Black hole signatures in holographic correlators

Rodolfo Russo
3 April 2023
Queen Mary University of London

The framework

I'll focus on the traditional $\mathrm{AdS}_{d+1} / \mathrm{CFT}_{d}$ setup in the regime where

- the central charge c is large \Rightarrow the bulk is semiclassical
- the CFT is strongly coupled \Rightarrow there is a large gap between the (super)gravity and string modes

I am particularly interested in the heavy sector $\frac{\left\langle O_{H}\right| \hat{\Delta}\left|O_{H}\right\rangle}{\left\langle O_{H} \mid O_{H}\right\rangle} \sim \mathcal{O}(c)$
For simplicity, I'll take $d=2$ and work with type IIB on $\mathrm{AdS}_{3} \times S^{3} \times T^{4}$

- The CFT enjoys an enhanced superconformal symmetry
- the supergravity description is easier than in the AdS_{5} case
- the interesting questions about (large) black holes remain

The general question: what can we learn about black holes (BHs) by probing heavy states (rather than the other way around)?

The key ingredients

The relevant CFT has a free locus (very much as $\mathcal{N}=4$ at $g_{Y M}=0$). In this case it reduces to a collection of N quadruplets of free fields (four boson and four fermions) with a \mathcal{S}_{N} permutation gauge symmetry

There is a 20 -dimensional space of deformations preserving the $(4,4)$ superconformal symmetry. The $\frac{1}{2}$-BPS states are protected. When they are light $\left(\Delta \sim \mathcal{O}\left(c^{0}\right)\right)$, they are in one-to-one correspondence with supergravity excitations of $\mathrm{AdS}_{3} \times S^{3} \times T^{4}$

We can construct a O_{H} by binding many light states. Example: if O_{L} is a light $\frac{1}{2}$-BPS state, consider $O_{H} \sim O_{L}^{p}$ with $\frac{p}{N} \sim 0.5$. Main goals:

- derive explicit expressions for a class of 4-point correlators $\left\langle\bar{O}_{H}(\infty) O_{H}(0) \bar{O}_{L}(1) O_{L}\left(z_{c}, \bar{z}_{C}\right)\right\rangle$ in the supergravity regime
- when the solution dual to O_{H} is approximately the BTZ black, how do the HHLL correlator compare with $\left\langle\bar{O}_{L}(1) O_{L}\left(z_{c}, \bar{z}_{c}\right)\right\rangle_{B T Z}$?

References

Background results
..., 1503.01463, 1607.03908, 1711.10474, ...:
Superstrata geometries
1710.06820, 2007.12118, ...:
AdS_{3} heavy-light correlators
in (various) collaboration with: I. Bena, A. Bombini, A. Galliani, S.
Giusto, M. Hughes, E. Martinec, E. Moscato, M. Shigemori, D. Turton,
N. Warner

Work in progress with S. Giusto, C. lossa
See also Bena, Heidmann, Monten, Warner 1905.05194

The plan

I'll introduce the superstrata and focus on a family of "scaling" solutions
The dual CFT description is a coherent state composed of a large number of "supergravitons" (i.e. light supersymmetric CFT operators)

Quadratic fluctuations around any such solution capture a Heavy-Light holographic correlator (HHLL)

$$
\left\langle\bar{O}_{L}(1) O_{L}\left(z_{c}, \bar{z}_{c}\right)\right\rangle_{d s_{H}^{2}} \longleftrightarrow\left\langle\bar{O}_{H}(\infty) O_{H}(0) \bar{O}_{L}(1) O_{L}\left(z_{c}, \bar{z}_{c}\right)\right\rangle \equiv \mathcal{C}\left(z_{c}, \bar{z}_{c}\right)
$$

Three regimes (I'll focus on the last two):

- in the light regime " $p \rightarrow 1$ ", one obtains the LLLL result. The first AdS_{3} correlator was derived in this way!
- $p / N \ll 1$ (but $p \sim N$) small BH limit
- in the limit " $p / N \sim 1$ " the geometry becomes that of BTZ. What happens to the HHLL correlator?

