Impact of isomers on a kilonova light-curve

研究会「原子核物理でつむぐrプロセス」 2019.05.22-24 京都大学

藤本信一郎 (熊本高専) 橋本正章 (九州大学)

Kilonova model for GW170817

 熱源=<u>R過程元素の崩壊熱</u>、 可視光・赤外線放射
初期 blue 成分 (<1-3日)
Ye=0.25~0.3 (不透明度小)
v~0.3c, M~0.03Msun
後期 red 成分 (>3日)
Ye < 0.2-0.25 (不透明度大)
v~0.1c, M~0.05Msun

<u>核異性体(isomer)</u>

Isomerを考慮する原子核の性質

Selection Rules

- Kilonova光度への寄与が 大きな A=120-140な原子核
- Beta-崩壊の分岐比>0
- 半減期 > 10倍 or < 1/10倍
- 観測的に重要な 半減期 = 0.5h-200day

青:より長い半減期のisomer 赤:より短い半減期のisomer

安定核近傍の原子核, 主に中性子過剰核の 一連のβ崩壊により生成

isomerを考 慮した原子 核	半減期 (基底状態)	半減期 (isomer)	励起エ ネルギ ー (MeV)	分岐 比 (%)
121Sn	<u>1.1d</u>	<u>44y</u>	0.006	22.4
123Sn	<u>130d</u>	40m	0.025	100
125Sn	<u>9.6d</u>	9.5m	0.028	100
127Sn	<u>2.1h</u>	4.1m	0.0047	100
128Sb	<u>9.0h</u>	10m	0.020	96.4
129Sb	<u>4.4h</u>	18m	1.85	85.0
129Te	1.2h	<u>34d</u>	0.11	36.0
131Te	25m	<u>1.4d</u>	0.18	74.1
134I	<u>0.9h</u>	3.5m	0.32	2.3

Analytical wind model (Rosswog+17)

- V: constant
- rho \propto 1/r^3, uniform
- T: with nuclear heating

Four parameters

- Mw = 0.03 Msun
- s0 = 10kB
- Vw/c = 0.05, 0.1, 0.2
- Ye = 0.1, 0.15,0.2, 0.25, 0.3 4

Ejecta dynamics Reaction network

4070 nuclei (Z=0-100)

FRDM (Moller 1997)

Isomers

Nine nuclei are assumed to be always stayed in

(a) ground states (Previous works)

(b) isometric states

Evolution of T and abundances

(a) Ground state

(b) Isomer

T/MeV, Mass Fractions Vw=0.05c, Ye=0.25

Energy generation rates

Vw=0.05c, Ye=0.25

Energy generation rate (erg/g/s)

6

Energy generation rates: Ye dep.

Energy generation rate(erg/g/s) Vw=0.05c, Ye = 0.2, 0.25, 0.3

Energy generation rates: Vw dep.

Energy generation rate(erg/g/s) Ye=0.25, Vw/c = 0.05, 0.1, 0.2

A<120,A>140の核のIsomerの影響

追加した5核種

Energy generation rate(erg/g/s)

Nuclei	Half life (ground state)	Half life (isomer)	Excitatio n energy (MeV)	分岐 比 (%)	1e+12 Vw = 0.05c, Ye = 0.10, with 9+5 isomer with 9 isomer 1e+11 (b) 9 isomers	
106Rh	30.1s	<u>131m</u>	0.134	100	1e+10 (c) 9+5	-
115Cd	<u>2.23d</u>	<u>44.6d</u>	0.181	100	isomers (c) s	9+5
177Lu	6.65h	<u>160d</u>	0.970	78.6	1e+09	ners
194Ir	<u>19.3h</u>	<u>171d</u>	0.15?	100	1e+08 = 1 (b) 9 isome	re
200Au	48.4m	<u>18.7h</u>	0.962	84	1e+07 1e+07 1 Time/day 10	100

s0=10kB, Mw=0.03Msun, Vw=0.05c, Ye=0.1, 0.15, 0.2, 0.25, 0.3に対して

<u>Ye=0.1の場合</u>、115Cd(X~1e-3)のisomerの影響で 加熱率が若干変化 Ye>=0.15の場合、加熱率の変化は非常に小さい

s0=10kB, Ye=0.25

原子核データの影響

- 選んだ(9+5)核種の原子核は安定核近傍
 - 反応率などの不定性は比較的小さい
- ●これら14核種の生成量
 - 中性子過剰核の中性子捕獲反応などに強く依存
- Ye=0.1のときの115Cd
 - Fission Yieldの可能性が高い(確認中)
- 未知のisomer

<u>Isomerの影響の原子核データ依存性は決して小さくない</u>

Summary

14核種 (121Sn, 123Sn, 125Sn, 127Sn, 128Sb, 129Sb, 129Te, 131Te, 134I +106Rh, 115Cd, 177Lu, 194Ir, 200Au) の isomer を考慮して、 組成進化とエネルギー生成率進化を計算し、<u>isomerのKilonova</u> <u>光度曲線への影響を調査</u>した。

<u>結果</u>

- 初期(<3日)のエネルギー生成率が減少し、Kilonova光度も減少
- GW170817のEarly Blue成分へ影響し、 より速く、より多量の放出ガスが必要
- 主にYe=0.2-0.3(特にYe~0.25)の放出ガスに対して影響する
- 以上の結果は定量的には原子核データに依存する

- GSとisomer間の遷移
- Isomerへのβ崩壊
- X線バーストへの影響