密度汎関数法 による奇核を 含めた原子核 質量の新しい 計算法

加須屋春樹 吉田賢市 京大理

				<u> </u>			and the second s	
	⁷⁸ As	⁷⁹ As	⁸⁰ As	⁸¹ As	⁸² As	⁸³ As		
Z	⁷⁷ Ge	⁷⁸ Ge	⁷⁹ Ge	⁸⁰ Ge	⁸¹ Ge	⁸² Ge	RAN	
	⁷⁶ Ga	⁷⁷ Ga	⁷⁸ Ga	⁷⁹ Ga	⁸⁰ Ga	⁸¹ Ga		
	⁷⁵ Zn	⁷⁶ Zn	⁷⁷ Zn	⁷⁸ Zn	⁷⁹ Zn	⁸⁰ Zn		2
	⁷⁴ Cu	⁷⁵ Cu	⁷⁶ Cu	⁷⁷ Cu	⁷⁸ Cu	⁷⁹ Cu		
	⁷³ Ni	⁷⁴ Ni	⁷⁵ Ni	⁷⁶ Ni	⁷⁷ Ni	⁷⁸ Ni		
							Even A	Odd A

Density functional theory (DFT) is able to describe all the nuclei in a single framework.

http://unedf.mps.ohio-state.edu/

While the nature of even-even nuclei has been studied a lot in a framework of DFT, there have been few DFT studies of odd (and odd-odd) nuclei.

7

密度汎関数法 による奇核を 含めた原子核 質量の新しい 計算法

加須屋春樹 吉田賢市 京大理

Density functional theory

$$\delta(E[\rho,\kappa] - \lambda\langle \widehat{N}\rangle) = 0$$

$$\widehat{N} = \sum_{i} c_{i}^{\dagger}c_{i}$$

$$\rho_{ij} = \langle c_{j}^{\dagger}c_{i}\rangle$$

$$\kappa_{ij} = \langle c_{j}c_{i}\rangle$$

$$\kappa_{ij} = \langle c_{j}c_{i}\rangle$$

$$\kappa_{ij} = \langle c_{j}c_{i}\rangle$$

$$\kappa_{ij} = \langle c_{j}c_{i}\rangle$$

$$HFB equation$$

$$(h - \lambda 1 \quad \Delta \\ -\Delta^{*} \quad -h^{*} + \lambda 1) \begin{pmatrix} U & V^{*} \\ V & U^{*} \end{pmatrix} = \begin{pmatrix} U & V^{*} \\ V & U^{*} \end{pmatrix} \begin{pmatrix} E & 0 \\ 0 & -E \end{pmatrix}$$

$$Hartree-Fock-Bogoliubov$$

$$h_{ij} = \frac{\delta E[\rho,\kappa]}{\delta \rho_{ji}} \quad \Delta_{ij} = \frac{\delta E[\rho,\kappa]}{\delta \kappa_{ij}^{*}} \qquad E = \begin{pmatrix} E_{1} & 0 \\ 0 & -E \end{pmatrix}$$

Number parity

HFB equation
$$\begin{pmatrix} h - \lambda 1 & \Delta \\ -\Delta^* & -h^* + \lambda 1 \end{pmatrix} \begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix} = \begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix} \begin{pmatrix} E & 0 \\ 0 & -E \end{pmatrix}$$

Bloch-Messiah theorem:
$$\begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix} = \begin{pmatrix} D & 0 \\ 0 & D^* \end{pmatrix} \begin{pmatrix} \overline{U} & \overline{V} \\ \overline{V} & \overline{U} \end{pmatrix} \begin{pmatrix} C & 0 \\ 0 & C^* \end{pmatrix}$$

$$\begin{split} |\Phi\rangle &= \prod_{k=1}^{N_1} a_k^{\dagger} \prod_{p=1}^{N_2} (u_p + v_p a_p^{\dagger} a_{\bar{p}}^{\dagger}) |0\rangle \implies \det \begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix} = (-1)^{N_1} \\ \text{number parity} \end{split}$$

$$det \begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix} = +1 \quad \Longleftrightarrow \quad Superposition of even-particle-number states$$
$$det \begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix} = -1 \quad \Longleftrightarrow \quad Superposition of odd-particle-number states$$