The graviton gas: CFT side

If O_{k} is a anti-CPO of dimension k one can consider its descendants

$$
O_{k, m, n, q} \equiv\left(J_{0}^{+}\right)^{m}\left(L_{-1}\right)^{n}\left(G_{-\frac{1}{2}}^{+1} G_{-\frac{1}{2}}^{+2}\right)^{q} O_{k}
$$

Spectral flow maps $O_{k, m, n, q}$ to a D1-D5-P state with $h>\bar{h}=\frac{c}{24}$
By using $O_{k, m, n, q}$ (also of different types) we can build "semi-classical" multi-particle states characterised by the continuous parameters B_{i}
$\left|B_{1}, B_{2}, \ldots\right\rangle_{\mathrm{NS}} \sim \sum_{p_{i}} A^{N-p_{\sigma}}\left(B_{1} O_{k_{1}, m_{1}, n_{1}, q_{1}}\right)^{p_{1}}\left(B_{2} O_{k_{2}, m_{2}, n_{2}, q_{2}}\right)^{p_{2}} \ldots|0\rangle_{\mathrm{NS}}$
$p_{\sigma}=\sum p_{i},|A|^{2}+\sum_{i}\left|B_{i}\right|^{2}=N$. When $B_{i}^{2} \sim N \gg 1$, these are coherent-like states as the sums over p_{i}-sum are peaked for $p_{i} \approx B_{i}^{2} / k_{i}$

What is the gravitational description of $\left|B_{1}, B_{2}, \ldots\right\rangle_{\mathrm{NS}}$?

The graviton gas: bulk side

AdS/CFT relates operators and sugra fields: $O_{k, m, n, q} \longleftrightarrow \phi_{k, m, n, q}$ At linear order in $B_{i},\left|B_{1}, \ldots\right\rangle_{\mathrm{NS}}$ is a perturbation of the vacuum

$$
|0\rangle_{\mathrm{NS}}+\sum_{i} B_{i} O_{k_{i}, m_{i}, n_{i}, q_{i}}|0\rangle_{\mathrm{NS}} \longleftrightarrow \operatorname{AdS}_{3} \times S^{3}+\sum_{i} B_{i} \phi_{k_{i}, m_{i}, n_{i}, q_{i}}
$$

where $\phi_{k_{i}, m_{i}, n_{i}, q_{i}}$ solves the linearised sugra eqs. around $\mathrm{AdS}_{3} \times S^{3}$
The "superstratum" approach provides an algorithm to extend the linear solutions to exact solutions valid for $B_{i}^{2} \sim N$. The key points:

- The susy eqs. can be written in a "linear" form Bena, Giusto, Shigemori, Warner;
- The non-linear extension requires an ansatz: ambiguities are fixed by imposing regularity and input form the CFT 1503.01463;...; Heidmann, Warner
- Precision holography provides a posteriori checks of the non-linear completion and the holographic interpretation

An interesting example

We can consider a state built with just one type of constituents $O_{1,0, \tilde{n}, 0}$ The heavy state and its (average) charges are

$$
\begin{aligned}
& O_{H}^{(f)}=\sum_{p=0}^{N}\left(1-\eta^{2}\right)^{\frac{p}{2}} \eta^{N-p}\left(L_{-1}^{\tilde{n}} s_{1}^{(f)}\right)^{p} \underbrace{\substack{\text { single particle CPO } \\
\text { with } h=h=\frac{1}{2}}} \\
& \left\langle h_{H}\right\rangle=N\left(\tilde{n}+\frac{1}{2}\right)\left(1-\eta^{2}\right), \quad\left\langle\bar{h}_{H}\right\rangle=\frac{N}{2}\left(1-\eta^{2}\right), \quad\left\langle j_{H}\right\rangle=\left\langle\bar{j}_{H}\right\rangle=\frac{N}{2}\left(1-\eta^{2}\right)
\end{aligned}
$$

