On Black Holes in String Theory

D. Kutasov

Based on: B. Balthazar, J. Chu and DK, 2210.12033

YITP workshop on quantum physics of black holes
April 4, 2023



Black holes in GR

As is known from the 1970’s, due to work by Bekenstein, Hawking
and others, black holes in GR behave like thermodynamic objects.
In particular, they have an entropy

A

Spy = —

where
A = area of the horizon;

Gy = Newton constant, related to Planck length [p via Gy ~ [471
(in d + 1 dimensions).



For large BH’s of size 1y > [p , the entropy is large,

This is presumably the first term in an expansion in powers of

lp/ro .

A natural question is what does the BH entropy Sy mean.



It is believed that the answer is that in any theory of quantum
gravity (that satisfies some, in general unspecified, conditions), a
generic high energy state looks from afar like a black hole, and
Spy is the statistical entropy of such states.

In some cases, the details of this statement are understood. This
is the case, in particular, in the context of AdS/CFT.



For example, in AdS;/CFT, , the Brown-Henneaux central charge
of the boundary CFT

_ 3Ryas
CBH = 20,

together with the assumption that this CFT is unitary and modular
invariant (and the SL(2,R) invariant vacuum is a normalizable state
in the theory) leads to the Cardy formula

,c
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where E is the energy and R the radius of the spatial circle.



The Cardy formula with ¢ = cgy is the same as the entropy of a
(BTZ) balck hole with mass M=E, Strominger (1997).

* The situation is similar in other AdS spacetimes.

* Thereis also a partial understanding in asymptotically linear
dilaton backgrounds, but | will not discuss it here.

* In flat spacetime the situation is less clear. This will be the
topic of interest in the rest of this talk.



Consider a d + 1 dimensional Schwarzschild BH of size 1y:

dr?

ds™ = = J(r)di"+ 205
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* —
Its mass is: M 6mCx rg
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Hawking temperature: T = 1/8, with [ = T




For large M, the entropy grows like

d—1
Spy ~ Md-2

It is not understood from the statistical point of view.

One idea for gaining insight into this issue is to embed the problem

in string theory, which we turn to next.



Black holes in string theory

In string theory, in addition to the Planck length [y , there is
another scale, [, , which is much larger, [ > [p at weak coupling.
The description of the BH in terms of a metric is expected to be
valid for ry > L . It should receive large corrections for ry ~ L .
In that regime it should be thought of as a worldsheet CFT.

Physically, this has to do with the fact that as the size of the BH
decreases, its Hawking temperature increases, and for 1y ~ [ it
approaches the Hagedorn temperature Ty = 1/6y .



The density of states of strings at high energies E > m¢, is

Sst ~ ,BHE

Thus, it is natural to ask what happens when the BH shrinks,
and we approach the regime where its Hawking temperature

approaches the Hagedorn temperature.

One may expect that in this regime, the system crosses over from
d—1
the BH behavior, Sy ~ Ed-2,to S¢+ ~ ByE.



Horowitz and Polchinski (1996) showed that formally continuing

the string and black hole results,

SBH ~ OIst

at the energy for which the Hawking temperature § ~ By . A
nice feature of this result is that the |.h.s. is thermodynamic in
nature, while the r.h.s. has a statistical interpretation, in terms of
counting states. In particular, one can hope to address questions
like how the microstates differ from the BH background that
describes them, i.e. what are stringy BH’s made out of.



However, there are difficulties. One is that the BH background
receives large corrections for 1y ~ [, so one needs to
understand the corresponding worldsheet theory. This will be
our focus in the rest of this talk.

Another difficulty is that the correspondence energy, (the

energy at which Sgy ~ Sg;) is very large, E o ~ Mg/ g%, so
extrapolating perturbative string results to it is unwarranted.

If we nevertheless formally continue, it seems that there is some
tension: the BH is small, while the string is large. We will return

to this issue later in the talk.



Thus, we are led to the question what happens to the Schwarzschild
geometry for ry ~ L . In general, the answer is not known, but it
turns out that as d — oo there are some simplifications. In particular,
the geometry develops a region in which it looks like the two
dimensional BH (Soda; Emparan et al; Chen, Maldacena)

ds? = k(dp? — tanh? p d¢?)

-

e~ ® = cosh? p

with



A few things about this:

 The gravity analysis is only valid at large k, or %’ , but it can be

continued to k ~ 1, by using the fact that this geometry
corresponds to a solvable worldsheet theory, the coset
SL(2,R)/U(1), CM (2021).

 The Hagedorn temperature corresponds to k = 4 (bosonic
string), kK = 2 (superstring).

 The SL(2,R)/U(1) BH is obtained after reducing on the sphere
S2=1 or equivalently integrating out the angular d.o.f. in the
worldsheet theory.



