
ALPino cosmology and its detection prospect

Osamu Seto (Hokkaido Univ.)

With: Ki-Young Choi, Takeo Inami, Kenji Kadota , Inwoo Park Ref : 1902.10475

§ Introduction

- Axion (*a*) is interesting.
 - A solution to the Strong CP problem
 - Astrophysical and cosmological constraints
 - Good DM candidate
- General axion: Axion-like Particles (ALPs)
 - Universal : e.g., String Compactification, Axiverse, ...
 - Mass and decay constant as free parameters
 - Today, we consider ALP mass larger than QCD axion's.

 Today, we consider ALP mass larger than QCD axion's.
 Heavy ALPs is an interesting to explore

§ Introduction

- Axion (*a*) is interesting.
 - A solution to the Strong CP problem
 - Astrophysical and cosmological constraints
 - Good DM candidate
- General axion: Axion-like Particles (ALPs)
 - Universal : e.g., String Compactification, Axiverse, ...
 - Mass and decay constant as free parameters
 - Today, we consider ALP mass larger than QCD axion's.
- Supersymmetry
 - Superparticle

§ Supersymmetric model with ALPs

Model

- Superpartner of ALP: ALPino \tilde{a}
 - Analogus to Axino
 - F_a suppressed interaction
 - Could be the lightest supersymmetric particle, LSP, which is stable for a R-parity conserving model.
 - Dark matter candidate
 - axion decay constant as a free parameter
 - Free f_a suppression
- Interaction (ALPino-photino-photon)

$$\mathcal{L}_{\text{int}} = \frac{\alpha_{\text{em}} C_{a\gamma\gamma}}{16\pi f_a} \tilde{a} \gamma_5 [\gamma^{\mu}, \gamma^{\nu}] \tilde{\gamma} F_{\mu\nu}$$

Model

- Superpartner of ALP: ALPino \tilde{a}
- Interaction (ALPino-photino-photon)

$$\mathcal{L}_{\text{int}} = \frac{\alpha_{\text{em}} C_{a\gamma\gamma}}{16\pi f_a} \tilde{a}\gamma_5 [\gamma^{\mu}, \gamma^{\nu}] \tilde{\gamma} F_{\mu\nu}$$

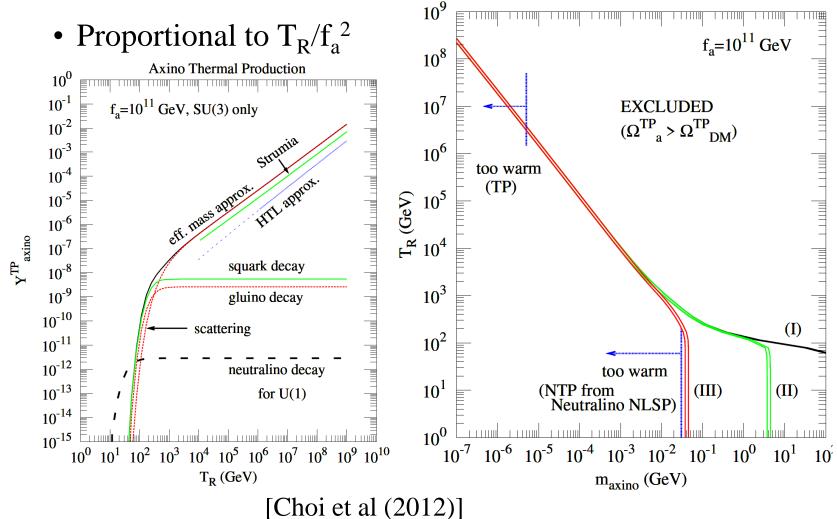
- Mass spectrum
 - ALPino LSP (good DM candidate too)
 - Bino-like neutralino NLSP
- Free parameter
 - ALPino mass [Chun, Kim, and Nilles (1992), Chun and Lukas (1992)], ALPs decay constant, Neutralino mass