The 6d geometry (Einstein frame) reads

$$
\begin{gathered}
d s_{6}^{2}=\frac{\Lambda}{G} d s_{3}^{2}+\Lambda d \theta^{2}+\frac{\sin ^{2} \theta}{\Lambda}\left(d \varphi_{1}+\left(1-\eta^{2}\right) d \tau\right)^{2}+\frac{G \cos ^{2} \theta}{\Lambda}\left(d \varphi_{2}+d \sigma-\frac{\eta^{2}}{G}(d \sigma+F(d \tau+d \sigma))\right)^{2} \\
d s_{3}^{2}=G \frac{d \rho^{2}}{\rho^{2}+1}-\eta^{2}\left(\rho^{2}+\eta^{2}\right) d \tau^{2}+\eta^{2} \rho^{2} d \sigma^{2}+\eta^{2} \rho^{2} F(d \tau+d \sigma)^{2} \\
G=1-\frac{1-\eta^{2}}{\rho^{2}+1}\left(\frac{\rho^{2}}{\rho^{2}+1}\right)^{\bar{n}}, F=\frac{1-\eta^{2}}{\eta^{2}}\left[1-\left(\frac{\rho^{2}}{\rho^{2}+1}\right)^{\tilde{n}}\right], \Lambda=\left[1-\frac{1-\eta^{2}}{\rho^{2}+1}\left(\frac{\rho^{2}}{\rho^{2}+1}\right)^{\bar{n}} \sin ^{2} \theta\right]^{\frac{1}{2}}
\end{gathered}
$$

The BH "threshold" ($N n_{P}-j_{R}^{2}>0$ in the R-sector, $j_{R}=-\frac{N \eta^{2}}{2}$) implies

$$
\eta^{2}<2 \sqrt{\tilde{n}}(\sqrt{\tilde{n}+1}-\sqrt{\tilde{n}}) \equiv \eta_{c}^{2}(\tilde{n})
$$

The BTZ limit

A cartoon of the dual sugra solution (" AdS_{3} " part) looks as follows

where $\eta^{2}=\frac{a^{2}}{a^{2}+\frac{b^{2}}{2}} \equiv \frac{a^{2}}{a_{0}^{2}}, \rho=\frac{r}{a}$.
the BTZ is limit is $a \rightarrow 0, r$ fixed $\left(\hat{r}^{2}=\frac{r^{2}}{a_{0}^{2}}+\tilde{n}\right.$ for the usual coordinates)

4-point correlators: generalities

So far we focused on constructing sugra solutions dual to heavy states Most of the interesting dynamics is encoded in the perturbations around the geometries. The first step is to study the quadratic fluctuations We consider perturbations O_{L} that are described by a scalar field in 6D Technically, we need to derive the regular, non-normalisable solution that at the boundary $(\rho \rightarrow \infty)$ scales as

$$
\begin{array}{cc}
z_{c}=e^{i(\tau+\sigma)} & \text { vev of } O_{L}\left(z_{c}, \bar{z}_{c}\right) \\
\nwarrow \\
\phi_{\Delta}\left(\rho ; z_{c}, \bar{z}_{c}\right) \xrightarrow{\rho \rightarrow \infty} \delta\left(z_{c}-1\right) \rho^{\Delta-2}+b\left(z_{c}, \bar{z}_{c}\right) \rho^{-\Delta} \\
\searrow \\
\text { source for } \bar{O}_{L}(1)
\end{array}
$$

A scalar probe

Consider a scalar probe $O=G^{-A} \tilde{G}^{-B} O_{k}^{(g)}($ with $f \neq g)$. The dual description is in terms of (the $(k-1)^{\text {th }} S^{3}$ harmonics) of a 6D scalar Φ_{L} It satisfies $\square_{6} \Phi_{L}=0$ for any \tilde{n}, even when $\eta \neq 0$
By taking the S^{3} decomposition (with k odd and $j=\bar{j}=0$) and the Fourier transform in spacetime we have

$$
\begin{gathered}
\Phi_{L}=\psi(\rho, \tau, \sigma) Y_{k-1}\left(\theta, \varphi_{1}, \varphi_{2}\right), \quad \psi(\rho, \tau, \sigma)=\frac{1}{(2 \pi)^{2}} \sum_{\ell \in Z} \int d \omega e^{i \omega \tau+i \ell \sigma} g(\omega, \ell) \psi(\rho) \\
{\left[\square_{3}-\frac{\Delta(\Delta-2)}{G}\right] \psi(\rho, \tau, \sigma)=0, \quad \Delta=h+\bar{h}=k+1, \quad m^{2}=\Delta(\Delta-2)} \\
\Downarrow \\
\psi^{\prime \prime}(\rho)+\frac{1+3 \rho^{2}}{\rho\left(1+\rho^{2}\right)^{\prime}} \psi^{\prime}(\rho)+\left\{\frac{\rho^{2}(\ell-\omega)\left[(\ell-\omega)\left(1-\left(1-\eta^{2}\right)\left(\frac{\rho^{2}}{1+\alpha^{2}}\right)^{i}\right)-2 \eta^{2} \ell\right]-\eta^{4} \ell^{2}}{\eta^{4} \rho^{2}\left(1+\rho^{2}\right)^{2}}-\frac{\Delta(\Delta-2)}{\rho^{2}+1}\right\} \psi(\rho)=0
\end{gathered}
$$