Of course, large d is not really physical in string theory, so it
would be nice to generalize this understanding to finite d. The
Lorentzian problem has so far proven to be too hard, but
progress has been made on the Euclidean version, to which we

turn next.

One reason the Euclidean problem is simpler is that there is no
singularity, so one can expect it to be more amenable to analysis.



Small Euclidean BH’s in string theory

We are interested in describing Euclidean Schwarzschild BH’s
with Hawking temperature f ~ Sy in classical string theory. This
is a well defined worldsheet CFT problem. We have a line of
worldsheet CFT’s labeled by 5. We want to understand these
CFT’s for f ~ [By.

It is natural to ask whether there is an effective field theory that
can be used for this purpose. For large BH’s that EFT is of course

Einstein gravity, but that fails for small BH’s.

What can we do?



The Euclidean Schwarzschild geometry

2 , | dr’ 2 1002
ds® = f(r)dr" + f(rr) + red§2; 4
0-1- ()"

with Euclidean time identified as T ~ T + [, asymptotes at large r
to R4xS1 . Since we will be interested in B ~ L, a low energy EFT

that describes this background must be d dimensional.



The fields that should be included in the EFT are:

> The radion @ (x) that parametrizes the local size of the S1,

R(z) = Re?®

R is the asymptotic radius of the 7 circle, so ¢ — 0 at infinity.

» The string tachyon winding once around the Euclidean time
circle at infinity, y(x). This field becomes light near the
Hagedorn temperature, and thus needs to be included in the low
energy effective Lagrangian. Moreover, it is known to have a
non-zero profile in the Euclidean BH CFT (even for large BH’s).



In principle, we should also include other light fields, like the
dilaton and the metric on R%, but their effects will turn out to be

subleading.

Thus, we will start with an EFT for ¢, ¥, and will add additional
fields as necessary.

Our first try for an effective action is:

B

[, =
d 167TGN

t' (Vo) + [V + (m2 + S0) P

We will refer to it below as the Horowitz — Polchinski (HP) effective
action.



K is a numerical constant, and m, is the mass of the winding
tachyon at infinity, where the radius of the circle it winds around

is R , which is related to the inverse temperature, f = 2nR.
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We will use my, to parametrize 3, and take it to be small,

Mo K Mg to study the region f ~ [y.



The HP action includes the leading terms in a certain expansion. To

see what that expansion is, we write the e.o.m. of I ;:

K
Vix = (m3, + —P)X

Vi = —|><!2

These equations have a scaling symmetry, under which:

Xl =lel=2; [Vl=[meo] =1



Under this symmetry, all terms in the effective Lagrangian have
dimension six. All the terms we have neglected have higher
dimensions. Thus, one would expect them to not be important for

small m. We will see later to what extent this expectation is

realized.



The action I; was written by Horowitz and Polchinski (1997) to
describe gravitating strings. Our goal is to describe small Euclidean
black holes, but it is not clear that the two are distinct objects. In
any case, we are looking for spherically symmetric, normalizable

solutions of the e.o.m. that behave at large 7 like:

We next describe these solutions.



Horowitz - Polchinski solutions

We can use the scaling symmetry mentioned above to define

T=2T/Me ,
20/ R
x(7) = ——mx(2) ,
o R
p(z) = ;mgo%?(fﬂ)




Thus, in the scaled parameters there is a unique solution for
given d. There is no known analytic solution, but solving the

equations numerically, one finds solutions that look like this:
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Note that:

» (@ is negative in these solutions. This just means that the Euclidean
time circle shrinks as r decreases, as expected.

> The scaling symmetry implies that y(0), ¢(0) ~ m%. Thus,
x(),p(r) > 0asmy — 0, i.e. as the Hawking temperature
approaches the Hagedorn temperature.

» We only have graphs ford = 3,4, 5. This is because ford = 6
there are no solutions with the required boundary conditions. This
is a curious feature; we will get back to it.



The absence of solutions for d = 6 seems problematic. The question
what happens to Euclidean BH’s as § — [y clearly exists for all d = 3,
so if the effective action I; does not have suitable solutions, we
presumably must conclude that such EBH’s cannot be described by an

effective action.

We will next see that the actual situation is more interesting.



The limitd — 6

To see the origin of the problem for d = 6, it is convenient to
treat d as a continuous variable, and examine the limit d — 6.
The numerics gives the following result for the scaled height of
the solutions ¥(0), $(0):

Ing(0) In[-$(0)]
61 6

5* 5:

4; 4

3

2: ¢ 2

1 1

d o e d

1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 L L | L L L L 1 [
3.5 4.0 4.5 5.0 5.5 35 4.0 4.5 5.0 5.5



It looks like these quantities grow without bound as d — 6. One
can actually show analytically that

ms,

6—d

x(0), —¢(0) ~

Thus, at fixedd < 6,asmy, = 0, ¥, @ ~ m2, , but at fixed m,, as
d — 6 they grow without bound. This seems to suggest that the small

field approximation breaks down, and the EFT becomes unreliable.