Blocking

HFB equation
$$\begin{pmatrix} h - \lambda 1 & \Delta \\ -\Delta^* & -h^* + \lambda 1 \end{pmatrix} \begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix} = \begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix} \begin{pmatrix} E & 0 \\ 0 & -E \end{pmatrix}$$

A system with time-reversal symmetry: $det \begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix} = +1$ for the ground state

Blocking

A system with a conserved symmetry \hat{S} having time-odd character: $T\hat{s}T^{-1} = -\hat{s}$

 Ω_{μ} : an eigenvalue of \hat{S}

Example 1: $\hat{s} = J_z$

high-*K* state is preferably described

Noncollective cranking

Example 2: $\hat{s} = i\hat{R}_z$

Two-Fermi-level approach

[G. Bertsch, J. Dobaczewski, W. Nazarewicz and, J. Pei, Phys. Rev. A 79, 043602 (2009).]

Signature op. $\hat{R}_z = e^{-i\pi \hat{J}_z}$ eigenvalue $r = \pm i$

low q.p. energy state is preferably described

if the density of state is high, hard to obtain the convergence

if levels are degenerate more than two, unable to obtain one q.p. state

Example 2:
$$\hat{s} = |\Omega = 1/2\rangle\langle\Omega = 1/2| - |\Omega = -1/2\rangle\langle\Omega = -1/2|$$

can select the state of interest

convenient for practical use

Axially deformed HFB code

Skyrme energy density functional $\langle \Phi | H | \Phi \rangle = \int d\mathbf{r} \left(H(\mathbf{r}) + \tilde{H}(\mathbf{r}) \right)$ $H(\mathbf{r}) = \frac{\hbar^2}{2m} \tau_0 + \mathcal{H}_0(\mathbf{r}) + \mathcal{H}_1(\mathbf{r})$ $\rho_0 = \rho_n + \rho_p$ $\mathcal{H}_t(\mathbf{r}) = \mathcal{H}_t^{\text{even}}(\mathbf{r}) + \mathcal{H}_t^{\text{odd}}(\mathbf{r}) \quad t=0,1$ $\rho_1 = \rho_n - \rho_p$ $\mathcal{H}_t^{\text{even}}(\mathbf{r}) = C_t^{\rho}[\rho_0]\rho_t^2 + C_t^{\Delta\rho}\rho_t\Delta\rho_t + C_t^{\tau}\rho_t\tau_t + C_t^{J}J_t^2 + C_t^{\nabla J}\rho_t\nabla \cdot J_t$ $\mathcal{H}_t^{\text{odd}}(\mathbf{r}) = C_t^{s}[\rho_0]s_t^2 + C_t^{\Delta s}s_t \cdot \Delta s_t + C_t^{T}s_t \cdot \mathbf{T}_t + C_t^{J}J_t^2 + C_t^{\nabla J}s_t \cdot (\nabla \times j_t)$

vanish in the case of even-even nuclei

$$\widetilde{H}(\boldsymbol{r}) = \frac{1}{2} V_0 \left[1 - V_1 \left(\frac{\rho_0}{\rho_{\text{NM}}} \right)^{\gamma} \right] \sum_{q=p,n} \widetilde{\rho}_q^2$$

Calculation results: one-neutron separation energy S_n for Mg isotopes

Calculation: deformed halo of ³⁷Mg

Measurement of reaction cross section in RIBF suggests that ³⁷Mg has a large neutron radius that is considered to be derived from p-wave.