Tractable cases: $\tilde{n}=0,1,2$.

The two charge case $(\tilde{n}=0)$

The radial equation can be recast in the Schroedinger form

$$
\begin{gathered}
z=\frac{\rho^{2}}{1+\rho^{2}}, \quad \psi(\rho)=z^{-\frac{1}{2}} u(z) \quad \Rightarrow \quad\left(\partial_{z}^{2}+V_{n}(z)\right) u(z)=0 \\
V_{n}(z)=\frac{x_{0}+x_{1} z+x_{\tilde{n}+1} z^{\tilde{n}+1}}{4 \eta^{4} z^{2}(1-z)}-\frac{\Delta(\Delta-2)}{4 z(1-z)^{2}} \\
x_{0}=\eta^{4}\left(1-\ell^{2}\right), x_{1}=\left(\eta^{2}(\ell-1)-(\ell-\omega)\right)\left(\eta^{2}(\ell+1)-(\ell-\omega)\right), x_{\tilde{n}+1}=\left(\eta^{2}-1\right)(\ell-\omega)^{2}
\end{gathered}
$$

When $\tilde{n}=0$, we get the hypergeometric equation (as for AdS_{3})
Impose the regularity conditions at $z=0 \Rightarrow u_{\text {reg }}(z) \sim z^{\frac{1+|e|}{2}}{ }_{2} F_{1}(\cdot, \cdot ; \cdot ; z)$
In the hypergeometric case we can use the known connection formulas

$$
\psi_{\text {reg }}(\rho)=\mathcal{A}(\omega, \ell) \rho^{\Delta-2}\left(1+\mathcal{O}\left(\rho^{-2}\right)\right)+\mathcal{B}(\omega, \ell) \rho^{-\Delta}\left(1+\mathcal{O}\left(\rho^{-2}\right)\right) \Rightarrow \mathcal{C}(\omega, \ell)=\frac{\mathcal{B}(\omega, \ell)}{\mathcal{A}(\omega, \ell)}
$$

$\mathcal{C}(\omega, \ell)$ has poles when $\mathcal{A}=0$: at $\omega_{n}= \pm \frac{a}{a_{0}} \sqrt{(|\ell|+2 n)^{2}+\frac{b^{2} \ell^{2}}{2 a^{2}}}$
They are the (average) dimensions of the bound states: $O_{H} \partial^{m} \bar{\partial} \bar{m} O_{L}$:
The ω_{n} 's become dense as $a \rightarrow 0$, but are evenly space as $b \rightarrow 0$

The three charge case $(\tilde{n}>0)$

One key feature missed by the previous calculation is the long AdS_{2} throat that develops in the $a \rightarrow 0$ limit of the $\tilde{n}>0$ case

Also this problem reduces to 3D, but we get an irregular singularity. Choosing $\tilde{n}=1$, we get a reduced confluent Heun (triple pole at $z=\infty$)

$$
\begin{array}{ll}
V_{1}(z)=\frac{u-\frac{1}{2}+\alpha_{1}^{2}+\alpha_{0}^{2}}{z(z-1)}+\frac{\frac{1}{4}-\alpha_{1}^{2}}{(1-z)^{2}}+\frac{\frac{1}{4}-\alpha_{0}^{2}}{z^{2}}-\frac{L^{2}}{4 z} & w \text { and } p \text { are } \\
& p=\frac{\ell+\omega}{2}, \\
\alpha_{0}=\frac{|\ell|}{2}, \quad \alpha_{1}=\frac{\Delta-1}{2}, \quad L=\frac{i(\ell-\omega) \sqrt{1-\eta^{2}}}{\eta^{2}}=\frac{2 i w \sqrt{1-\eta^{2}}}{\eta^{2}}, & w=\frac{\ell-\omega}{2} \\
u=\frac{\ell^{2}\left(1-\eta^{2}\right)+\eta^{2}-\omega^{2}}{4 \eta^{2}}=\frac{(p+w)^{2}\left(1-\eta^{2}\right)+\eta^{2}-(p-w)^{2}}{4 \eta^{2}} . &
\end{array}
$$