We will next show that the actual situation is better.



To see what happens as d — 6, we add the first subleading terms to
I;. These terms have dimension eight, and can be obtained by

studying string scattering amplitudes. One finds:

B / d 2 2 2 K K 9 2 K 4
T z |(Ve) + | Vx|* + Mo + 0+ ¢ x| +4a,\x|

The e.o.m. of @, y are now:
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We are looking for solutions of these equations fore =6 —d « 1,
M K 1. One can study this problem numerically (and we did), but

there are a few analytic statements one can make as well.

< For my, = 0, the e.0.m. are consistent with setting y = —/2¢ . It
turns out that the normalizable solutions satisfy this constraint.
From the point of the EFT this looks accidental, but as we we will
see next, it is a consequence of a symmetry.



As we discussed before, the effective Lagrangians we are studying
should be thought of as an approximation to a worldsheet CFT, that
describes the small EBH. That CFT has in general a U(1); XU (1)
symmetry, with the conserved charges being the left and right-moving
momenta on the Euclidean time circle (or, equivalently, the conserved

momentum and string winding on S1).

In the EBH geometry, the circle is contractible, which means that the
winding symmetry is spontaneously broken (a string winding around
the circle can slip off the tip). This symmetry is also broken by the

condensate of the winding tachyon y. The two are closely related.



Thus, the EBH spacetime realizes the spontaneous symmetry breaking

pattern

U(1),xU(1)g - U(l)diag

At the Hagedorn temperature, i.e. for mo, = 0, the asymptotic
symmetry on R2xS1 is enhanced to SU(2); xSU(2) . This is directly
related to the fact that the winding tachyon y is exactly massless

there. The charged SU(2) currents are modes of y, while the CSA
generator is the zero mode of ¢.



The relation y = —/2¢ is a reflection of the fact that the EBH

exhibits the symmetry breaking pattern
SUQ2) XSU2)g = SU2) giag
More precisely, it corresponds to the worldsheet Lagrangian
L=Lo+x@)j4*

where J% (J%) are the left (right) moving SU(2) currents on the

worldsheet.



This is an interesting worldsheet theory. If y is a constant coupling,
this non-abelian Thirring model breaks conformal symmetry on

the worldsheet, and also breaks SU(2); XSU(2)R to the diagonal
SU(2). In our case, the coupling is itself a function of the radial
direction on R%, y = x (7).

From the worldsheet point of view, the r dependence of y is fixed by
the requirement that the full theory remains conformal. In the regime
of validity of the EFT we wrote, this is the same as the requirement

that the equations of motion of the effective action are satisfied.



** One can show that solutions of the e.o.m. of the effective action,
(X« @), satisfy the constraint

1 K K K
2 d 2 d 2 2 2 4
moo/d | x| —Z/dfﬁ{(d—ﬁ’)—a,@*lx*\ +(2d - 8) (—a,so*lx*\ + )}

We are interested in solutions for small e = 6 — d, m,. In this limit,
we see that the dimension eight terms, that are naively suppressed,
are actually important to keep, since the dimension six terms are
suppressed by either € or my.

Note: terms with dimension > 8 can still be omitted in this limit, as in
other examples of the € expansion.



¢ To solve the e.0.m., we can perturb around d = 6, m., = 0. At this
point, the e.o.m. are

Here we assumed that @, y << 1 to neglect the cubic terms in the

e.o.m.

These equations have a one parameter line of solutions:



x(0)

2
(14 515 x(0)r?)

x(r) =

To solve the e.o.m. on p. 30, we plug this solution into the relation on
p. 36. We find that:

\/iff 3K
2 — 6 — d 2

m

Recall that here m,,, 6 — d = € are assumed to be small, and the
solution gives the leading behavior of y(0) in this limit.



We see that there are two different regions in parameter space, in

which the behavior is different:

e Formy, <K € we have

x(0) ~ =

J 5

e Fore K my we have

X(O) ~ Meo



Thus, if we fix m,, and send €¢ = 0, we do not find that the EFT
description breaks down, as indicated by the leading order effective
action. Rather, we need to include the first subleading corrections to

this action (but, importantly, not any higher order ones).