§ ALPino cosmology : ALPino as dark matter

Review of axino dark matter

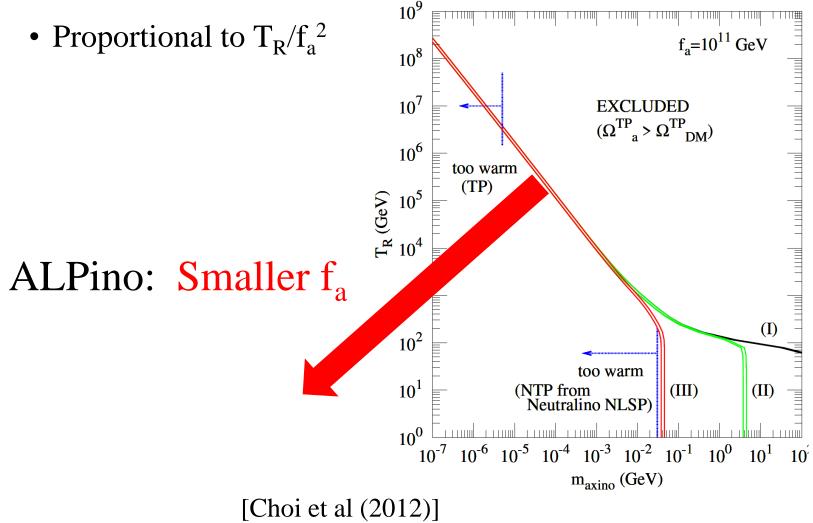
- ALPino : a variant of axino
- Axino dark matter [Covi et al (1999)]
 - Interaction

$$\mathcal{L}_{\text{int}} = \frac{\alpha_{\text{em}} C_{a\gamma\gamma}}{16\pi f_a} \tilde{a}\gamma_5 [\gamma^{\mu}, \gamma^{\nu}] \tilde{\gamma} F_{\mu\nu}$$


- Production
 - Scattering and decay in thermal plasma

n	Process	$\overline{\sigma}_N$	$n_{\rm spin}$	$n_{ m F}$	$\eta_1\eta_2$
А	$g^a + g^b \to \tilde{a} + \tilde{g}^c$		4	1	1
В	$g^a + \tilde{g}^b \to \tilde{a} + g^c$	$\frac{5}{16} f^{abc} ^2 \left[\log\left(s/m_{\text{eff}}^2\right) - \frac{15}{8}\right]$	4	1	$\frac{3}{4}$
С	$g^a + \tilde{q}_k \to \tilde{a} + q_j$	$\frac{1}{8} T^a_{jk} ^2$	2	$N_F \times 2$	1
D	$g^a + q_k \to \tilde{a} + \tilde{q}_j$	$-rac{1}{32} T^a_{jk} ^2$	4	$N_F \times 2$	$\frac{3}{4}$
Е	$\tilde{q}_j + q_k \to \tilde{a} + g^a$	$\frac{1}{16} T^{a}_{jk} ^{2}$	2	$N_F \times 2$	$\frac{3}{4}$
F	$\tilde{g}^a + \tilde{g}^b \to \tilde{a} + \tilde{g}^c$	$\frac{1}{2} f^{abc} ^2 \left[\log\left(s/m_{\text{eff}}^2\right) - \frac{29}{12}\right]$	4	1	$\frac{3}{4} \frac{3}{4}$

• Nonthermal production: decay of NLSP


Review of axino dark matter

• Abundance

Review of axino dark matter

• Abundance

ALPino abundance

• Freeze out temperature

$$T_f \simeq 1 \,\mathrm{GeV} \left(\frac{f_a}{10^5 \,\mathrm{GeV}}\right)^2 \left(\frac{0.01}{\alpha_{\mathrm{em}}}\right)^3$$

• Thermal relic?

