Basic Properties of GT transitions & β⁻ decay "Expected" in r-Process Nuclei

Y. FUJITA

RCNP, Osaka Univ. Understanding of r-process on the basis of Nuclear Physics Kyoto, Yukawa, May. 22-24, 2019

Neptune driving Waves 波を操る海神ネプチューン Neptun

Neptune=弱い相互作用 (weak interaction)

Powerful Waves=強い相互作用 (strong interaction)

> Neptune and the waves, or "steeds," he rides. <u>Walter Crane</u>, 1892

Neptune driving Waves 波を操る海神ネプチューン

Neptune=弱い相互作用 (weak interaction)

What are the properties of β⁻ decay in N>>Z nuclei ?

Properties of GT transitions are deduced using experimental data from CE reactions !

Powerful Waves=強い相互作用 (strong interaction)

> Neptune and the waves, or "steeds," he rides. <u>Walter Crane</u>, 1892

Neptune driving Waves 波を操る海神ネプチューン

Neptune=弱い相互作用 (weak interaction)

In β decay Gamow-Teller (caused by στ operator) Fermi (caused by τ operator) are called "allowed transitions," They are the dominant transition processes !

Powerful Waves=強い相互作用 (strong interaction)

> Neptune and the waves, or "steeds," he rides. <u>Walter Crane</u>, 1892

IV Giant Monopole Resonance (IVGMR)

by P. Adrich

IV Spin Monopole Mode

WEB, Dpt. Phys. Tokyo U

**Basic common understanding of β-decay and Charge-Exchange reaction in the study of GT transitions

β decays : Absolute B(GT) values, but usually the study is limited to low-lying states (p, n) and (³He,t) reaction at 0° : Relative B(GT) values, but Highly Excited States

****** Both are important for the study of GT transitions!

Grand Raiden Spectrometer

$(^{3}\text{He}, t)$ reaction

³He beam 140 MeV/u

Large Angle

Spectromet

(p, n) spectra for Fe and Ni Isotopes

Comparison of (p, n) and (³He,t) O^o spectra

Gamow-Teller transition s

Mediated by GT operator (axial isovector-operator) $\Delta S = -1, 0, +1$ and $\Delta T = -1, 0, +1$ ($\Delta L = 0$, no change in radial w.f.) \rightarrow no change in spatial w.f. Accordingly, transitions among $j_>$ and $j_<$ configurations $j_> \rightarrow j_>, \quad j_< \rightarrow j_<, \quad j_> \leftarrow \rightarrow j_<$ example $d_{5/2} \rightarrow d_{5/2}, \quad d_{3/2} \rightarrow d_{3/2}, \quad d_{5/2} \leftarrow \rightarrow d_{3/2}$

Note that Spin and Isospin are unique quantum numbers in atomic nuclei !

→ GT transitions are sensitive to Nuclear Structure !

→ GT transitions in each nucleus are UNIQUE !

β decay & Nuclear CE reaction

*
$$\beta$$
-decay GT tra. rate = $\frac{1}{t_{1/2}} = \int \frac{\lambda^2}{K} B(GT)$

B(GT) : reduced GT transition strength \propto (matrix element)² = $|\langle f|\sigma\tau|i\rangle|^2$

*At intermediate energies $(100 < E_{in} < 500 \text{ MeV})$ $\rightarrow d\sigma/d\omega(q=0)$: proportional to B(GT)

β decay & Nuclear CE reaction

B(GT): reduced GT transition strength \propto (matrix element)² = $|\langle f|\sigma\tau|i\rangle|^2$

*Nuclear (CE) reaction rate (cross-section) = reaction mechanism

x operatorx structure

=(matrix element)²

*At intermediate energies $(100 < E_{in} < 500 \text{ MeV})$ $\rightarrow d\sigma/d\omega(q=0)$: proportional to B(GT)

**GT transitions in each nucleus are UNIQUE !

- Ca isotopes -

Nuclear Chart F-shell Nuclei

		Co48	Со49 аз хз	Co50 44 MS	Со51 ×200 хз	Co52	ine	Со54 1972е ма	Со55 17.53 н	Co56 77 233 D	Co57 271.74 D
Fe45 skurger	Fe46 20 MS	Fe47 27 MS	Fe48 44 x/s	Fe49 10 MS	Fe50	N	ге52 в7/5н	Fe53 в.я. м	Fe54 5845	Fe55 2.73¥	Fe56 91.754
M G	F tra	nsit	ions		Mn49 ¥ez xas	Mn50 28529 MS	Mn51 462 M	Mn52 5.591 d	Mn53 374000 Y	Mn54 312.11 D	Mn55 100
	SM C		OTO 026 S	Ses El MS	Сг48 27.5£н	Cr49 42.3 M	Cr50 4345	Cr51 27.70250	Cr52 63.789	Cr53 9.511	Cr54 2.365
V42 <55 NS	V43 xeed xas	V44 111 ms	V45 547 MS	V46 472.50 MS	V47 22.6 м	V48 159735 d	V49 330 d	V50 0250	V51 99.750	V52 3.743 м	V53 1.20 M
Ti41 10 MS	Ti42 199 M ⁸	Ti43	Ti44	Ті45 184.8 ж	Ti46 825	Ti47	Ti48	Ti49	Ti50 518	Ті51 5.76 м	Ті52 1.7 м
504U 182.33	Sc41 563 MS	Sc42 தப்ப	Sc43 звл н	Sc44 357 н	Sc45	Sc46 19.791	Sc47 3.3472 D	Sc48 4367)	SC+> 523	Sc50 ™. *	Sc51 124 s
Са39 ¤Ф£жs	Ca48 9794	Ca41 osoo y	Ca42 0 <i>5</i> 47	Ca43 1135	Ca44 2109	Са45 са ва р	Ca46 0.004	Ca47 4.536 d	Ca48 0187	С? А ллем	Ca50
К38 745 м	K.59 932 591	¥40 од.17	K41 6.7302	K42 12.360 н	K45 22.3H	К44 22.13 м	K45 17.3 M	105 S	K47 17.50 s	K48 68 8	K49 1268

from ⁴He, ¹⁶O, ⁴⁰Ca : no GT transition is allowed ! (no GT transition from *LS*-closed Doubly Magic Nuclei)