 \rightarrow deformed halo

[M. Takechi et. al., Phys. Rev. C 90, 061305(R) (2014)]

Calculation: ³⁷Mg

Matter radius

Experiment: $\sqrt{\langle r^2 \rangle_m} = 3.62 \pm 0.03$ fm

Calculation results

Conclusion

- 密度汎関数理論に基づき、時間反転反対称な拘束の下での最小エネルギー状態として奇核を記述する方法を考案した。奇核を偶々核と同様の手順で記述可能であるので、既存の偶々核のコードからの拡張が容易であり、今後の奇核の研究の発展への貢献が期待される。
- 中性子過剰なMg同位体に上の方法を適用し、原子核質量と一中 性子分離エネルギーを計算した。奇核を奇数粒子系として記述す ることで実験値とよく合う値が得られた。
- 今後は、rプロセスに関わるようなより重い核の計算や、得られた奇核の基底状態の上でのQRPA計算をしてゆきたい。

密度汎関数法 による奇核を 含めた原子核 質量の新しい 計算法

加須屋春樹 吉田賢市 京大理

Densities

$$\rho(\boldsymbol{r}\sigma\tau, \boldsymbol{r}'\sigma'\tau') = \left\langle \Phi \middle| c^{\dagger}_{\boldsymbol{r}'\sigma'\tau'} c_{\boldsymbol{r}\sigma\tau} \middle| \Phi \right\rangle$$
$$\tilde{\rho}(\boldsymbol{r}\sigma\tau, \boldsymbol{r}'\sigma'\tau') = \left\langle \Phi \middle| c_{\boldsymbol{r}'\sigma'\tau'} c_{\boldsymbol{r}\sigma\tau} \middle| \Phi \right\rangle$$

time even

$$\begin{aligned}
\rho_q(\mathbf{r}) &= \int d\mathbf{r}' \sum_{\sigma\sigma'} \rho(\mathbf{r}\sigma q, \mathbf{r}'\sigma' q) \langle \sigma'|1|\sigma \rangle \delta(\mathbf{r}' - \mathbf{r}) \\
\tau_q(\mathbf{r}) &= \int d\mathbf{r}' \sum_{\sigma\sigma'} \{ \nabla \cdot \nabla' \rho(\mathbf{r}\sigma q, \mathbf{r}'\sigma' q) \} \langle \sigma'|1|\sigma \rangle \delta(\mathbf{r}' - \mathbf{r}) \\
J_{q \ \mu\nu}(\mathbf{r}) &= \int d\mathbf{r}' \sum_{\sigma\sigma'} \frac{1}{2i} \{ (\nabla_{\mu} - \nabla_{\mu}') \rho(\mathbf{r}\sigma q, \mathbf{r}'\sigma' q) \} \langle \sigma'|\sigma_{\nu}|\sigma \rangle \delta(\mathbf{r}' - \mathbf{r}) \\
\tilde{\rho}_q(\mathbf{r}) &= \int d\mathbf{r}' \sum_{\sigma\sigma'} \tilde{\rho}(\mathbf{r}\sigma q, \mathbf{r}'\sigma' q) \langle \sigma'|1|\sigma \rangle \delta(\mathbf{r}' - \mathbf{r})
\end{aligned}$$

time odd
$$S_{q}(\mathbf{r}) = \int d\mathbf{r}' \sum_{\sigma\sigma'} \rho(\mathbf{r}\sigma q, \mathbf{r}'\sigma' q) \langle \sigma' | \boldsymbol{\sigma} | \sigma \rangle \delta(\mathbf{r}' - \mathbf{r})$$
$$T_{q}(\mathbf{r}) = \int d\mathbf{r}' \sum_{\sigma\sigma'} \{ \boldsymbol{\nabla} \cdot \boldsymbol{\nabla}' \rho(\mathbf{r}\sigma q, \mathbf{r}'\sigma' q) \} \langle \sigma' | \boldsymbol{\sigma} | \sigma \rangle \delta(\mathbf{r}' - \mathbf{r})$$
$$j_{q}(\mathbf{r}) = \int d\mathbf{r}' \sum_{\sigma\sigma'} \frac{1}{2i} \{ (\boldsymbol{\nabla} - \boldsymbol{\nabla}') \rho(\mathbf{r}\sigma q, \mathbf{r}'\sigma' q) \} \langle \sigma' | 1 | \sigma \rangle \delta(\mathbf{r}' - \mathbf{r})$$