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The framework

I’ll focus on the traditional AdSd+1/CFTd setup in the regime where

� the central charge c is large ⇒ the bulk is semiclassical

� the CFT is strongly coupled ⇒ there is a large gap between the

(super)gravity and string modes

I am particularly interested in the heavy sector
〈OH |∆̂|OH〉
〈OH |OH〉

∼ O(c)

For simplicity, I’ll take d = 2 and work with type IIB on AdS3 × S3 × T 4

� The CFT enjoys an enhanced superconformal symmetry

� the supergravity description is easier than in the AdS5 case

� the interesting questions about (large) black holes remain
Strominger Vafa 9601029

The general question: what can we learn about black holes (BHs) by

probing heavy states (rather than the other way around)?
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The key ingredients

The relevant CFT has a free locus (very much as N = 4 at gYM = 0). In

this case it reduces to a collection of N quadruplets of free fields (four

boson and four fermions) with a SN permutation gauge symmetry

There is a 20-dimensional space of deformations preserving the (4, 4)

superconformal symmetry. The 1
2 -BPS states are protected. When they

are light (∆ ∼ O(c0)), they are in one-to-one correspondence with

supergravity excitations of AdS3 × S3 × T 4

We can construct a OH by binding many light states. Example: if OL is a

light 1
2 -BPS state, consider OH ∼ Op

L with p
N ∼ 0.5. Main goals:

� derive explicit expressions for a class of 4-point correlators

〈ŌH(∞)OH(0)ŌL(1)OL(zc , z̄c)〉 in the supergravity regime

� when the solution dual to OH is approximately the BTZ black, how

do the HHLL correlator compare with 〈ŌL(1)OL(zc , z̄c)〉BTZ?
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The plan

I’ll introduce the superstrata and focus on a family of “scaling” solutions

The dual CFT description is a coherent state composed of a large

number of “supergravitons” (i.e. light supersymmetric CFT operators)

Quadratic fluctuations around any such solution capture a Heavy-Light

holographic correlator (HHLL)

〈ŌL(1)OL(zc , z̄c)〉ds2
H
←→ 〈ŌH(∞)OH(0)ŌL(1)OL(zc , z̄c)〉 ≡ C(zc , z̄c)

Three regimes (I’ll focus on the last two):

� in the light regime “p → 1”, one obtains the LLLL result. The first

AdS3 correlator was derived in this way! Giusto, RR, Wen 1812.06479

� p/N � 1 (but p ∼ N) small BH limit Giusto, Hughes, RR, 2007.12118

� in the limit “p/N ∼ 1” the geometry becomes that of BTZ. What

happens to the HHLL correlator? Giusto, Iossa, RR, work in progress
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The graviton gas: CFT side

If Ok is a anti-CPO of dimension k one can consider its descendants
1711.10474;1812.08761

Ok,m,n,q ≡ (J+
0 )m(L−1)n(G+1

− 1
2

G+2
− 1

2

)q Ok

Spectral flow maps Ok,m,n,q to a D1-D5-P state with h > h̄ = c
24

By using Ok,m,n,q (also of different types) we can build “semi-classical”

multi-particle states characterised by the continuous parameters Bi
Kanitscheider, Skenderis,Taylor

|B1,B2, . . .〉NS ∼
∑
pi

AN−pσ (B1Ok1,m1,n1,q1 )p1 (B2Ok2,m2,n2,q2 )p2 . . . |0〉NS

pσ =
∑

pi , |A|2 +
∑

i |Bi |2 = N. When B2
i ∼ N � 1, these are

coherent-like states as the sums over pi -sum are peaked for pi ≈ B2
i /ki

What is the gravitational description of |B1,B2, . . .〉NS?
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The graviton gas: bulk side

AdS/CFT relates operators and sugra fields: Ok,m,n,q←→ φk,m,n,q

At linear order in Bi , |B1, . . .〉NS is a perturbation of the vacuum

|0〉NS +
∑
i

Bi Oki ,mi ,ni ,qi |0〉NS ←→ AdS3 × S3 +
∑
i

Bi φki ,mi ,ni ,qi

where φki ,mi ,ni ,qi solves the linearised sugra eqs. around AdS3 × S3

The “superstratum” approach provides an algorithm to extend the

linear solutions to exact solutions valid for B2
i ∼ N. The key points:

� The susy eqs. can be written in a “linear” form Bena, Giusto, Shigemori, Warner;
1306.1745