In particular, for d = 6 the modified effective action has a solution,

while the HP one does not. To study this solution for small m, , one

can neglect the higher order corrections to the effective action.



d>6

Now that we found the solution for d=6, we can ask what
happens for d > 6. As mentioned above, the HP action does not
have solutions in this range, but our analysis suggests that the
modified action does have such solutions ford = 6 + €.

Consider e.g. the case m, = 0. The relation on p. 38 implies that

there is a solution, with

x(0) = 71—?6 + 0 (¢%)

This is different from the case d < 6, where at T = Ty the

solution vanishes.



We checked the predictions of the above perturbative analysis by

solving the modified HP e.o.m. numerically. An example of the results
ford = 6 + € is exhibited below:
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Figure 2: The profiles of y and —¢ for d = 6.01.
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For m, = 0, we showed numerically that the solutions satisfy the

constraint (1) = =2 (1):
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Figure 4: Plots of 0 (r) for different values of m.,, at d = 6.01.

As discussed above, this is strong evidence for an enhanced SU(2)

symmetry of the underlying worldsheet CFT.



Thus, we conclude that the modified HP effective action describes the
small EBH for d = 6 + € . One can compute higher order corrections

in € by including higher order terms in the effective action.

As € increases, we expect y(0) to increase as well. When it becomes
of order one, which happens for integer d > 6, y(0) presumably
becomes of order one, and one needs to solve the full worldsheet
CFT. E.g. formy = 0, i.e. at the Hagedorn temperature, one needs to

solve the non-abelian Thirring model with an r — dependent coupling
described on p. 34.



We arrive at the following qualitative picture:

A

s
(7 tod«

éLKZIQ‘>A“>

r/L"c ) J..\'Vt\'\‘e

3/\:&-{37

OV



One interesting check of this picture is the overlap of the green and
orange lines at large d . Our picture predicts that at T = Ty the EBH
background is described by a worldsheet theory with an enhanced
SU(2) symmetry for all d. Thus, the large d theory must have such a
symmetry as well. The SL(2,R)/U(1) CFT at level k=2 (bosonic) or 4

(supersymmetric) is indeed known to have such a symmetry.

In fact, the SL(2,R)/U(1) at level k=2 (4) has a description as a non-
abelian Thirring with a coupling that depends on the radial direction,
so it’s natural that the two are related as indicated in the figure on the

previous page.



Open string analog

CMW pointed out that there is an interesting analog of the EBH
problem in D-brane physics. It involves two D-branes extended
in R% and separated by a distance L in a transverse direction.
Callan and Maldacena found a solution of the DBI e.o.m. for this
system, that describes the branes connected by a throat. Their
analysis is valid for L >> L. In this limit, the width of the throat is
~ L.

One can think of the CM solution as an analog of the large EBH,
with L playing the role of £.



Just like the EBH gives at large d the SL(2,R)/U(1) two dimensional BH,
the CM solution gives at large d the hairpin brane of Zamolodchikov et
al.

Similarly to the BH analysis, one can ask what happens when we

decrease L, and in particular approach the point where a tachyon

stretched between the branes becomes massless, L — L. .

It turns out that in this regime the system is descrbed by the same
effective action that we studied, with
, L - L7

Moo = (2wa/)?

Thus, the solutions have the same properties!



For L >> L, the brane configuration looks like

/0 /
/5 /

For L = L.:

tL
e /

Varying L, or my, , continuously interpolates between the two,
despite the fact that they look topologically distinct!

7 \U\



Ford > 6, my = 0, the solutions again have the property that y
= —\/Ego. In the closed string case, this was a consequence of an

enhanced SU(2) symmetry. Is this the case here as well?

Answer: yes!

The worldsheet theory describing the branes is defined on the upper

half plane, with the boundary interaction
0L = Xop(r)J'o"

The analog of the localized Thirring model is a localized Kondo system.



Discussion

The main qualitative conclusion of this work is that the hypothesis
that continuing EBH’s to T =~ Ty gives worldsheet theories that are
well described by a HP-type effective Lagrangian is consistent with
all the test we subjected it to.

It leads to a picture according to which small EBH’s are not really
small. They have a long range condensate of the winding tachyon y,
whose range goes to infinityas T — Ty.

We have identified the worldsheet theory that governs the EBH at
T —_ TH'



There are many things left to do.

In the Euclidean case, it would be nice to solve the localized non-
abelian Thirring and Kondo CFT’s that we were led to for describing

the critical closed and open string systems (with m,, = 0).

A particularly interesting question concerns the Lorentzian analogs of
the systems we described. It has been proposed that the winding
tachyon condensate corresponds in this case to a kind of stringy
corona surrounding the horizon of the BH, but this has not yet been
made precise. It might be easier to understand it first in the open case

(as in cigar vs hairpin).



Other questions include:

» Why is d = 6 special?

» CMW?