- For $T_f > m_{\tilde{a}}$, hot relic

– For $T_f < m_{\tilde{a}}$, $f_a > 10^4$ GeV leads to overabundance

• A way out

– Non-thermal production with a low reheating temperature $(T_R \ll m_\chi)$

ALPino abundance

• A way out

– Non-thermal production with a low reheating temperature $(T_R \ll m_{\chi})$

$$\frac{dn_{\tilde{a}}}{dt} + 3Hn_{\tilde{a}} = C_{\text{coll.}}(f\bar{f} \to \tilde{\chi}_1^0\tilde{a}) + C_{\text{decay}}(\tilde{\chi}_1^0 \to \tilde{a} + \gamma),$$

• \rightarrow Integrated to T_R

•
$$\rightarrow \Omega_{\tilde{a}}h^2 \simeq 6.8 \times 10^{28} \frac{\alpha \sum_f Q^2}{8\pi^{13/2} g_*^{3/2}} \left(\frac{\alpha m_{\tilde{\chi}_1^0}}{8\pi f_a}\right)^2 \times \left(\frac{m_{\tilde{a}}}{m_{\tilde{\chi}_1^0}}\right) \left(\frac{m_{\tilde{\chi}_1^0}}{T_R}\right)^{3/2} e^{-m_{\tilde{\chi}_1^0}/T_R},$$

• Problem of baryogenesis... (as in Axino DM...)

§ ALPino detection : as a long-lived particle

Model

- Superpartner of ALP: ALPino \tilde{a}
- Interaction (ALPino-photino-photon)

$$\mathcal{L}_{\text{int}} = \frac{\alpha_{\text{em}} C_{a\gamma\gamma}}{16\pi f_a} \tilde{a}\gamma_5 [\gamma^{\mu}, \gamma^{\nu}] \tilde{\gamma} F_{\mu\nu}$$

• Process

$$pp \to M + X \quad \text{with} \quad M \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 + X'$$
$$\tilde{\chi}_1^0 \to \begin{cases} \tilde{a} + \gamma \\ \tilde{a} + l^+ + l^- \end{cases}$$

- Detection
 - CHARM, NOMAD, SHiP
 - $c\tau \sim 100 m$

§ § Production

• in SHiP

- SPS: energy = 400 GeV ($\sqrt{s} \sim 27.4$ GeV)

 $-N_{\text{proton}} \sim 2 \times 10^{20}$ for 5 years [Alekhin et al (2016)]

- The number of produced mesons
 - Multiplicity

$$N_M = N_{\text{pot}} \times N_{M,multi}$$

Meson	π^+	π^0	π^-	K^+	K^-
$N_{M,multi}$	4.10	3.87	3.34	0.331	0.224
Meson	K_S^0	η	$ ho^0$	ω	ϕ
$N_{M,multi}$	0.232	0.30	0.385	0.390	0.019

[Becattini and Heinz (1997)]

- For J/Ψ and B

$$N_M = N_{\text{pot}} \frac{\sigma_M}{\sigma_{pN}}$$

 σ_M : meson production per nucleon $\sigma_{J/\Psi} \sim 200$ nb, $\sigma_B \sim 3.6$ nb