� The non-linear extension requires an ansatz: ambiguities are fixed by

imposing regularity and input form the CFT 1503.01463;. . . ; Heidmann, Warner

� Precision holography provides a posteriori checks of the non-linear

completion and the holographic interpretation Kanitscheider, Skenderis, Taylor;

1507.00945; Giusto, Rawash, Turton
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An interesting example

We can consider a state built with just one type of constituents O1,0,ñ,0

The heavy state and its (average) charges are

O
(f)
H =

N∑
p=0

(1− η2)
p
2 ηN−p

(
Lñ−1s

(f)
1

)p

〈hH〉 = N

ñ +
1

2

 (1− η2) , 〈h̄H〉 =
N

2
(1− η2) , 〈jH〉 = 〈j̄H〉 =

N

2
(1− η2)

single particle CPO
with h = h̄ = 1

2

The 6d geometry (Einstein frame) reads

ds26 =
Λ

G
ds23 + Λdθ2 +

sin2 θ

Λ

(
dϕ1 + (1 − η2)dτ

)2
+
G cos2 θ

Λ

dϕ2 + dσ − η2

G
(dσ + F (dτ + dσ))

2

ds23 = G
dρ2

ρ2 + 1
− η2(ρ2 + η2) dτ 2 + η2ρ2 dσ2 + η2ρ2F (dτ + dσ)2

G = 1 − 1 − η2

ρ2 + 1

 ρ2

ρ2 + 1

ñ , F =
1 − η2

η2

1 −
 ρ2

ρ2 + 1

ñ
 , Λ =

1 − 1 − η2

ρ2 + 1

 ρ2

ρ2 + 1

ñ sin2 θ


1
2

The BH “threshold” (N nP − j2
R > 0 in the R-sector, jR = −Nη2

2 ) implies

η2 < 2
√
ñ (
√
ñ + 1−

√
ñ) ≡ η2

c (ñ)
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The BTZ limit

A cartoon of the dual sugra solution (“AdS3” part) looks as follows
1607.03908
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0

+ ñ for the usual coordinates)
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4-point correlators: generalities

So far we focused on constructing sugra solutions dual to heavy states

Most of the interesting dynamics is encoded in the perturbations around

the geometries. The first step is to study the quadratic fluctuations

We consider perturbations OL that are described by a scalar field in 6D

Technically, we need to derive the regular, non-normalisable solution that

at the boundary (ρ→∞) scales as

zc = e i(τ+σ) vev of OL(zc , z̄c)

↖ ↗

φ∆(ρ; zc , z̄c)
ρ→∞−→ δ(zc − 1) ρ∆−2 + b(zc , z̄c) ρ−∆

↘

source for ŌL(1)
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A scalar probe

Consider a scalar probe O = G−AG̃−BO
(g)
k (with f 6= g). The dual

description is in terms of (the (k − 1)th S3 harmonics) of a 6D scalar ΦL

It satisfies �6ΦL = 0 for any ñ, even when η 6= 0

By taking the S3 decomposition (with k odd and j = j̄ = 0) and the

Fourier transform in spacetime we have

ΦL = ψ(ρ, τ, σ)Yk−1(θ, ϕ1, ϕ2) , ψ(ρ, τ, σ) =
1

(2π)2

∑
`∈Z

∫
dω eiωτ+i`σ g(ω, `)ψ(ρ)

ψ′′(ρ) + 1+3ρ2

ρ(1+ρ2)
ψ′(ρ) +


ρ2(`−ω)

[
(`−ω)

(
1−(1−η2)

(
ρ2

1+ρ2

)ñ)
−2η2`

]
−η4`2

η4ρ2(1+ρ2)2
− ∆(∆−2)

ρ2+1

ψ(ρ) = 0

[
�3 − ∆(∆−2)

G

]
ψ(ρ, τ, σ) = 0 , ∆ = h + h̄ = k + 1 , m2 = ∆(∆− 2)

⇓

Tractable cases: ñ = 0, 1, 2.
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The two charge case (ñ = 0)

The radial equation can be recast in the Schroedinger form

z =
ρ2

1 + ρ2
, ψ(ρ) = z−

1
2 u(z) ⇒

(
∂2z + Vn(z)

)
u(z) = 0

Vn(z) =
x0 + x1z + xñ+1z

ñ+1

4η4z2(1− z)
− ∆(∆− 2)

4z(1− z)2

x0 = η4(1− `2) , x1 = (η2(`− 1)− (`− ω))(η2(`+ 1)− (`− ω)) , xñ+1 = (η2 − 1)(`− ω)2

