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Nucleosynthesis

 Nuclear binding energy  Slow neutron-capture process (s-process)

 Abundance  Rapid neutron-capture process (r-process)



r-process nucleosynthesis and nuclear inputs

The 11 greatest unanswered questions of physics

Question 3
How were the heavy elements 
from iron to uranium made?



Nuclear inputs for r-process

 To provide and organize all these inputs in a systematic and consistent way

 e.g., changes in mass changes in half-lives, capture rates …
( not hybrid databases ! )

 more exp. data  more reliable extrapolation / smaller uncertainties
( higher accuracy ? )

Key exp. @ RIKEN
masses
β-decay half-lives
β-delayed n-emssions
……



Nuclear mass models

 Theoretically, the development of nuclear mass model can be traced back to the
early age of nuclear physics, known as Bethe-Weizsacker liquid drop model in
1935.

 To take into account the nuclear shell effects: the microscopic models and the
microscopic-macroscopic (mic-mac) models.



Theories + Bayesian approaches (I)

arXiv:1810.03156

Another (ultimate) goal: to structure energy density functionals for DFT



Theories + Bayesian approaches (II)
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Bayesian and frequentist views

 Differences between Bayesians and frequentists Bishop2006Springer

Frequentists: 
 Data are a repeatable random sample

--- there is a frequency
 Underlying parameters remain 

constant during this repeatable process
 Parameters are unknown but fixed

 Example: tossing a coin of unknown properties; 
probability ω of the coin landing heads

Bayesians:
 Data are observed from the realized 

sample
 Parameters are unknown and 

described probabilistically
 Data are fixed

 Choose some criterion, such as 
maximum likelihood

 Find the optimal estimator according to 
this criterion, such as the frequency of 
heads in past tosses

 Express this unknown properties using a
probability distribution over possible
values based on our intuitive believes

 Update this distribution using the Bayes'
theorem as the outcome of each toss
becomes known
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Bayesian approach in regression problem

 Posterior distributions of parameters are    Neal1996Springer

 prior distribution p(ω):
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Bayesian approach in regression problem

 likelihood function p(D|ω)
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 Posterior distributions of parameters are    Neal1996Springer
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Bayesian approach in regression problem

 Make predictions
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sampling with Markov chain Monte Carlo (MCMC) method

 Posterior distributions of parameters are    Neal1996Springer
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 The BNN approach can give the joint probability distribution of all
parameters, from which we can get the correlations among parameters, so
the number of independent parameters may be much less the number of BNN
parameters.



A toy model
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 Number of hidden unit: 
H=20 for f(x); H=15 for f(x1, x2)

 Number of parameters: 61
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 Number of training data: N=61, x∈[-3, 3]

 BNN can avoid overfitting if
a Gamma distribution is taken
as the noise prior.

 Direct BNN fitting with x as
the only input variable can
only extrapolate around a few
steps from known region.



A toy model

 Including reasonable variable is very effective for the extrapolation of neural
network.

 Uncertainties of predictions are also reasonable.
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Numerical details

Inputs: 
 2 inputs (I=2): Z, A
 4 inputs (I=4): Z, A, δ, P;     δ=[(-1)Z+(-1)N]/2, P=νnνp/(νp+νn)

Hidden units:
 2 inputs (I=2): H=42
 4 inputs (I=4): H=28

Number of parameters: 169
Data:
 Entire set: 2272 nuclei in AME2016 (Z, N>=8 and σexp<=100 keV)
 Learning set: 1800 data randomly selected from entire set
 Validation set: the remaining 472 data in entire set

Likelihood function p(D|ω)
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Rms deviations of mass and Sn

Mass

Sn

 The predictions of nuclear mass and
neutron-separation energy are
significantly improved with the
BNN approach.

 After the improvement using the
BNN approach with four inputs, the
rms deviations are generally around
200 keV.

 The BNN with four inputs is more
powerful than the BNN with two
inputs, especially for the neutron
separation energy.



Mass extrapolation

 The smooth deviations can be improved significantly, while the odd-even
staggering can only remarkably reduced with BNN-I4 approach.

 The BNN corrections are still reasonable if the extrapolation is not far away
from the training region.
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Nuclear β-decay half-lives

 The nuclear β-decay half-life in the allowed Gamow-Teller approximation 

reads as follows:

where is the transition probability, and Em is 

the maximum value of β-decay energy. The phase volume is

β
β

δ
λ

= = → = − −
∑1 2 1 22

GT

ln2 / ( , , = ( 1) )
( ) ( , , ) m

A m mm

DT T a f Z A E Q c A
g B E f Z A E

π
= = =
7 3

2 5 4
2 ln2 6163.4 s, 1,A

e

D g
g m c

= −∫ 2
5

1( , , ) ( ) ( , , ) ,m

e

E

m e e m e m em
e

f Z A E p E E E F Z A E dE
m

GT( )mB E



Numerical details

Inputs: 
 2 inputs (BNN-I2): Z, N
 4 inputs (BNN-I4): Z, N, δ=[(-1)Z+(-1)N]/2, Qβ

Hidden units:
 2 inputs (BNN-I2): H=30
 4 inputs (BNN-I4): H=20

Number of parameters: 121
Data:
 Entire set: 1009 nuclei in NUBASE2016 (Z, N>=8 and β--decay fraction=100%)
 Learning set: 900 data randomly selected from entire set
 Validation set: the remaining 109 data in entire set

Likelihood function p(D|ω)
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Half-lives with BNN approaches

( ) 2

10 1/2 1/2
1

log /
n

i
T T

n
σ =

  
=
∑ Exp Theo

rms

 Logarithmic rms deviations with respect to the known β-
decay half-lives from NUBASE2016

100.2 ~ 1.6



Predictions of nuclear half-lives

 The results of WS4+BNN-I4 approach are in a good agreement with the experimental
data, in particular, for those with T1/2 < 1 s.

 Extrapolating to unknown region, uncertainties of WS+BNN-I4 increase remarkably.
 Results of other models generally agree with WS4+BNN-I4 within uncertainties.





Predictions of nuclear half-lives

If we can further measure three more β-decay half-lives for each isotopes
towards neutron-drip line
 the uncertainties of BNN predictions are similar in the training region
 they will be decreased about 3 times when extrapolate to the region far from

known region.



Predictions of r-process abundances

 The uncertainties from nuclear beta-decay half-lives lead to large uncertainties for the r-
process abundances of elements with A > ~140, which can be remarkably reduced if
we can further measure three more β-decay half-lives.
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 To provide and organize all these inputs in a systematic and consistent way

 e.g., changes in mass changes in half-lives, capture rates …
( not hybrid databases ! )

 more exp. data  more reliable extrapolation / smaller uncertainties
( higher accuracy ? )

Summary and Perspectives

Z

N

mass

half-life

charge radius

excitation spectra

……



Summary and Perspectives

 To construct density functional with BNN approach?
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Thank  you
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