§ § ALPino in the fixed target

3

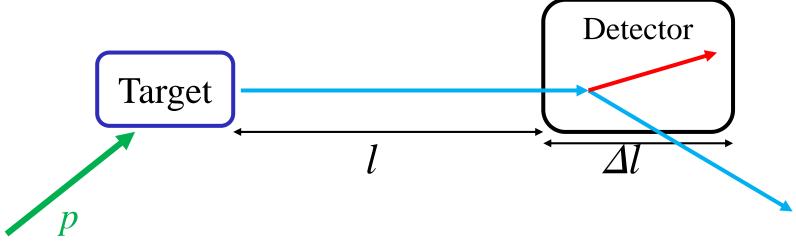
• The decay rate of the neutralino

$$\begin{split} \Gamma(\tilde{\chi}_{1}^{0} \to \tilde{a} + \gamma) &= \frac{\alpha_{\rm em}^{2} C_{a\chi\gamma}^{2}}{128\pi^{3}} \frac{m_{\tilde{\chi}_{1}^{0}}^{3}}{f_{a}^{2}} \left(1 - \frac{m_{\tilde{a}}^{2}}{m_{\chi}^{2}}\right)^{3} \\ \Gamma(\tilde{\chi}_{1}^{0} \to \tilde{a} + l^{+} + l^{-}) &\simeq \frac{\alpha_{\rm em}^{3} C_{a\chi\gamma}^{2}}{512\pi^{4}} \frac{m_{\chi}^{3}}{f_{a}^{2}} \left(4 \ln \frac{m_{\tilde{\chi}_{1}^{0}}}{m_{l}} - 6\right). \end{split}$$

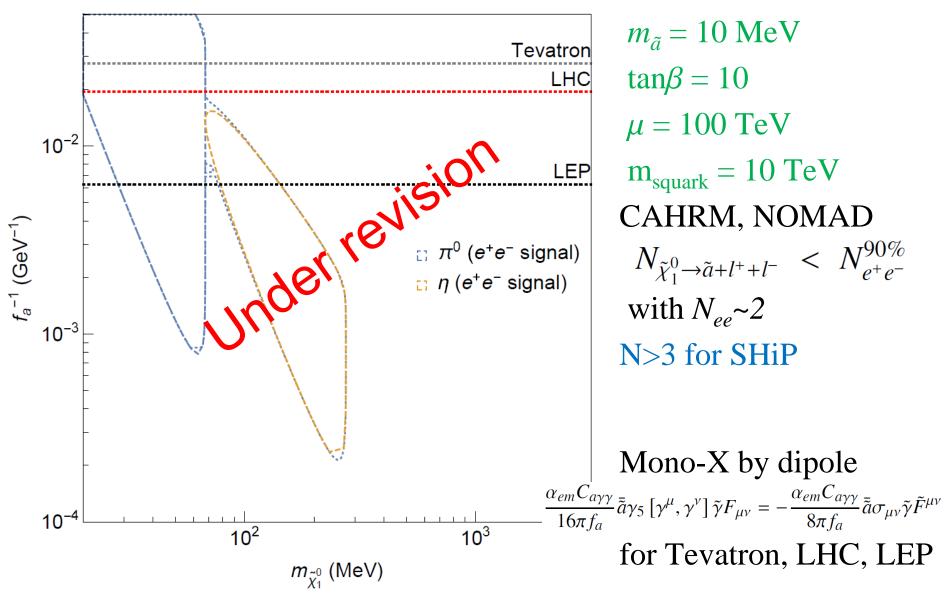
• Lifetime

$$\tau(\tilde{\chi}_1^0 \to \tilde{a} + \gamma)$$

= 0.49 × 10⁻⁹ sec $\left(\frac{1/128}{\alpha_{\rm em}}\right)^2 \left(\frac{f_a}{10^5 \,{\rm GeV}}\right)^2 \left(\frac{10 \,{\rm GeV}}{m_{\tilde{\chi}_1^0}}\right)$


• Reference scale: for $c\tau \sim 100$ m

§ § ALPino in the fixed target


• The number of neutralino decay events

$$N_{\text{det}} \simeq N_{\tilde{\chi}_1^0} \left[\exp\left(-\frac{l}{\gamma\beta c\tau}\right) - \exp\left(-\frac{l+\Delta l}{\gamma\beta c\tau}\right) \right]$$

- -l: distance from the target = 70 m
- $-\Delta l$: decay volume length = 55 m

§ § Constraints and Prospect 1

§ Summary

- ALPino: super-partner of ALPs
- $c\tau$ of the neutralino decay is O(100) m
- Range of search
 - Light neutralino < GeV</p>
 - Decay constant $f \sim 10^5 \text{ GeV}$