When ñ = 0, we get the hypergeometric equation (as for AdS3)

Impose the regularity conditions at z = 0 ⇒ ureg (z) ∼ z
1+|`|

2 2F1(·, ·; ·; z)

In the hypergeometric case we can use the known connection formulas

ψreg(ρ) = A (ω, `) ρ∆−2
(
1 +O

(
ρ−2

))
+ B (ω, `) ρ−∆

(
1 +O

(
ρ−2

))
⇒ C (ω, `) = B (ω, `)

A (ω, `)

C(ω, `) has poles when A = 0: at ωn = ± a
a0

√
(|`|+ 2n)2 + b2`2

2a2 1710.06820

They are the (average) dimensions of the bound states : OH∂
m∂̄m̄OL :

The ωn’s become dense as a→ 0, but are evenly space as b → 0
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The three charge case (ñ > 0)

One key feature missed by the previous calculation is the long AdS2

throat that develops in the a→ 0 limit of the ñ > 0 case

Also this problem reduces to 3D, but we get an irregular singularity.

Choosing ñ = 1, we get a reduced confluent Heun (triple pole at z =∞)

V1(z) =
u− 1

2 + α2
1 + α2

0

z(z − 1)
+

1
4 − α

2
1

(1− z)2
+

1
4 − α

2
0

z2
− L2

4z

α0 =
|`|
2
, α1 =

∆− 1

2
, L =

i(`− ω)
√

1− η2
η2

=
2iw

√
1− η2
η2

,

u =
`2(1− η2) + η2 − ω2

4η2
=

(p+ w)2(1− η2) + η2 − (p− w)2

4η2
.

w and p are

p =
`+ ω

2
,

w =
`− ω

2

The Heun equation appears in several other black hole related problems:

Quasi Normal Modes, tidal response, thermal correlators. Recent progress

exploiting the relation to Liouville CFT and its 4d AGT dual N = 2 GT
Aminov, Grassi, Hatsuda; Bianchi, Consoli, Grillo, Morales; Bonelli, Iossa, Lichtig, Tanzini; Dodelson, Zhiboedov; . . .

The aim: use this new technology to reassess the problem analysed by

Bena, Heidmann, Monten, Warner 1905.05194
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Heun’s connection problem

The basic idea:

A semiclassical limit (c →∞) of BPZ equations for certain 4-point

Liouville correlators satisfy the Heun equation

The CFT crossing symmetry relates the series expansion around

different singular points. The connection formulae are given in terms

of the (known) Liouville 3-point coupling and the Virasoro blocks

In limits corresponding to weakly coupled N = 2 GT, the problem

can be efficiently phrased in terms of the Nekrasov partition function

By using the N = 2 language we have

C(ω, `) =
Γ (−2α1) Γ

(
1
2 + α0 + α1 + α

)
Γ

(
1
2 + α0 + α1 − α

)
Γ (2α1) Γ

(
1
2 + α0 − α1 + α

)
Γ

(
1
2 + α0 − α1 − α

) e−∂α1F

where F is the so called NS prepotential and α is derived from u by

inverting Matone’s relation.
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The small BH limit

The small BH limit corresponds to a weakly coupled N = 2 GT

We can make everything explicit in an expansion for (1− η)� 1

We can derive the dimensions of the bound states : OH∂
m∂̄m̄OL :

ω±
n` = ± (|`|+ 2n+ ∆) + γ

(1)±
n` (1− η2) + . . . ,

γ
(1)+
n`≥0 = −(2n+ ∆) (2`3 + 5`2(2n+ ∆) + `(−2 + 5(2n+ ∆)2) + (2n+ ∆) (6n2 + 6n∆ + (∆− 1)(2∆ + 1)))

2(1 + `+ 2n+ ∆)(`+ 2n+ ∆)(−1 + `+ 2n+ ∆)
,

γ
(1)+
n`≤0 = −(2`− 2n−∆) (12n3 + (3`− 2∆− 1)(1 + `−∆)∆ + 2n2(9∆− 8`) + 2n(−1 + 3`2 − 8`∆ + ∆(5∆− 1)))

2(−1 + `− 2n−∆)(`− 2n−∆)(1 + `− 2n−∆)
,

γ
(1)−
n`<0 = −γ(1)+n`>0(−`) , γ

(1)−
n`>0 = −γ(1)+n`<0(−`)

In the semiclassical limit (m̄ = n , m = `+ n large) we can compare with

the results obtained from the phase shift Karlsson, Kulaxizi, Ng, Parnachev, Tadic,,Zhiboedov

Giusto, Hughes, RR 2007.12118

For instance γ
(1)+
n`≥0 → −2mm̄m2+2mm̄+3m̄2

(m+m̄)3

The ωn’s are (almost) evenly spaced in the regime η → 1 (as for ñ = 0)
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The large BH limit: numerical analysis

A different behaviour below the BH threshold (η2
c . 0.828)?