The Heun equation appears in several other black hole related problems:
Quasi Normal Modes, tidal response, thermal correlators. Recent progress exploiting the relation to Liouville CFT and its 4 d AGT dual $\mathcal{N}=2 \mathrm{GT}$

Aminov, Grassi, Hatsuda; Bianchi, Consoli, Grillo, Morales; Bonelli, lossa, Lichtig, Tanzini; Dodelson, Zhiboedov;
The aim: use this new technology to reassess the problem analysed by Bena, Heidmann, Monten, Warner 1905.05194

Heun's connection problem

The basic idea:
A semiclassical limit $(c \rightarrow \infty)$ of BPZ equations for certain 4-point Liouville correlators satisfy the Heun equation

The CFT crossing symmetry relates the series expansion around different singular points. The connection formulae are given in terms of the (known) Liouville 3-point coupling and the Virasoro blocks In limits corresponding to weakly coupled $\mathcal{N}=2 \mathrm{GT}$, the problem can be efficiently phrased in terms of the Nekrasov partition function

By using the $\mathcal{N}=2$ language we have

$$
\mathcal{C}(\omega, \ell)=\frac{\Gamma\left(-2 \alpha_{1}\right) \Gamma\left(\frac{1}{2}+\alpha_{0}+\alpha_{1}+\alpha\right) \Gamma\left(\frac{1}{2}+\alpha_{0}+\alpha_{1}-\alpha\right)}{\Gamma\left(2 \alpha_{1}\right) \Gamma\left(\frac{1}{2}+\alpha_{0}-\alpha_{1}+\alpha\right) \Gamma\left(\frac{1}{2}+\alpha_{0}-\alpha_{1}-\alpha\right)} e^{-\partial_{\alpha_{1}} F}
$$

where F is the so called NS prepotential and α is derived from u by inverting Matone's relation.

The small BH limit

The small BH limit corresponds to a weakly coupled $\mathcal{N}=2$ GT
We can make everything explicit in an expansion for $(1-\eta) \ll 1$
We can derive the dimensions of the bound states: $O_{H} \partial^{m} \bar{\partial}^{\bar{m}} O_{L}$:
$\omega_{n t}^{ \pm}= \pm(|\ell|+2 n+\Delta)+\gamma_{n \in}^{(1) \pm}\left(1-\eta^{2}\right)+\ldots$,
$\gamma_{n \ell \geq 0}^{(1)+}=-\frac{(2 n+\Delta)\left(2 \ell^{3}+5 \ell^{2}(2 n+\Delta)+\ell\left(-2+5(2 n+\Delta)^{2}\right)+(2 n+\Delta)\left(6 n^{2}+6 n \Delta+(\Delta-1)(2 \Delta+1)\right)\right)}{2(1+\ell+2 n+\Delta)(\ell+2 n+\Delta)(-1+\ell+2 n+\Delta)}$,
$\gamma_{n \ell \leq 0}^{(1)+}=-\frac{(2 \ell-2 n-\Delta)\left(12 n^{3}+(3 \ell-2 \Delta-1)(1+\ell-\Delta) \Delta+2 n^{2}(9 \Delta-8 \ell)+2 n\left(-1+3 \ell^{2}-8 \ell \Delta+\Delta(5 \Delta-1)\right)\right)}{2(-1+\ell-2 n-\Delta)(\ell-2 n-\Delta)(1+\ell-2 n-\Delta)}$,
$\gamma_{n \ell<0}^{(1)-}=-\gamma_{n \ell>0}^{(1)+}(-\ell), \gamma_{n \ell>0}^{(1)-}=-\gamma_{n \ell<0}^{(1)+}(-\ell)$
In the semiclassical limit ($\bar{m}=n, m=\ell+n$ large) we can compare with the results obtained from the phase shift