⁴⁰Ca(³He,t)⁴⁰Sc

GT Configurations in Sc isotopes

particle-particle int. (attractive) — particle-hole int. (repulsive)

⁴²Ca(³He,t)⁴²Sc

⁴²Ca(³He,t)⁴²Sc in 2 scales

⁴²Ca(³He,t)⁴²Sc in 2 scales

⁴⁴Ca(³He,t)⁴⁴Sc

⁴⁸Ca(³He,t)⁴⁸Sc

⁴⁸Ca(³He,t)⁴⁸Sc

Nuclear Chart F-shell Nuclei

		Co48	Co49	Co50 44 MS	Со51 ×200 xs	Co52	ine	Co54 19728 MS	Со55 17.53 н	Co56 77.233 D	Co57 271.74 D
Fe45 >350 NS	Fe46 20 xcs	Fe47 27 MS	Fe48 44 x/s	Fe49 тжs	Fe50	N	ге52 в275н	Fe53 8.51 M	Fe54 5845	Fe55 2.73 Y	Fe56 91.754
GT transitions					Mn49 ¥2 Ms	Mn50 28529 MS	Mn51 462 1	Mn52	Mn53	Mn54	Mn55
	ST MS ST MS D26 S SED MS			Сг48 27.56 н	Cr49 42.3 M	Cr: 4.345 th	iran: ne β ⁻	direc	tion !	r54 65	
V42 <55 N8	V43 жилжа	V44 111 ms	V45 547 MS	V46 472.50 MS	V47 22.6 м	V48 159735D	V49 330 d	V50 0250	V5 99.7 1	V52 3.743 м	V53 1.£0 м
Ti41 10 MS	Ti42 199 MS	Ti43	Ti44	Ті45 1848 м	Ti46 825	Ti47	Ti48	Ti49	T 50 1.⊪	Ті51 5.76 м	Ті52 1.7 м
504U 18233	Sc41 \$63.85	Sc42 926	Sc43 звя н	Sc44 357 н	Sc45	Sc46 B3.791	Sc47 3.3492 D	Sc48 4367 1	С ту 972 ж	Sc50 ™. *	Sc51 124 s
Са39 ¤®£жs	Ca48 9594	Ca41 osoo y	Ca42 0.647	Ca43 1135	Ca44 2109	Са45 I .с. с. р	Ca46 0.004	Ca47 4.536 D	Ca48 0.187	С? .) лем	Ca50
K38 7.255 м	K.57 932 Sti	¥40 од.17	K41 6.7302	K42 12.360 н	K4.5 22.3 H	К44 22.13 м	К45 17.3 м	105 S	K47 17.50 s	K48 68 s	K49 1 26 8

GT Configurations in Sc isotopes

particle-particle int. (attractive) — particle-hole int. (repulsive)

Low-energy Super GT state Is formed ! Gamow-Teller Resonance Is formed !

GT Configurations in Sc isotopes

Super GT state Is formed ! Main Restriction Isovector Interaction

⁴²Ca(³He,t)⁴²Sc in 2 scales

GT Configurations in Sc isotopes

Isoscalar interaction !

Resonance Is formed !

GT transitions in $^{A}Sn \rightarrow ^{A}Sb$ CE reactions

¹³²Sn(p, n)¹³²Sb @ RIBF RIKEN (Angular-dis. Ana.)

The result of MDA (Multi-Pole Decomp. Ana.) shows that GTR is at Ex ~ 16.3 MeV width Γ ~ 4.7 MeV.

J. Yasuda et al., PRL 121, 132501 (2018)

GT transitions in $^{A}Sn \rightarrow ^{A}Sb$ CE reactions

Low-Ex GT strength: Even-Odd vs. Even-Even

Interpretation of CE results into β^- decay results

*** Q-value limitation

Interpretation of CE results into β^- decay results

- *** Q-value limitation
- GTR region usually makes no contribution ! Fermi transition cannot make contribution ! [Y. Fujita et al. PPNP 66 (2011) 549] *** GT transitions to the low-Ex region although weak, have large weight.
- *** GT transitions to the low-Ex region: different in Even-Even & Even-Odd nuclei !
 - → T1/2 can be largely different !

Simulation of β -decay spectrum 5000 50 $Cr(^{3}He,t)^{50}Mn$ F=140 MeV/nucleon

$\begin{array}{c} 50 \text{ Cr}(^{3}\text{He,t})^{50}\text{Mn} \\ \text{E=140 MeV/nucleon} \\ \theta=0^{\circ} \\ \text{Q}_{\text{EC}}=8.152 \text{ MeV} \end{array}$

Summary

In order to study the β-decay properties from N>>Z nuclei (both in Experiment & Theory)
Q-value study is important.
Q-value study is important.
Tiny GT transitions to the low-Ex region try plays important roles.
Comparison of the low-Ex region is rather different in
Even-Even & Even-Odd

Y. Fujita pulciei, 95 (2005)

g.s.(IAS),0⁺

3000

2000

1000

0.651

2.1 2.1 2.1 8.0 2.0 2.0 2.0 2.0

