundary time.
Expect for Tℓ = 0 none of these contribute to the two point function
because the lengths are exponentially large and this is exponentially
suppressed in any correlator

〈
e−∆ℓ

〉
.
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Discussion

To reiterate the main message.
Instead of gauge fixing Dg/diffeos to smooth complex spacetimes one
can gauge fix Dg/diffeos to real-time spacetimes with crotches. The
two gauge slices are related by singular diffeomorphisms.

In setups without holographic boundaries one can proof that the covering
is one-to-one, this is why lightcone strings works (D’Hoker, Giddings,
Phong, Wolpert, Usatyuk). In our case we have argued (in the paper) the
map is also one-to-one, and the fact that are calculations recover the
Euclidean answers are evidence in favor of that.
The Jacobian from the gauge-fixing in general could be important, but
for our late-time observables can be shown to be irrelevant.
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The resulting Lorentzian spacetime wormholes one finds from this are
very efficient in reproducing complex results from analytical continuation
of Euclidean calculations in two dimensions and give nontrivial
predictions in higher dimensions, matching with boundary predictions.

These real-time wormholes seem like a relevant new ingredient that
should help us understand real time black hole physics.
If you fall into some black hole, you will not experience some Euclidean
path integral nor do you escape the interior via some Euclidean
wormhole. Then what does happen to you?
Calculations suggest that our slit geometries should be relevant for your
experiences.
The final example involving the firewall problem is a first (and not yet
completely understood) example of that.
I could also explain what comes of replica wormholes and how islands
appear.

Thanks.
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