For instance $\gamma_{n \ell \geq 0}^{(1)+} \rightarrow-2 m \bar{m} \frac{m^{2}+2 m \bar{m}+3 \bar{m}^{2}}{(m+\bar{m})^{3}}$
The ω_{n} 's are (almost) evenly spaced in the regime $\eta \rightarrow 1$ (as for $\tilde{n}=0$)

The large BH limit: numerical analysis

A different behaviour below the BH threshold $\left(\eta_{c}^{2} \lesssim 0.828\right)$?
We looked at $\mathcal{C}(\omega, \ell)$ for $\ell=1, \Delta=2$ numerically

$$
\mathcal{C}(\omega, \ell) \text { for (a) } \ell=1, \Delta=2, \eta=0.1 \text { and (b) } \ell=1, \Delta=2, \eta=0.01 \text {. }
$$

We find poles on the real axis that become denser as $\eta \rightarrow 0$
This is different from the BTZ case where there no real poles
What is the relation between $\mathcal{C}(\omega, \ell)$ for $\eta \rightarrow 0$ and for BTZ?

The large BH limit: asymptotic analysis

We can use the Liouville CFT description to study the $\eta \rightarrow 0$ expansion, i.e. we have explicit perturbative expressions in $\frac{1}{L} \sim \frac{\eta^{2}}{i w}$ for

$$
\begin{gathered}
\mathcal{C}(\omega, \ell)=(i L)^{2 \alpha_{1}} e^{-\partial_{\alpha_{1}} F_{D}} \frac{\Gamma\left(-2 \alpha_{1}\right)}{\Gamma\left(2 \alpha_{1}\right)} \frac{\frac{(4 L)^{\frac{g}{2}} \frac{2\left(+\partial_{g} F_{D}\right.}{\Gamma\left(\frac{1-g}{2}-\alpha_{1}\right)}}{\frac{(4 L)^{\frac{2}{2}} e^{L+\partial_{g} F_{D}}}{\Gamma\left(\frac{1-g}{2}+\alpha_{1}\right)}+\frac{(-4 L)^{-\frac{g}{2}} e^{-L-\partial_{g} F_{D}}}{\Gamma\left(\frac{1+g}{2}-\alpha_{1}\right)}} \frac{(-4 L)^{-\frac{-}{2}} e^{-L-\partial_{g} F_{D}}}{\Gamma\left(\frac{1+g}{2}+a_{1}\right)}}{u=\frac{g L}{2}+\frac{g^{2}+1}{8}-\frac{a_{1}^{2}}{2}+\frac{1}{4}-\alpha_{0}^{2}+\frac{1}{2} L \partial_{L} F_{D}\left(\alpha_{0}, \alpha_{1}, g\right)}
\end{gathered}
$$

When ω (and thus $p=\frac{\ell+\omega}{2}$) has an imaginary part one of the terms in the denominator is small since $g \simeq-i p+\ldots \Rightarrow L^{g} \sim \eta^{-\operatorname{Imp} p}$

If we neglect it, the real poles disappear and we get BTZ-like poles at

$$
1 \pm g+2 \alpha_{1}=-2 n, \quad n \in \mathbb{Z}_{\geq 0}
$$

so we have imaginary poles both in the upper and the lower half-plane

The large BH limit: WKB analysis

In order to connect the two pictures we considered a simple case in the semiclassical limit: $|\omega|$ large, $\Delta=\mathcal{O}(1)$ and $\ell=0$

We follow closely Festuccia and Liu hep-th/0506202, 0811.1033 supplementing the WKB analysis with local solutions for $z \sim 0$ and $z \sim 1$

The real poles are (in terms of the Elliptic integral of the $1^{\text {st }}$ kind E)

$$
\frac{\omega_{n}}{2 n+\Delta}=\frac{\pi \eta^{2}}{2 E\left(1-\eta^{2}\right)}= \begin{cases}1-\frac{3}{4}\left(1-\eta^{2}\right)+\ldots, & \eta^{2} \sim 1 \\ \frac{\pi \eta^{2}}{2}+\frac{\pi \eta^{4}}{8}\left(1-\log \frac{\eta^{2}}{16}\right)+\ldots, & \eta^{2} \sim 0\end{cases}
$$

