

K computer

Gravitational Wave Physics and Astronomy

基研研究会「原子核物理でつむぐrプロセス」

中性子星合体とrプロセス元素合成

関口 雄一郎(東邦大学)

Shibata et al. 2005,2006 Hotokezaka et al. 2013

連星中性子星の進化

Typical scenario for NS-NS merger

- Kinematical (using General Relativistic effect of Shapiro time delay) measurement of massive neutron star mass
 - <u>PSR J1614-2230</u>: $1.97 \pm 0.04M_{\odot}$ (Demorest et al. 2010), updated to $1.908 \pm 0.016M_{\odot}$ (Arzoumanian et al. 2018)
 - PSR J0740+6620: $2.17^{+0.11}_{-0.10}M_{\odot}$ 68.3% C.L. (Cromartie et al. 2019)
- > Typical total mass of (compact) NS-NS : $2.7 2.75M_{\odot}$
- Numerical relativity simulations have shown that the typical remnant soon after the merger is a massive NS, not BH e.g, Shibata et al. 2006; Hotokezaka et al. 2013
- GW170817 : total mass 2.74Msun
 - Massive NS formation, maybe followed by later collapse to a BH ?
 - No well-established activity from long-lived massive NS

Shibata et al. 2005,2006 Hotokezaka et al. 2013

連星中性子星の進化

Fujibayashi et al. (2018)

See also Rosswog et al. 2004; Bauswein et al. 2013; Lehner et al. 2016; Foucart et al. 2017; Radice et al. 2018

Properties of **Dynamical** ejecta : mass

- Dynamical ejecta mass depends strongly on NS equation of state (EOS)
 - $M_{\rm ej,dyn} \sim 0.001 0.01 M_{\odot}$: larger for softer EOS
 - But M_{ej,dyn} is very small if BH is directly formed after the merger
 - $M_{\rm ej,dyn} \sim 0.01 M_{\odot}$ only for Soft EOS like SFHo ($R_{1.4} \approx 12$ km, $\Lambda < 400$)

Properties of **Dynamical** ejecta : Ye

- For EOS consistent with GW170817 ($\Lambda < 800$) : SFHo (soft) , DD2 (stiff)
 - Ye_{ej,dyn} = 0.05 0.5, irrespective of mass ratio for q = 0.8 1.0

Equatorial direction

- Tidally driven (low T)
 - Ye < 0.20</p>
 - Lanthanide rich, red
 - Dominates for q < 0.9</p>

Polar direction

- Neutrino irradiated
 - ▶ Ye > 0.4
 - Lanthanide free, blue
 - Mass is small

Intermediate

- Thermal driven (hight T)
 - Moderate Lanthanide

Mass ejection mechanisms : Viscosity

See also Metzger & Fernandez 2014; Pregp et al. 2017; Lippuner et al. 2017; Radice et al. 2019

Mass ejection mechanisms : Viscosity

Fujibayashi et al. (2018) : α =0.04 model

See also Metzger & Fernandez 2014; Pregp et al. 2017; Lippuner et al. 2017; Radice et al. 2019

Mass ejection in NS-NS : Summary

Dynamical ejecta

Viscous ejecta

r-process nucleosynthesis calculation

- Multi-component free expansion model
 - Dynamical ejecta : $M_{ej,dyn} = 0.01 M_{\odot}$
 - viscous ejecta : $M_{ej,vis} = 0.05 M_{\odot}$

 10^{0}

10⁻¹

10⁻²

 10^{-3}

10

fraction

- Nuclear network inputs
 - HBF-21 mass model, capture rates from TALYS, GT2 rate for β-decays, fission based on HBF-14

r-process abundance pattern

- Nicely reproduce the solar r-process pattern
 - approximated model calculation, some tuning done
- Consistent with r-rich, metal-poor stars (r-II stars)

Nuclear heating rate

- Total heating rate \dot{Q} vs. Bolometric luminosity L_{bol} of kilonova
 - L_{bol} in later optically-thin phase (\gtrsim 7 days) should agree with \dot{Q}