We looked at C(ω, `) for ` = 1, ∆ = 2 numerically

C(ω, `) for (a) ` = 1, ∆ = 2, η = 0.1 and (b) ` = 1, ∆ = 2, η = 0.01.

We find poles on the real axis that become denser as η → 0

This is different from the BTZ case where there no real poles

What is the relation between C(ω, `) for η → 0 and for BTZ?
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The large BH limit: asymptotic analysis

We can use the Liouville CFT description to study the η → 0 expansion,

i.e. we have explicit perturbative expressions in 1
L ∼

η2

iw for

C(ω, `) = (iL)2α1e−∂α1FD
Γ (−2α1)

Γ (2α1)

(4L)
g
2 eL+∂gFD

Γ( 1−g
2 −α1)

+ (−4L)−
g
2 e−L−∂gFD

Γ( 1+g
2 −α1)

(4L)
g
2 eL+∂gFD

Γ( 1−g
2 +α1)

+ (−4L)−
g
2 e−L−∂gFD

Γ( 1+g
2 +a1)

u =
gL

2
+
g2 + 1

8
− a2

1

2
+

1

4
− α2

0 +
1

2
L∂LFD (α0, α1, g)

When ω (and thus p = `+ω
2 ) has an imaginary part one of the terms in

the denominator is small since g ' −ip + . . .⇒ Lg ∼ η−Imp

If we neglect it, the real poles disappear and we get BTZ-like poles at

1± g + 2α1 = −2n , n ∈ Z≥0

so we have imaginary poles both in the upper and the lower half-plane
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The large BH limit: WKB analysis

In order to connect the two pictures we considered a simple case in the

semiclassical limit: |ω| large, ∆ = O(1) and ` = 0

We follow closely Festuccia and Liu hep-th/0506202, 0811.1033

supplementing the WKB analysis with local solutions for z ∼ 0 and z ∼ 1

The real poles are (in terms of the Elliptic integral of the 1st kind E )

ωn

2n + ∆
=

πη2

2E (1− η2)
=

1− 3
4 (1− η2) + . . . , η2 ∼ 1

πη2

2 + πη4

8

(
1− log η2

16

)
+ . . . , η2 ∼ 0

The η ∼ 1 result matches the small BH limit and for η ∼ 0 the poles become dense

When Im(ω) 6= 0 we have to keep track of the (single) inversion point

zt = 1
1−η2 . The Stokes lines determine which coefficient of the WKB

solution jumps when moving from z ∼ 0 to z ∼ 1 (if any)
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The analytic structure in Fourier space

We can follow the semiclassical correlator in the upper half plane (at

large ω). The goal is to understand the analiticity structure

The most natural interpretation of our results is that C(ω, 0) has a

square-root branch as sketched in the following picture

The exact correlator has just real poles (in blue, left fig.); in the

semiclassical limit the poles merge into cuts (red lines) which connect to

a second sheet with imaginary poles (in blue, right fig.) in the BH regime
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Conclusions

We studied HHLL holographic correlators involving a tractable, but

interesting class heavy states

We obtained explicit results on the bound states energies using

recent progress on the Heun connection problem

For η � 1 the poles merge into cuts and a second sheet appears
reminiscent of Dodelson, Zhiboedov 2204.09749

In the large BH regime, on the second sheet we obtain the imaginary

poles appropriate for describing the Wightman BTZ correlator

Open questions:

Study the configuration space correlators work in progress

What is the role of quantum corrections in the “BH”-like limit?
Lin, Maldacena, Rozenberg, Shan

Are there CFT constraints on HHLL correlators with pure states that

have an interesting spacetime interpretation?
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Extra slides



An example: k = 1, n ≥ 1, m = q = 0

It is convenient to parametrise the 6D metric as

and all remaining fields have analogous parametrisations

In the case k = 1, n ≥ 1, m = q = 0 (Details are not important)

This class of solutions is fully regular if a2 +
b2

1,0,n

2 = Q1Q5

R2
y

. For an

appropriate choice of parameters it’s described by the picture for (e1)

20


	Extra slides