The $\eta \sim 1$ result matches the small BH limit and for $\eta \sim 0$ the poles become dense
When $\operatorname{Im}(\omega) \neq 0$ we have to keep track of the (single) inversion point $z_{t}=\frac{1}{1-\eta^{2}}$. The Stokes lines determine which coefficient of the WKB solution jumps when moving from $z \sim 0$ to $z \sim 1$ (if any)

The analytic structure in Fourier space

We can follow the semiclassical correlator in the upper half plane (at large ω). The goal is to understand the analiticity structure

The most natural interpretation of our results is that $\mathcal{C}(\omega, 0)$ has a square-root branch as sketched in the following picture

The exact correlator has just real poles (in blue, left fig.); in the semiclassical limit the poles merge into cuts (red lines) which connect to a second sheet with imaginary poles (in blue, right fig.) in the BH regime

Conclusions

We studied HHLL holographic correlators involving a tractable, but interesting class heavy states

We obtained explicit results on the bound states energies using recent progress on the Heun connection problem
For $\eta \ll 1$ the poles merge into cuts and a second sheet appears
reminiscent of Dodelson, Zhiboedov 2204.09749
In the large BH regime, on the second sheet we obtain the imaginary poles appropriate for describing the Wightman BTZ correlator

Open questions:

Study the configuration space correlators
What is the role of quantum corrections in the "BH"-like limit?
Lin, Maldacena, Rozenberg, Shan
Are there CFT constraints on HHLL correlators with pure states that have an interesting spacetime interpretation?

Extra slides

An example: $k=1, n \geq 1, m=q=0$

It is convenient to parametrise the 6D metric as

$$
d s_{6}^{2}=-\frac{2}{\sqrt{\mathcal{P}}}(d v+\beta)\left[d u+\omega+\frac{\mathcal{F}}{2}(d v+\beta)\right]+\sqrt{\mathcal{P}} d s_{4}^{2}, \quad \mathcal{P}=Z_{1} Z_{2}-Z_{4}^{2}
$$

and all remaining fields have analogous parametrisations
In the case $k=1, n \geq 1, m=q=0$ (Details are not important)

$$
\begin{array}{cc}
d s_{4}^{2}=\frac{\Sigma d r^{2}}{r^{2}+a^{2}}+\Sigma d \theta^{2}+\left(r^{2}+a^{2}\right) \sin ^{2} \theta d \phi^{2}+r^{2} \cos ^{2} \theta d \psi^{2} & \beta=2^{-1 / 2} a^{2} R_{y} \Sigma^{-1}\left(\sin ^{2} \theta d \phi-\cos ^{2} \theta d \psi\right) \\
\hat{v}_{k, m, n} \equiv \sqrt{2} R_{y}^{-1}(m+n) v+(k-m) \phi-m \psi & \Delta_{k, m, n} \equiv a^{k} r^{n}\left(r^{2}+a^{2}\right)^{-(k+n) / 2} \cos ^{m} \theta \sin ^{k-m} \theta \\
Z_{1}=\frac{Q_{1}}{\Sigma}+\frac{R_{y}^{2}}{2 Q_{5}^{2}} b_{k, m, n}^{2} \theta \\
\operatorname{sos}_{2 k, 2 m, 2 n} \cos \hat{v}_{2 k, 2 m, 2 n} & Z_{2}=\frac{Q_{5}}{\Sigma}, \quad Z_{4}=b_{k, m, n} R_{y} \frac{\Delta_{k, m, n}}{\Sigma} \cos \hat{v}_{k, m, n} \\
\mathcal{F}_{1,0, n}=-a^{-2}\left(1-r^{2 n}\left(r^{2}+a^{2}\right)^{-n}\right) \quad \omega_{1,0, n}=2^{-1 / 2} R_{y} \Sigma^{-1}\left(1-r^{2 n}\left(r^{2}+a^{2}\right)^{-n}\right) \sin ^{2} \theta d \phi
\end{array}
$$

This class of solutions is fully regular if $a^{2}+\frac{b_{1,0, n}^{2}}{2}=\frac{Q_{1} Q_{5}}{R_{y}^{2}}$. For an appropriate choice of parameters it's described by the picture for (e1)