Nuclear heating rate

The humpy feature at 5-10 days comes from β-decays of 66 Cu and 72 Ga in high Ye > 0.4 ejecta 66 Ni (2.28 day) $\rightarrow {}^{66}$ Cu (5.12 m) $\rightarrow {}^{66}$ Zn

 72 Zn (1.94 day) \rightarrow^{72} Ga (14.1 hr) \rightarrow^{72} Ge

 See Wu et al. (2018) and Kasliwal et al. (2019) for alternative explanation by α-decays of actinides (heavy nuclei)

Kilonova modelling

The color/spectra evolution observed in GW170817

Kilonova modelling

The color/spectra evolution observed in GW170817

Opacity is determined by ejecta composition

Lanthanides are key elements

- Lanthanide opacities are large due to their dense atomic line structure
 - Kasen+ 2013; Tanaka & Hotokezaka 2013;
 Tanaka, Kato et al. 2017
- lanthanide free ejecta, κ < 1 cm²/g
 ⇒ blue component
- Ianthanide rich ejecta, κ ~ 10 cm²/g
 ⇒ red component
- Criterion for Lanthanide production

Ye < 0.25 (e.g, Korobkin+. 2012; Wanajo, YS+ 2014)</p>

Important to know ejecta Ye $Ye \leq 0.25$

Numerical relativity vs. Simple modelling

red component

- high opacity (κ > 3cm²/g)
- velocity (v ~ 0.15c)
- massive ~ 0.05 Msun

Viscous ejecta

blue component

- low opacity (κ < 1cm²/g)
- high velocity (v > 0.25c)
- mass ~ 0.02 Msun

Modelling based on Numerical Relativity

- Radiation transfer based on the Numerical-Relativity result
- Viscous (post-merger) ejecta are surrounded by dynamical ejecta
 - photons from viscous ejecta may be absorbed in outer region
 - dimensionality will play role

Same event seen from equator

- GW170817 : viewing angle ~ 30 deg
- Blue emissions will be decreased when seen from equator
 - Simple modelling : different composition

High Ye

low Y

Medium Ye

Low Ye

NS-NS(BH) candidates : S190425a and S190426c

- NS-NS merger event rate from GW170817 : 110-3840 /Gpc^3/yr
- We have two additional candidates in 1 month
 - ▶ \$190425a
 - probability (from mass estimation) being NS-NS : 0.999
 - $D \approx 160^{+40}_{-40} \,\mathrm{Mpc}$
 - ► S190426c
 - ▶ probability being NS-NS : 0.493, NS-BH(> $5M_{\odot}$) : 0.129, NS-(NS or low mass BH) : 0.237 , unknown terrestrial : 0.140
 - $D \approx 420^{+130}_{-130} \text{ Mpc}$
 - \Rightarrow suggest that the event rate may be relatively high as \sim 10/yr
 - ⇒ ~ 1000 /Gpc^3 /yr

Rosswog et al. (2017)

mass number, A

Experiments vs. nuclear models (1)

Mendoza-Temis et al. (2017)

On extrapolation to n-rich region

Comparison of r.m.s deviation for mass in keV

Model	AME-2003	AME-2012 (new)	AME-2012
	(full)	(new)	(full)
FRDM-1992	655	765	666
HFB-21	576	646	584
WS3	336	424	345
DZ10	551	880	588
DZ31	363	665	400

Cowan et al. (2019)

Inclusion of 219 new (n-rich) experimental masses (AME-2012) does not make worse the deviation significantly

Summary

- Modelling based on recent Numerical Relativity simulations is consistent with observational results from GW170817
 - Dynamical ejecta : Ye = 0.1-0.4, Mej = 0.001-0.01Msun, Vej ~ 0.2c
 - Viscous (post-merger) ejecta : Ye > 0.25, Mej ~ 0.04Msun, Vej < 0.1c</p>
 - Total amount of solar r-process elements
 - Solar and r-II star abundance patterns
 - Bolometric luminosity and color evolution of the kilonova